Symmetric and Asymmetric Distributions: Theoretical Developments and Applications III
Abstract
:1. Introduction
2. Contributions
3. Futher Elements
Author Contributions
Funding
Conflicts of Interest
References
- Azzalini, A. A class of distributions which includes the normal ones. Scand. J. Stat. 1985, 12, 171–178. [Google Scholar]
- Jones, M. Families of distributions arising from distributions of order statistics. Test 2004, 13, 1–43. [Google Scholar] [CrossRef]
- Jones, M.; Pewsey, A. Sinh-arcsinh distributions. Biometrika 2009, 96, 761–780. [Google Scholar] [CrossRef] [Green Version]
- Marshall, A.W.; Olkin, I. A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrika 1997, 84, 641–652. [Google Scholar] [CrossRef]
- Gómez-Déniz, E.; Calderín-Ojeda, E.; Gómez, H.W. Asymmetric versus Symmetric Binary Regresion: A New Proposal with Applications. Symmetry 2022, 14, 733. [Google Scholar] [CrossRef]
- Reyes, J.; Cortés, P.L.; Rojas, M.A.; Arrué, J. A More Flexible Reliability Model Based on the Gompertz Function and the Generalized Integro-Exponential Function. Symmetry 2022, 14, 1207. [Google Scholar] [CrossRef]
- El-Morshedy, M.; El-Faheem, A.A.; Al-Bossly, A.; El-Dawoody, M. Exponentiated Generalized Inverted Gompertz Distribution: Properties and Estimation Methods with Applications to Symmetric and Asymmetric Data. Symmetry 2022, 13, 1868. [Google Scholar] [CrossRef]
- Morán-Vásquez, R.A.; Cataño, D.H.; Nagar, D.K. Some Results on the Truncated Multivariate Skew-Normal Distribution. Symmetry 2022, 14, 970. [Google Scholar] [CrossRef]
- De la Cruz, R.; Salinas, H.S.; Meza, C. Reliability Estimation for Stress-Strength Model Based on Unit-Half-Normal Distribution. Symmetry 2022, 14, 837. [Google Scholar] [CrossRef]
- Lagos-Álvarez, B.; Jerez-Lillo, B.; Navarrete, J.P.; Figueroa-Zúñiga, J.; Leiva, V. A Type I Generalized Logistic Distribution: Solving Its Estimation Problems with a Bayesian Approach and Numerical Applications Based on Simulated and Engineering Data. Symmetry 2022, 14, 655. [Google Scholar] [CrossRef]
- Martínez-Flórez, G.; Vergara-Cardozo, S.; Tovar-Falón, R. A Class of Exponentiated Regression Model for Non Negative Censored Data with an Application to Antibody Response to Vaccine. Symmetry 2022, 13, 1419. [Google Scholar] [CrossRef]
- Martínez-Flores, G.; Bolfarine, H.; Gómez, Y. The Skewed-Elliptical Log-Linear Birnbaum–Saunders Alpha-Power Model. Symmetry 2021, 13, 1297. [Google Scholar] [CrossRef]
- Iriarte, Y.A.; Castro, M.; Gómez, H.W. An Alternative One-Parameter Distribution for Bounded Data Modeling Generated from the Lambert Transformation. Symmetry 2021, 13, 1190. [Google Scholar] [CrossRef]
- Rivera, P.; Calderín-Ojeda, E.; Gallardo, D.I. A Compound Class of the Inverse Gamma and Power Series Distributions. Symmetry 2021, 13, 1328. [Google Scholar] [CrossRef]
- Gómez, H.J.; Gallardo, D.I.; Santoro, K.I. Slash Truncation Positive Normal Distribution and Its Estimation Based on the EM Algorithm. Symmetry 2021, 13, 2164. [Google Scholar] [CrossRef]
- Gómez-Déniz, E.; Calderín-Ojeda, E. Modelling insurance data with the Pareto ArcTan distribution. ASTIN Bull. 2015, 45, 639–660. [Google Scholar] [CrossRef]
- Bliss, C.I. The calculation of the dosage-mortality curve. Ann. Appl. Biol. 1935, 22, 134–167. [Google Scholar] [CrossRef]
- Prentice, R.L. A generalization of the probit and logit methods for dose-response curves. Biometrika 1976, 32, 761–768. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Déniz, E.; Calderín-Ojeda, E.; Gómez, H.W. Symmetric and Asymmetric Distributions: Theoretical Developments and Applications III. Symmetry 2022, 14, 2143. https://doi.org/10.3390/sym14102143
Gómez-Déniz E, Calderín-Ojeda E, Gómez HW. Symmetric and Asymmetric Distributions: Theoretical Developments and Applications III. Symmetry. 2022; 14(10):2143. https://doi.org/10.3390/sym14102143
Chicago/Turabian StyleGómez-Déniz, Emilio, Enrique Calderín-Ojeda, and Héctor W. Gómez. 2022. "Symmetric and Asymmetric Distributions: Theoretical Developments and Applications III" Symmetry 14, no. 10: 2143. https://doi.org/10.3390/sym14102143
APA StyleGómez-Déniz, E., Calderín-Ojeda, E., & Gómez, H. W. (2022). Symmetric and Asymmetric Distributions: Theoretical Developments and Applications III. Symmetry, 14(10), 2143. https://doi.org/10.3390/sym14102143