A Symmetrical Quartz-Based Magnetoelectric Sensor for Pico-Tesla Magnetic Field Detection
Abstract
:1. Introduction
2. ME Sensor Fabrication and Characterization
2.1. ME Sensor Fabrication
2.2. Demagnetization Effect of the Metglas
2.3. ME Coefficient of the Sensor
3. Measurement of Low-Frequency Magnetic Fields
3.1. Theory of Frequency Modulation
3.2. The Experiment of the Low-Frequency Magnetic Fields Detection
4. Optimal Metglas Thickness Configuration of ME Sensor
4.1. The Linear Characteristic of ME Sensor
4.2. The Equivalent Circuit Model
4.3. The LOD Measurment with Different Frequencies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Spaldin, N.A.; Ramesh, R. Advances in magnetoelectric multiferroics. Nat. Mater. 2019, 18, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; He, Y.; Li, M.; Tu, C.; Chu, C.; Liang, X.; Chen, H.; Wei, Y.; Zaeimbashi, M.; Wang, X.; et al. A Portable Very Low Frequency (VLF) Communication System Based on Acoustically Actuated Magnetoelectric Antennas. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 398–402. [Google Scholar]
- Gupta, R.; Kotnala, R.K. A review on current status and mechanisms of room-temperature magnetoelectric coupling in multiferroics for device applications. J. Mater. Sci. 2022, 57, 12710–12737. [Google Scholar] [CrossRef]
- Mao, Q.; Wu, J.; Hu, Z.; Xu, Y.; Du, Y.; Hao, Y.; Guan, M.; Wang, C.; Wang, Z.; Zhou, Z. Magnetoelectric devices based on magnetoelectric bulk composites. J. Mater. Chem. C 2021, 9, 5594–5614. [Google Scholar]
- Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D 2005, 38, 123–152. [Google Scholar] [CrossRef]
- Tu, C.; Chu, Z.Q.; Spetzler, B.; Hayes, P.; Dong, C.Z.; Liang, Z.; Chen, H.; He, Y.; Wei, Y.; Lisenkov, I.; et al. Mechanical-Resonance-Enhanced Thin-Film Magnetoelectric Heterostructures for Magnetometers, Mechanical Antennas, Tunable RF Inductors, and Filters. Materials 2019, 12, 2259. [Google Scholar]
- Peddigari, M.; Woo, K.; Kim, S.D.; Kwak, M.S.; Jeong, J.W.; Kang, J.H.; Lee, S.H.; Park, J.H.; Park, K.I.; Annapureddy, V.; et al. Ultra-magnetic field sensitive magnetoelectric composite with sub-pT detection limit at low frequency enabled by flash photon annealing. Nano Energy 2021, 90, 106598. [Google Scholar] [CrossRef]
- Leung, C.M.; Li, J.; Viehland, D.; Zhuang, X. A review on applications of magnetoelectric composites: From heterostructural uncooled magnetic sensors, energy harvesters to highly efficient power converters. J. Phys. D 2018, 51, 263002. [Google Scholar]
- Wang, Y.; Li, J.; Viehland, D. Magnetoelectrics for magnetic sensor applications: Status, challenges and perspectives. Mater. Today 2014, 17, 269–275. [Google Scholar]
- Dong, S.; Li, J.F.; Viehland, D. Characterization of magnetoelectric laminate composites operated in longitudinal-transverse and transverse–transverse modes. J. Appl. Phys. 2004, 95, 2625–2630. [Google Scholar]
- Chu, Z.; PourhosseiniAsl, M.; Dong, S. Review of multi-layered magnetoelectric composite materials and devices applications. J. Phys. D 2018, 51, 243001. [Google Scholar]
- Chu, Z.; Shi, H.; Shi, W.; Liu, G.; Wu, J.; Yang, J.; Dong, S. Enhanced Resonance Magnetoelectric Coupling in (1-1) Connectivity Composites. Adv. Mater. 2017, 29, 1606022. [Google Scholar]
- Dong, C.; Liang, X.; Gao, J.; Chen, H.; He, Y.; Wei, Y.; Zaeimbashi, M.; Matyushov, A.; Sun, C.; Sun, N.X. Thin Film Magnetoelectric Sensors toward Biomagnetism: Materials, Devices, and Applications. Adv. Electron. Mater. 2022, 8, 2200013. [Google Scholar]
- Zuo, S.; Schmalz, J.; Ozden, M.; Gerken, M.; Su, J.; Niekiel, F.; Lofink, F.; Nazarpour, K.; Heidari, H. Ultrasensitive Magnetoelectric Sensing System for Pico-Tesla MagnetoMyoGraphy. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 971–984. [Google Scholar] [CrossRef]
- Annapureddy, V.; Palneedi, H.; Yoon, W.; Park, D.; Choi, J.; Hahn, B.; Ahn, C.; Kim, J.; Jeong, D.; Ryu, J. A pT/√Hz sensitivity ac magnetic field sensor based on magnetoelectric composites using low-loss piezoelectric single crystals. Sens. Actuat. A-Phys. 2017, 260, 206–211. [Google Scholar] [CrossRef]
- Juanjuan, Z.; Han, D.; Xia, X.; Fang, C.; Weng, G.J. Theoretical study on self-biased magnetoelectric effect of layered magnetoelectric composites. Mech. Mater. 2021, 151, 103609. [Google Scholar]
- Ma, J.N.; Xin, C.Z.; Ma, J.; Lin, Y.H.; Cewen, N. Design and analysis of a self-biased broadband magnetoelectric cantilever operated at multi-frequency windows. AIP Adv. 2017, 7, 035013. [Google Scholar] [CrossRef] [Green Version]
- Sternickel, K.; Braginski, A.I. Biomagnetism using SQUIDs: Status and perspectives. Supercond. Sci. Tech. 2006, 19, 160–171. [Google Scholar] [CrossRef]
- Janosek, M.; Butta, M.; Dressler, M.; Saunderson, E.; Novotn, D.; Fourie, C.J. 1-pT Noise Fluxgate Magnetometer for Geomagnetic Measurements and Unshielded Magnetocardiography. IEEE Trans. Instrum. Meas. 2020, 69, 2552–2560. [Google Scholar] [CrossRef]
- Jingxiang, S.; Florian, N.; Fichtner, S.; Thormaehlen, L.; Kirchhof, C.; Meyners, D.; Quandt, E.; Wagner, B.; Lofink, F. AlScN-based MEMS magnetoelectric sensor. Appl. Phys. Lett. 2020, 117, 132903. [Google Scholar]
- Glavan, G.; Belyaeva, I.A.; Shamonin, M. Multiferroic Cantilevers Containing a Magnetoactive Elastomer: Magnetoelectric Response to Low-Frequency Magnetic Fields of Triangular and Sinusoidal Waveform. Sensors 2022, 22, 3791. [Google Scholar] [CrossRef]
- Turutin, A.V.; Vidal, J.V.; Kubasov, I.V.; Kisyuk, A.M.; Kiselev, D.A.; Malinkovich, M.D.; Parkhomenko, Y.N.; Kobeleva, S.P.; Kholkin, A.L.; Sobolev, N.A. Highly sensitive magnetic field sensor based on a metglas/bidomain lithium niobate omposite shaped in form of a tuning fork. J. Magn. Magn. Mater. 2019, 486, 165209. [Google Scholar] [CrossRef]
- Petrie, J.; Viehland, D.; Gray, D.; Mandal, S.; Sreenivasulu, G.; Srinivasan, G.; Edelstein, A.S. Enhancing the sensitivity of magnetoelectric sensors by increasing the operating frequency. J. Appl. Phys. 2011, 110, 124506. [Google Scholar] [CrossRef] [Green Version]
- Ou-Yang, J.; Liu, X.; Zhou, H.; Zou, Z.; Yang, Y.; Li, J.; Zhang, Y.; Zhu, B.; Chen, S.; Yang, X. Magnetoelectric laminate composites: An overview of methods for improving the DC and low-frequency response. J. Phys. D 2018, 51, 324005. [Google Scholar]
- Lei, L.; Chen, X.M. Magnetoelectric characteristics of a dual-mode magnetostrictive/piezoelectric bilayered composite. Appl. Phys. Lett. 2008, 92, 072903. [Google Scholar] [CrossRef]
- Chen, L.; Li, P.; Wen, Y.; Zhu, Y. Resonance magnetoelectric couplings of piezoelectric ceramic and ferromagnetic constant-elasticity alloy composites with different layer structures. J. Alloys Compd. 2013, 555, 156–160. [Google Scholar]
- Laletin, V.M.; Filippov, D.A.; Poddubnaya, N.N.; Manicheva, I.N.; Srinivasan, G. Specific Features of the Magnetoelectric Effect in Permendur–Quartz–Permendur Structures in the Region of Electromechanical Resonance. Tech. Phys. Lett. 2019, 45, 436–438. [Google Scholar] [CrossRef]
- Bian, L.; Wen, Y.; Wu, Y.; Li, P.; Wu, Z.; Jia, Y.; Zhu, Z. A Resonant Magnetic Field Sensor With High Quality Factor Based on Quartz Crystal Resonator and Magnetostrictive Stress Coupling. IEEE Trans. Electron Devices 2018, 65, 2585–2591. [Google Scholar]
- Aharoni, A. Demagnetizing factors for rectangular ferromagnetic prisms. J. Appl. Phys. 1998, 83, 3432–3434. [Google Scholar] [CrossRef]
- Burdin, D.A.; Chashin, D.V.; Ekonomov, N.A.; Fetisov, L.Y.; Fetisov, Y.K.; Sreenivasulu, G.; Srinivasan, G. Nonlinear magneto-electric effects in ferromagnetic-piezoelectric composites. J. Magn. Magn. Mater. 2014, 358, 98–104. [Google Scholar] [CrossRef]
- Shen, Y.; Gao, J.; Wang, Y.; Li, J.; Viehland, D. High non-linear magnetoelectric coefficient in Metglas/PMN-PT laminate composites under zero direct current magnetic bias. J. Appl. Phys. 2014, 115, 094102. [Google Scholar] [CrossRef]
- Sun, C.; Yang, W.; He, Y.; Dong, C.; Chen, L.; Chu, Z.; Liang, X.; Chen, H.; Sun, N.-X. Low-Frequency Magnetic Field Detection Using Magnetoelectric Sensor With Optimized Metglas Layers by Frequency Modulation. IEEE Sens. J. 2022, 22, 4028–4035. [Google Scholar]
- Lei, C.; Yao, W. Dependence of Modified Butterworth Van-Dyke Model Parameters and Magnetoimpedance on DC Magnetic Field for Magnetoelectric Composites. Materials 2021, 14, 4730. [Google Scholar]
Metglas | Saturation Magnetostriction (ppm) |
---|---|
METGLAS 2605SA1 | 27 |
METGLAS 2605S3A | 20 |
METGLAS 2705M | <0.5 |
METGLAS 2826MB | 12 |
VITROVAC 7600 T70 | 45 |
METGLAS 2605SA1 | 27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, C.; Yang, W.; Zhang, Y. A Symmetrical Quartz-Based Magnetoelectric Sensor for Pico-Tesla Magnetic Field Detection. Symmetry 2022, 14, 2130. https://doi.org/10.3390/sym14102130
Sun C, Yang W, Zhang Y. A Symmetrical Quartz-Based Magnetoelectric Sensor for Pico-Tesla Magnetic Field Detection. Symmetry. 2022; 14(10):2130. https://doi.org/10.3390/sym14102130
Chicago/Turabian StyleSun, Changxing, Wenrong Yang, and Yumeng Zhang. 2022. "A Symmetrical Quartz-Based Magnetoelectric Sensor for Pico-Tesla Magnetic Field Detection" Symmetry 14, no. 10: 2130. https://doi.org/10.3390/sym14102130
APA StyleSun, C., Yang, W., & Zhang, Y. (2022). A Symmetrical Quartz-Based Magnetoelectric Sensor for Pico-Tesla Magnetic Field Detection. Symmetry, 14(10), 2130. https://doi.org/10.3390/sym14102130