Next Article in Journal
Optimal Design of Convolutional Neural Network Architectures Using Teaching–Learning-Based Optimization for Image Classification
Previous Article in Journal
Rogue Waves Generator and Chaotic and Fractal Behavior of the Maccari System with a Resonant Parametric Forcing
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

New Class Up and Down Pre-Invex Fuzzy Number Valued Mappings and Related Inequalities via Fuzzy Riemann Integrals

by
Muhammad Bilal Khan
1,*,
Gustavo Santos-García
2,*,
Savin Treanțǎ
3 and
Mohamed S. Soliman
4
1
Department of Mathematics, COMSATS University Islamabad, Islamabad 44000, Pakistan
2
Facultad de Economíay Empresa and Multidisciplinary Institute of Enterprise (IME), University of Salamanca, 37007 Salamanca, Spain
3
Department of Applied Mathematics, University Politehnica of Bucharest, 060042 Bucharest, Romania
4
Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
*
Authors to whom correspondence should be addressed.
Symmetry 2022, 14(11), 2322; https://doi.org/10.3390/sym14112322
Submission received: 12 October 2022 / Revised: 25 October 2022 / Accepted: 25 October 2022 / Published: 4 November 2022
(This article belongs to the Section Mathematics)

Abstract

:
Numerous applications of the theory of convex and nonconvex mapping exist in the fields of applied mathematics and engineering. In this paper, we have defined a new class of nonconvex functions which is known as up and down pre-invex (pre-incave) fuzzy number valued mappings (F-N-V∙Ms). The well-known fuzzy Hermite–Hadamard (𝐻𝐻)-type and related inequalities are taken into account in this work. We extend this mileage further using fuzzy Riemann integrals and the fuzzy number up and down pre-invexity. Additionally, by imposing some light restrictions on pre-invex (pre-incave) fuzzy number valued mappings, we have introduced two new significant classes of fuzzy number valued up and down pre-invexity (pre-incavity), which are referred to as lower up and down pre-invex (pre-incave) and upper up and down pre-invex (pre-incave) fuzzy number valued mappings. By using these definitions, we have amassed a large number of both established and novel exceptional situations that serve as implementations of the key findings. To support the validity of the fuzzy inclusion relations put out in this research, we also provide a few examples of fuzzy numbers valued up and down pre-invexity.

1. Introduction

A variety of scientific fields, including mathematical analysis, optimization, economics, finance, engineering, management science, and game theory, have greatly benefited from the active, interesting, and appealing field of convexity theory study. Numerous scholars study the idea of convex functions, attempting to broaden and generalize its various manifestations by using cutting-edge concepts and potent methods. Convexity theory offers a comprehensive framework for developing incredibly effective, fascinating, and potent numerical tools to approach and resolve a wide range of issues in both pure and applied sciences; see [1,2,3,4]. For more information, see [5,6,7,8,9,10] and the references there
Convexity has been developed, broadened, and extended in several sectors in recent years. Inequality theory has benefited greatly from the introduction of convex functions.
Numerous studies have shown strong connections between the theories of inequality and convex functions.
Functional analysis, physics, statistics theory, and optimization theory all benefit from integral inequality. Only a handful of the applications of inequalities in research [11,12,13,14,15,16,17,18] include statistical difficulties, probability, and numerical quadrature equations. Convex analysis and inequalities have developed into an alluring, captivating, and attention-grabbing topic for researchers and attention as a result of various refinements, variants, extensions, wide-ranging perspectives, and applications; the reader can refer to [19,20,21,22,23,24,25,26]. Kadakal and Iscan recently presented n-polynomial convex functions, which are an extension of convexity [27]. We refer the readers for more study; see [28,29,30,31,32,33,34,35,36] and the references therein.
A well-known particular instance of the harmonic mean is the power mean. In areas such as statistics, computer science, trigonometry, geometry, probability, finance, and electric circuit theory, it is frequently employed when average rates are sought. Since it helps to control the weights of each piece of data, the harmonic mean is the ideal statistic for rates and ratios. The harmonic convex set is defined by the harmonic mean. Shi [37] was the first to present the harmonic convex set in 2003. The harmonic and p-harmonic convex functions were introduced and explored for the first time by Anderson et al. [38] and Noor et al. [39], respectively. Awan et al. [40] introduced a new class known as n-polynomial harmonically convex function while maintaining their focus on refinements. For further study, see [41,42,43,44,45,46,47,48,49,50,51,52,53] and the references therein.
We learned that there is a certain class of function known as the exponential convex function and that there are many people working on this subject right now; see [54,55]. This information was motivated and encouraged by recent actions and research in the field of convex analysis. The convexity of the exponential type was described by Dragomir [56]. Dragomir’s work was continued by Awan et al. [57], who investigated and looked at a brand-new family of exponentially convex functions. Kadakal et al. offered a fresh idea for exponential-type convexity; see [58]. The idea of n-polynomial harmonic exponential-type convex functions was recently suggested by Geo et al. [59]. In statistical learning, information sciences, data mining, stochastic optimization, and sequential prediction [27,60,61] and the references therein, the benefits and applications of exponential-type convexity are used.
Additionally, symmetry and inequality have a direct relationship with convexity. Because of their close association, whatever one we focus on may be applied to the other, demonstrating the important relationship between convexity and symmetry; see [62]. The traditional ideas of convexity have been successfully extended in a number of instances. Weir and Mond, for instance, developed the category of pre-invex functions. The concept of h-convexity, which also encompasses several other types of convex functions, was first presented by Varosanec [63]. Additionally, Varosanec has discovered a few h-convex function-related classical inequalities. Noor et al. [64] proposed the class of h-pre-invex functions and noted that additional classes of pre-invexity and classical convexity may be recaptured by taking into account various appropriate options for the real function. In a related study, they also developed a number of novel Hermite–Hadamard and Dragomir–Agarwal inequalities. The class of (h1, h2)-convex functions was first presented by Cristescu et al. [65], who also looked into it and covered some of its fundamental characteristics. Zhao et al. [66] developed the class of interval-valued h-convex functions and came up with some novel iterations of the Hermite–Hadamard inequality by drawing inspiration from interval analysis and convex analysis. For more information, see [67,68,69,70,71,72,73] and the references are therein.
In order to construct the 𝐻𝐻 inequalities for harmonic convex functions, Iscan [74] first developed the idea of a harmonic convex set. By defining the harmonic h-convex functions on the harmonic convex set and expanding the 𝐻𝐻 inequalities that Iscan [74] developed, Mihai [75] advanced the concept of harmonic convex functions.
Remember that fuzzy interval-valued functions are fuzzy-number-valued mappings. On the other hand, Nanda and Kar [76] were the first to introduce the idea of convex F-N-V∙Ms. In order to offer new versions of 𝐻𝐻 and fractional type of inequalities, Khan et al. [77,78] presented h-convex F-N-V∙Ms and (h1, h2)-convex F-N-V∙Ms and obtained some by utilizing fuzzy Riemann Liouville Fractional Integrals and fuzzy Riemannian integrals, respectively. Similarly, using fuzzy order relations and fuzzy Riemann Liouville Fractional Integrals, Sana and Khan et al. [79] developed new iterations of fuzzy fractional 𝐻𝐻 inequalities for harmonically convex F-N-V∙Ms. We direct the readers to [80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108] and the references therein for further information on extended convex functions, fuzzy intervals, and fuzzy integrals.
Motivated and inspired by ongoing research, we have developed a novel extension of 𝐻𝐻 inequalities for up and down pre-invex F-N-V∙Ms via fuzzy inclusion relation. We have developed new iterations of the 𝐻𝐻 inequalities exploiting fuzzy Riemann operators with the help of this class. In addition, we explored the applicability of our study in rare instances.

2. Preliminaries

Let X C be the space of all closed and bounded intervals of and X C be defined by
= [ * ,   * ] = { o |   * o * } ,   ( * ,   * ) .
If * = * , then is said to be degenerate. In this article, all intervals will be non-degenerate intervals. If * 0 , then [ * ,   * ] is called the positive interval. The set of all positive intervals is denoted by X C + and defined as X C + = { [ * ,   * ] : [ * ,   * ] X C   and   * 0 } .
Let 𝒾 and 𝒾 be defined by
𝒾 = { [ 𝒾 * ,   𝒾 * ] if   𝒾 > 0 , { 0 } if   𝒾 = 0 , [ 𝒾 * , 𝒾 * ] if   𝒾 < 0 .
Then, the Minkowski difference ¥ , addition + ¥ and × ¥ for , ¥ X C are defined by
[ ¥ * ,   ¥ * ] + [ * ,   * ] = [ ¥ * + * ,     ¥ * + * ] ,
[ ¥ * ,   ¥ * ] × [ * ,   * ] = [ min { ¥ * * ,   ¥ * * ,   ¥ * * ,   ¥ * * } ,   max { ¥ * * ,   ¥ * * ,   ¥ * * ,   ¥ * * } ]
[ ¥ * ,   ¥ * ] [ * ,   * ] = [ ¥ * * ,     ¥ * * ] .
Remark 1.
(i) For given [ ¥ * ,   ¥ * ] ,   [ * ,   * ] I , the relation I defined on I by
[ * ,   * ] I [ ¥ * ,   ¥ * ]   if   and   only   if   * ¥ * ,     ¥ * * ,  
for all [ ¥ * ,   ¥ * ] ,   [ * ,   * ] I , it is a partial interval inclusion relation. The relation [ * ,   * ] I [ ¥ * ,   ¥ * ] is coincident to [ * ,   * ] [ ¥ * ,   ¥ * ] on I . It can be easily seen that “ I ” looks like “up and down” on the real line , so we refer to I as “up and down” (or “UD” order, in short) [92].
(ii) For given [ ¥ * ,   ¥ * ] ,   [ * ,   * ] I , we say that [ ¥ * ,   ¥ * ] I [ * ,   * ] if and only if ¥ * * ,   ¥ * * , it is a partial interval order relation. The relation [ ¥ * ,   ¥ * ] I [ * ,   * ] coincident to [ ¥ * ,   ¥ * ] [ * ,   * ] on I . It can be easily seen that I looks like “left and right” on the real line , so we call I is “left and right” (or “LR” order, in short) [91,92].
For [ ¥ * ,   ¥ * ] ,   [ * ,   * ] X C , the Hausdorff–Pompeiu distance between intervals [ ¥ * ,   ¥ * ] , and [ * ,   * ] is defined by
d H ( [ ¥ * ,   ¥ * ] ,   [ * ,   * ] ) = max { | ¥ * * | ,   | ¥ * * | } .
It is a familiar fact that ( X C , d H ) is a complete metric space; see[83,89,90].
Definition 1
([82,83]). A fuzzy subset L of is distinguished by a mapping ˜ : [ 0 , 1 ] called the membership mapping of L . That is, a fuzzy subset L of is a mapping ˜ : [ 0 , 1 ] . So, for further study, we have chosen this notation. We appoint E to denote the set of all fuzzy subsets of .
Let ˜ E . Then, ˜ is known as a fuzzy number or fuzzy interval if the following properties are satisfied by ˜ :
(1) 
˜ is normal i.e., if there exists o and ˜ ( o ) = 1 ;
(2) 
˜ should be upper semi-continuous on if for given o , there exist ε > 0 and there exist δ > 0 such that ˜ ( o ) ˜ ( s ) < ε for all s with | o s | < δ ;
(3) 
˜ should be fuzzy convex that is ˜ ( ( 1 𝒾 ) o + 𝒾 s ) m i n ( ˜ ( o ) ,   ˜ ( s ) ) , for all o , s , and 𝒾 [ 0 ,   1 ] ;
(4) 
˜ should be compactly supported: that is, c l { o |   ˜ ( o ) > 0 } is compact.
We appoint E C to denote the set of all fuzzy numbers of .
Definition 2
([82,83]). Given ˜ E C , the level sets or cut sets are given by [ ˜ ] λ = { o |   ˜ ( o ) λ } for all λ [ 0 ,   1 ] and by [ ˜ ] 0 = { o |   ˜ ( o ) > 0 } . These sets are known as λ -level sets or λ -cut sets of ˜ .
Proposition 1
([85]). Let ˜ , ¥ ˜ E C . Then, relation F given on E C by
˜ F ¥ ˜   if   and   only   if ,   [ ˜ ] λ I [ ¥ ˜ ] λ ,   for   every   λ [ 0 ,   1 ] ,  
it is a left and right-order relation.
Proposition 2.
Let ˜ , ¥ ˜ E C . Then, relation F given on E C by
˜ F ¥ ˜   when   and   only   when ,   [ ˜ ] λ I [ ¥ ˜ ] λ ,   for   every   λ [ 0 ,   1 ] ,  
it is an up and down-order relation on E C .
Proof. 
The proof follows directly from the up and down relation I defined on X C .
Remember the approaching notions, which are offered in the literature. If ˜ , ¥ ˜ E C and 𝒾 , then, for every λ [ 0 ,   1 ] , the arithmetic operations are defined by
[ ˜ ¥ ˜ ] λ = [ ˜ ] λ + [ ¥ ˜ ] λ ,
[ ˜ ¥ ˜ ] λ = [ ˜ ] λ × [   ¥ ˜ ] λ ,
[ 𝒾 ˜ ] λ = 𝒾 . [ ˜ ] λ .
These operations follow directly from Equations (4), (5), and (6), respectively. □
Theorem 1
([83]). The space E C dealing with a supremum metric, i.e., for ˜ ,   ¥ ˜ E C
d ( ˜ ,   ¥ ˜ ) = sup 0 λ 1 d H ( [ ˜ ] λ ,   [ ¥ ˜ ] λ ) ,  
is a complete metric space, where H denotes the well-known Hausdorff metric on the space of intervals.

Riemann Integral Operators for the Interval- and Fuzzy-Number Valued Mappings

Now, we define and discuss some properties of fractional integral operators of interval- and fuzzy-number-valued mappings.
Theorem 2
([83,84]). If G : [ ν , τ ] X C is an interval-valued mapping (I-V∙M) satisfying that G ( o ) = [ G * ( o ) ,   G * ( o ) ] , then G is Aumann integrable (IA-integrable) over [ ν , τ ] when and only when G * ( o ) and G * ( o ) both are integrable over [ ν , τ ] such that
( I A ) ν τ G ( o ) d o = [ ν τ G * ( o ) d o ,   ν τ G * ( o ) d o ] .
Definition 3
([91]). Let G ˜ : I E C be called fuzzy-number valued mapping. Then, for every λ [ 0 ,   1 ] , as well as λ -levels, define the family of I-V∙Ms G λ : I X C satisfying that G λ ( o ) = [ G * ( o , λ ) ,   G * ( o , λ ) ] for every o I . Here, for every λ [ 0 ,   1 ] , the endpoint real-valued mappings G * ( · , λ ) ,   G * ( · , λ ) , : I are called lower and upper mappings of G λ .
Definition 4
([91]). Let G ˜ : I E C be a F-N-V∙M. Then, G ˜ ( o ) is said to be continuous at o I , if for every λ [ 0 ,   1 ] ,   G λ ( o ) is continuous when and only when, both endpoint mappings G * ( o , λ ) , and G * ( o , λ ) are continuous at o I .
Definition 5
([84]). Let G ˜ : [ ν ,   τ ] E C be F-N-V∙M. The fuzzy Aumann integral ( ( F A ) -integral) of G over [ ν ,   τ ] , denoted by ( F A ) ν τ G ˜ ( o ) d o , is defined level-wise by
[ ( F A ) ν τ G ˜ ( o ) d o ]   λ = ( I A ) ν τ G λ ( o ) d o = { ν τ G ( o , λ ) d o : G ( o , λ ) S ( G λ ) } ,
where S ( G λ ) = { G ( · , λ ) : G ( · , λ )   i s   i n t e g r a b l e   a n d   G ( o , λ ) G λ ( o ) } , for every λ [ 0 ,   1 ] . G is ( F A ) -integrable over [ ν ,   τ ] if ( F A ) ν τ G ˜ ( o ) d o E C .
Theorem 3
([85]). Let G ˜ : [ ν ,   τ ] E C be a F-N-V∙M as well as λ -levels define the family of I-V∙Ms G λ : [ ν ,   τ ] X C satisfying that G λ ( o ) = [ G * ( o , λ ) ,   G * ( o , λ ) ] for every o [ ν ,   τ ] and for every λ [ 0 ,   1 ] . Then, G ˜ is ( F A ) -integrable over [ ν ,   τ ] when and only when, G * ( o , λ ) and G * ( o , λ ) both are integrable over [ ν ,   τ ] . Moreover, if G is ( F A ) -integrable over [ ν ,   τ ] , then
[ ( F A ) ν τ G ˜ ( o ) d o ]   λ = [ ν τ G * ( o , λ ) d o ,   ν τ G * ( o , λ ) d o ] = ( I A ) ν τ G λ ( o ) d o ,
for every λ [ 0 ,   1 ] .
Breckner discussed the coming emerging idea of interval-valued convexity in [86].
Definition 6.
A interval valued mapping G : I = [ ν ,   τ ] X C is called convex inteval valued mapping if
G ( 𝒾 o + ( 1 𝒾 ) s ) 𝒾 G ( o ) + ( 1 𝒾 ) G ( s ) ,  
for all o ,   s [ ν ,   τ ] ,   𝒾 [ 0 ,   1 ] , where X C is the collection of all real valued intervals. If (17) is reversed, then G is called concave.
Definition 7
([76]). The F-N-V∙M G ˜ : [ ν ,   τ ] E C is called convex F-N-V∙M on [ ν ,   τ ] if
G ˜ ( 𝒾 o + ( 1 𝒾 ) s   ) F 𝒾 G ˜ ( o ) ( 1 𝒾 ) G ˜ ( s ) ,  
for all o ,   s [ ν ,   τ ] ,   𝒾 [ 0 ,   1 ] , where G ˜ ( o ) F 0 ˜ for all o [ ν ,   τ ] . If (18) is reversed then, G ˜ is called concave F-N-V∙M on [ ν ,   τ ] . G ˜ is affine if and only if it is both convex and concave F-N-V∙M.
Definition 8
([92]). The F-N-V∙M G ˜ : [ ν ,   τ ] E C is called up and down convex F-N-V∙M on [ ν ,   τ ] if
G ˜ ( 𝒾 o + ( 1 𝒾 ) s ) F 𝒾 G ˜ ( o ) ( 1 𝒾 ) G ˜ ( s ) ,  
for all o ,   s [ ν ,   τ ] ,   𝒾 [ 0 ,   1 ] , where G ˜ ( o ) F 0 ˜ for all o [ ν ,   τ ] . If (19) is reversed then, G ˜ is called up and down concave F-N-V∙M on [ ν ,   τ ] . G ˜ is up and down affine F-N-V∙M if and only if it is both up and down convex and up and down concave F-N-V∙M.
Theorem 4
([92]). Let G ˜ : [ ν , τ ] E C be an F-N-V∙M, whose λ -levels define the family of I-V∙Ms G λ : [ ν , τ ] X C + X C are given by
G λ ( o ) = [ G * ( o , λ ) ,   G * ( o , λ ) ] ,    
for all o [ ν , τ ] and for all λ [ 0 ,   1 ] . Then, G ˜ is up and down convex F-N-V∙M on [ ν , τ ] if and only if, for all λ [ 0 ,   1 ] ,   G * ( o ,   λ ) is a convex mapping and G * ( o ,   λ ) is a concave mapping.

3. Up and Down Fuzzy-Number Valued Mappings and Related Integral Inequalities

Definition 9.
The F-N-V∙M G ˜ : [ ν ,   τ ] E C is called up and down pre-invex F-N-V∙M on [ ν ,   τ ] if
G ˜ ( o + ( 1 𝒾 ) 𝒿 ( s ,   o ) ) F 𝒾 G ˜ ( o ) ( 1 𝒾 ) G ˜ ( s ) ,  
for all o ,   s [ ν ,   τ ] ,   𝒾 [ 0 ,   1 ] , where G ˜ ( o ) F 0 ˜ for all o [ ν ,   τ ] . If (19) is reversed then, G ˜ is called up and down pre-incave F-N-V∙M on [ ν ,   τ ] . G ˜ is up and down affine F-N-V∙M if and only if it is both up and down pre-invex and up and down pre-incave F-N-V∙M.
Theorem 5.
Let G ˜ : [ ν , τ ] E C be an F-N-V∙M, whose λ -levels define the family of I-V∙Ms G λ : [ ν , τ ] X C + X C are given by
G λ ( o ) = [ G * ( o , λ ) ,   G * ( o , λ ) ] ,    
for all o [ ν , τ ] and for all λ [ 0 ,   1 ] . Then, G ˜ is up and down pre-invex F-N-V∙M on [ ν , τ ] if and only if, for all λ [ 0 ,   1 ] ,   G * ( o ,   λ ) is a pre-invex mapping and G * ( o ,   λ ) is a pre-incave mapping.
Remark 2.
If G * ( o , λ ) G * ( o , λ ) and λ = 1 , then we obtain the definition of a pre-invex interval-valued function; see [95]:
G ( o + ( 1 𝒾 ) 𝒿 ( s ,   o ) ) I G ( o ) + ( 1 𝒾 ) G ( s ) .  
If G * ( o , λ ) = G * ( o , λ ) and λ = 1 , then we obtain the classical definition of pre-invex functions.
Now, we have obtained in the following some new definitions from the literature which will be helpful to investigate some classical and new results as special cases of the main results.
Definition 10.
Let G ˜ : [ ν , τ ] E C be a F-N-V∙M, whose λ -levels define the family of I-V∙Ms G λ : [ ν , τ ] X C + X C and are given by
G λ ( o ) = [ G * ( o , λ ) ,   G * ( o , λ ) ] ,    
for all o [ ν , τ ] and for all λ [ 0 ,   1 ] . Then, G ˜ is lower up and down pre-invex (pre-incave) F-N-V∙M on [ ν , τ ] if and only if, for all λ [ 0 ,   1 ] ,
G * ( o + ( 1 𝒾 ) 𝒿 ( s ,   o ) ,   λ ) ( ) 𝒾 G * ( o , λ ) + ( 1 𝒾 ) G * ( s , λ ) ,  
and
G * ( o + ( 1 𝒾 ) 𝒿 ( s ,   o ) ,   λ ) = 𝒾 G * ( o , λ ) + ( 1 𝒾 ) G * ( s , λ ) .
Definition 11.
Let G ˜ : [ ν , τ ] E C be a F-N-V∙M, whose λ -levels define the family of I-V∙Ms G λ : [ ν , τ ] X C + X C and are given by
G λ ( o ) = [ G * ( o , λ ) ,   G * ( o , λ ) ] ,    
for all o [ ν , τ ] and for all λ [ 0 ,   1 ] . Then, G ˜ is upper up and down pre-invex (pre-incave) F-N-V∙M on [ ν , τ ] if and only if, for all λ [ 0 ,   1 ] ,
G * ( o + ( 1 𝒾 ) 𝒿 ( s ,   o ) ,   λ ) = 𝒾 G * ( o , λ ) + ( 1 𝒾 ) G * ( s , λ ) ,  
and
G * ( o + ( 1 𝒾 ) 𝒿 ( s ,   o ) ,   λ ) ( ) 𝒾 G * ( o , λ ) + ( 1 𝒾 ) G * ( s , λ ) .
Remark 3.
Both concepts “up and down pre-invex F-N-V∙M” and classical “pre-invex F-N-V∙M, see [97]” behave alike when G is lower up and down pre-invex F-N-V∙M.
Both concepts “pre-invex interval-valued mapping” (see [95]) and “left and right pre-invex interval-valued mapping” (see [88]) are coincident when G is lower up and down pre-invex F-N-V∙M with λ = 1 .
If we take 𝒿 ( s ,   o ) = s o , then we acquire classical and new results from Definitions 7–9, Remarks 2 and 3, and Theorem 5; see [76,86,92,93].
Since 𝒿 : K × K is a bi-function, then we require the following condition to prove the upcoming results:
Condition C.
Let K be an invex set with respect to 𝒿 . For any ν ,   τ K and 𝒾 [ 0 ,   1 ] ,
𝒿 ( τ , ν + 𝒾 𝒿 ( τ , ν ) ) = ( 1 𝒾 ) 𝒿 ( τ , ν ) ,  
𝒿 ( ν , ν + 𝒾 𝒿 ( τ , ν ) ) = 𝒾 𝒿 ( τ , ν ) .
From Condition C, it can be easily seen that when 𝒾 = 0, then 𝒿 ( τ , ν ) = 0 if and only if, τ = ν , for all ν ,   τ K . For more useful details and the applications of Condition C, see [94,97].
Theorem  6.
(The fuzzy 𝐻𝐻-type inequality for up and down pre-invex F-N-V∙M). Suppose that G ˜ : [ ν ,   ν + 𝒿 ( τ ,   ν ) ] E is an up and down pre-invex F-N-V∙M along with the family of I-V∙Ms G λ : [ ν ,   ν + 𝒿 ( τ ,   ν ) ] K C + as well as G λ ( o ) = [ G * ( o , λ ) ,   G * ( o , λ ) ] for all o [ ν ,   ν + 𝒿 ( τ ,   ν ) ] and for all λ [ 0 ,   1 ] . If 𝒿 satisfies the Condition C and G ˜ F R ( [ ν ,   ν + 𝒿 ( τ ,   ν ) ] ,   λ ) , then
G ˜ ( 2 ν + 𝒿 ( τ ,   ν ) 2 ) F 1 𝒿 ( τ ,   ν )   ( F A ) ν ν + 𝒿 ( τ ,   ν ) G ˜ ( o ) d o F G ˜ ( ν )     G ˜ ( τ ) 2 .
Proof. 
Let G ˜ : [ ν ,   ν + 𝒿 ( τ ,   ν ) ] E be an up and down pre-invex F-N-V∙M. Then, by hypothesis, we have
2 G ˜ ( 2 ν + 𝒿 ( τ ,   ν ) 2 ) F G ˜ ( ν + ( 1 𝒾 ) 𝒿 ( τ ,   ν ) )     G ˜ ( ν + 𝒾 𝒿 ( τ ,   ν ) ) .
Therefore, for every λ [ 0 ,   1 ] , we have
2 G * ( 2 ν + 𝒿 ( τ ,   ν ) 2 ,   λ ) G * ( ν + ( 1 𝒾 ) 𝒿 ( τ ,   ν ) ,   λ ) + G * ( ν + 𝒾 𝒿 ( τ ,   ν ) ,   λ ) 2 G * ( 2 ν + 𝒿 ( τ ,   ν ) 2 ,   λ ) G * ( ν + ( 1 𝒾 ) 𝒿 ( τ ,   ν ) , λ ) + G * ( ν + 𝒾 𝒿 ( τ ,   ν ) ,   λ ) .
Then
2 0 1 G * ( 2 ν + 𝒿 ( τ ,   ν ) 2 ,   λ ) d 𝒾 0 1 G * ( ν + ( 1 𝒾 ) 𝒿 ( τ ,   ν ) ,   λ ) d 𝒾 + 0 1 G * ( ν + 𝒾 𝒿 ( τ ,   ν ) , λ ) d 𝒾 , 2 0 1 G * ( 2 ν + 𝒿 ( τ ,   ν ) 2 , λ ) d 𝒾 0 1 G * ( ν + ( 1 𝒾 ) 𝒿 ( τ ,   ν ) , λ ) d 𝒾 + 0 1 G * ( ν + 𝒾 𝒿 ( τ ,   ν ) ,   λ ) d 𝒾 .
It follows that
G * ( 2 ν + 𝒿 ( τ ,   ν ) 2 ,   λ ) 1 𝒿 ( τ ,   ν )   ν ν + 𝒿 ( τ ,   ν ) G * ( o ,   λ ) d o , G * ( 2 ν + 𝒿 ( τ ,   ν ) 2 ,   λ ) 2 𝒿 ( τ ,   ν )   ν ν + 𝒿 ( τ ,   ν ) G * ( o ,   λ ) d o .
That is
[ G * ( 2 ν + 𝒿 ( τ ,   ν ) 2 ,   λ ) ,   G * ( 2 ν + 𝒿 ( τ ,   ν ) 2 ,   λ ) ] I 1 𝒿 ( τ ,   ν ) [ ν ν + 𝒿 ( τ ,   ν ) G * ( o ,   λ ) d o ,   ν ν + 𝒿 ( τ ,   ν ) G * ( o ,   λ ) d o ] .
Thus,
G ˜ ( 2 ν + 𝒿 ( τ ,   ν ) 2 ) F 1 𝒿 ( τ ,   ν )   ( F A ) ν ν + 𝒿 ( τ ,   ν ) G ˜ ( o ) d o .
In a similar way as above, we have
1 𝒿 ( τ ,   ν )   ( F A ) ν ν + 𝒿 ( τ ,   ν ) G ˜ ( o ) d o F G ˜ ( ν )     G ˜ ( τ ) 2 .
Combining (27) and (28), we have
  G ˜ ( 2 ν + 𝒿 ( τ ,   ν ) 2 ) F 1 𝒿 ( τ ,   ν )   ( F A ) ν ν + 𝒿 ( τ ,   ν ) G ˜ ( o ) d o F G ˜ ( ν )     G ˜ ( τ ) 2 .
This completes the proof. □
Remark 4.
If 𝒿 ( τ , ν ) = τ ν , then Theorem 6 reduces to the result for convex F-N-V∙M, see [93]:
  G ˜ ( ν + τ 2 ) F 1 τ ν   ( F A ) ν τ G ˜ ( o ) d o F G ˜ ( ν )     G ˜ ( τ ) 2 .  
Let G be a lower up and down pre-invex F-N-V∙M. Then, we achieve the following inequality from Theorem 6; see [97]:
G ˜ ( 2 ν + 𝒿 ( τ ,   ν ) 2 ) F 1 𝒿 ( τ ,   ν )   ( F A ) ν ν + 𝒿 ( τ ,   ν ) G ˜ ( o ) d o F G ˜ ( ν )     G ˜ ( τ ) 2 .  
If lower up and down pre-invex F-N-V∙M with 𝒿 ( τ , ν ) = τ ν , then Theorem 6 reduces to the result for convex F-N-V∙M, see [77]:
  G ˜ ( ν + τ 2 ) F 1 τ ν   ( F A ) ν τ G ˜ ( o ) d o F G ˜ ( ν )     G ˜ ( τ ) 2 .  
If G * ( o ,   λ ) = G * ( o ,   λ ) with λ = 1 , then Theorem 6 reduces to the result for pre-invex mapping; see [94]:
  G ( 2 ν + 𝒿 ( τ ,   ν ) 2 ) 1 𝒿 ( τ ,   ν ) ν ν + 𝒿 ( τ ,   ν ) G ( o ) d o [ G ( ν ) + G ( τ ) ] 0 1 𝒾 d 𝒾 .  
If G * ( o ,   λ ) = G * ( o ,   λ ) with 𝒿 ( τ , ν ) = τ ν and λ = 1 , then Theorem 6 reduces to the result for classical convex mapping:
G ( ν + τ 2 ) 1 τ ν ν τ G ( o ) d o G ( ν ) + G ( τ ) 2 .  
Example 1.
Let o [ 2 ,   2 + 𝒿 ( 3 ,   2 ) ] , and the F-N-V∙M G ˜ : [ ν ,   ν + 𝒿 ( τ ,   ν ) ] = [ 2 ,   2 + 𝒿 ( 3 ,   2 ) ] E C , which is defined by
G ˜ ( o ) ( θ ) = { θ 2 + o 1 2 1 o 1 2                                               θ [ 2 o 1 2 ,   3 ]   2 + o 1 2 θ o 1 2 1                                           θ ( 3 ,   2 + o 1 2 ] 0                                                   o t h e r w 𝒾 s e ,  
Then, for each λ [ 0 ,   1 ] , we have G λ ( o ) = [ ( 1 λ ) ( 2 o 1 2 ) + 3 λ , ( 1 + λ ) ( 2 + o 1 2 ) + 3 λ ] . Since left and right end point mappings G * ( o , λ ) = ( 1 λ ) ( 2 o 1 2 ) + 3 λ , and G * ( o ,   λ ) = ( 1 + λ ) ( 2 + o 1 2 ) + 3 λ are pre-invex and pre-incave mappings with 𝒿 ( τ , ν ) = τ ν for each λ [ 0 ,   1 ] , respectively, then G ( o ) is up and down pre-invex F-N-V∙M with 𝒿 ( τ , ν ) = τ ν . We clearly see that G L ( [ τ ,   ν ] , E C ) and
G * ( 2 ν + 𝒿 ( τ ,   ν ) 2 ,   λ ) = G * ( 5 2 ,   λ ) = ( 1 λ ) 4 10 2 + 3 λ  
G * ( 2 ν + 𝒿 ( τ ,   ν ) 2 ,   λ ) = G * ( 5 2 ,   λ ) = ( 1 + λ ) 4 + 10 2 + 3 λ
Note that
1 𝒿 ( τ ,   ν )   τ ν + 𝒿 ( τ ,   ν ) G * ( o ,   λ ) d o = 2 3 ( ( 1 λ ) ( 2 o 1 2 ) + 3 λ ) d o = 843 2000 ( 1 λ ) + 3 λ ,    
1 𝒿 ( τ ,   ν )   τ ν + 𝒿 ( τ ,   ν ) G * ( o ,   λ ) d o = 2 3 ( ( 1 + λ ) ( 2 + o 1 2 ) + 3 λ ) d o = 179 50 ( 1 + λ ) + 3 λ ,
and
G * ( τ , λ ) + G * ( ν ,   λ ) 2 = ( 1 λ ) ( 4 2 3 2 ) + 3 λ  
G * ( τ , λ ) + G * ( ν ,   λ ) 2 = ( 1 + λ ) ( 4 + 2 + 3 2 ) + 3 λ   .
Therefore,
[ ( 1 λ ) 4 10 2 + 3 λ , ( 1 + λ ) 4 + 10 2 + 3 λ ] I [ 843 2000 ( 1 λ ) + 3 λ , 179 50 ( 1 + λ ) + 3 λ ]   I [ ( 1 λ ) ( 4 2 3 2 ) + 3 λ , ( 1 + λ ) ( 4 + 2 + 3 2 ) + 3 λ ]
Hence,
G ˜ ( 2 ν + 𝒿 ( τ ,   ν ) 2 ) F 1 𝒿 ( τ ,   ν )   ( F R ) τ ν + 𝒿 ( τ ,   ν ) G ˜ ( o ) d o F G ˜ ( τ )     G ˜ ( ν ) 2  
and Theorem 6 is verified.
The next results, which are linked with the well-known Fejér–Hermite–Hadamard-type inequalities, will be obtained using symmetric mappings of one-variable forms.
Theorem 7.
Suppose that G : [ ν ,   ν + 𝒿 ( τ ,   ν ) ] E is an up and down pre-invex F-N-V∙M along with a family of I-V∙Ms G λ : [ ν ,   ν + 𝒿 ( τ ,   ν ) ] K C + as well as G λ ( o ) = [ G * ( o , λ ) ,   G * ( o , λ ) ] for all o [ ν ,   ν + 𝒿 ( τ ,   ν ) ] and for all λ [ 0 ,   1 ] . If 𝒿 satisfies Condition C and G F R ( [ ν ,   ν + 𝒿 ( τ ,   ν ) ] ,   λ ) , and V : [ ν ,   ν + 𝒿 ( τ ,   ν ) ] ,   V ( o ) 0 , symmetric with respect to ν + 1 2 𝒿 ( τ ,   ν ) , then
1 𝒿 ( τ ,   ν )   ( F A ) ν ν + 𝒿 ( τ ,   ν ) G ˜ ( o ) V ( o ) d o F [ G ˜ ( ν )     G ( τ ) ] 0 1 𝒾 V ( ν + 𝒾 𝒿 ( τ ,   ν ) ) d 𝒾 .  
Proof. 
Let G ˜ be an up and down pre-invex F-N-V∙M. Then, for each λ [ 0 ,   1 ] , we have
G * ( ν + ( 1 𝒾 ) 𝒿 ( τ , ν ) ,   λ ) V ( ν + ( 1 𝒾 ) 𝒿 ( τ , ν ) )     ( 𝒾 G * ( ν ,   λ ) + ( 1 𝒾 ) G * ( τ ,   λ ) ) V ( ν + ( 1 𝒾 ) 𝒿 ( τ , ν ) ) , G * ( ν + ( 1 𝒾 ) 𝒿 ( τ , ν ) ,   λ ) V ( ν + ( 1 𝒾 ) 𝒿 ( τ , ν ) )     ( 𝒾 G * ( ν ,   λ ) + ( 1 𝒾 ) G * ( τ ,   λ ) ) V ( ν + ( 1 𝒾 ) 𝒿 ( τ , ν ) ) .
And
G * ( ν + 𝒾 𝒿 ( τ ,   ν ) ,   λ ) V ( ν + 𝒾 𝒿 ( τ ,   ν ) )       ( ( 1 𝒾 ) G * ( ν ,   λ ) + 𝒾 G * ( τ ,   λ ) ) V ( ν + 𝒾 𝒿 ( τ ,   ν ) ) , G * ( ν + 𝒾 𝒿 ( τ ,   ν ) ,   λ ) V ( ν + 𝒾 𝒿 ( τ ,   ν ) )       ( ( 1 𝒾 ) G * ( ν ,   λ ) + 𝒾 G * ( τ ,   λ ) ) V ( ν + 𝒾 𝒿 ( τ ,   ν ) ) .
After adding (36) and (37), and integrating over [ 0 ,   1 ] , we obtain
0 1 G * ( ν + ( 1 𝒾 ) 𝒿 ( τ , ν ) ,   λ ) V ( ν + ( 1 𝒾 ) 𝒿 ( τ , ν ) ) d 𝒾   + 0 1 G * ( ν + 𝒾 𝒿 ( τ ,   ν ) ,   λ ) V ( ν + 𝒾 𝒿 ( τ ,   ν ) ) d 𝒾
0 1 [ G * ( ν ,   λ ) { 𝒾 V ( ν + ( 1 𝒾 ) 𝒿 ( τ , ν ) ) + ( 1 𝒾 ) V ( ν + 𝒾 𝒿 ( τ ,   ν ) ) } + G * ( τ ,   λ ) { ( 1 𝒾 ) V ( ν + ( 1 𝒾 ) 𝒿 ( τ , ν ) ) + 𝒾 V ( ν + 𝒾 𝒿 ( τ ,   ν ) ) } ] d 𝒾 ,
0 1 G * ( ν + ( 1 𝒾 ) 𝒿 ( τ , ν ) ,   λ ) V ( ν + ( 1 𝒾 ) 𝒿 ( τ , ν ) ) d 𝒾         + 0 1 G * ( ν + 𝒾 𝒿 ( τ ,   ν ) ,   λ ) V ( ν + 𝒾 𝒿 ( τ ,   ν ) ) d 𝒾  
0 1 [ G * ( ν ,   λ ) { 𝒾 V ( ν + ( 1 𝒾 ) 𝒿 ( τ , ν ) ) + ( 1 𝒾 ) V ( ν + 𝒾 𝒿 ( τ ,   ν ) ) } + G * ( τ ,   λ ) { ( 1 𝒾 ) V ( ν + ( 1 𝒾 ) 𝒿 ( τ , ν ) ) + 𝒾 V ( ν + 𝒾 𝒿 ( τ ,   ν ) ) } ] d 𝒾 .
= 2 G * ( ν ,   λ ) 0 1 𝒾 V ( ν + ( 1 𝒾 ) 𝒿 ( τ , ν ) ) d 𝒾 + 2 G * ( τ ,   λ ) 0 1 𝒾 V ( ν + 𝒾 𝒿 ( τ ,   ν ) ) d 𝒾 , = 2 G * ( ν ,   λ ) 0 1 𝒾 V ( ν + ( 1 𝒾 ) 𝒿 ( τ , ν ) ) d 𝒾 + 2 G * ( τ ,   λ ) 0 1 𝒾 V ( ν + 𝒾 𝒿 ( τ ,   ν ) ) d 𝒾 .
Since V is symmetric, then
= 2 [ G * ( ν ,   λ ) + G * ( τ ,   λ ) ] 0 1 𝒾 V ( ν + 𝒾 𝒿 ( τ ,   ν ) ) d 𝒾 , = 2 [ G * ( ν ,   λ ) + G * ( τ ,   λ ) ] 0 1 𝒾 V ( ν + 𝒾 𝒿 ( τ ,   ν ) ) d 𝒾 .
Since
0 1 G * ( ν + 𝒾 𝒿 ( τ ,   ν ) ,   λ ) V ( ν + 𝒾 𝒿 ( τ ,   ν ) ) d 𝒾 = 0 1 G * ( ν + ( 1 𝒾 ) 𝒿 ( τ , ν ) ,   λ ) V ( ν + ( 1 𝒾 ) 𝒿 ( τ , ν ) ) d 𝒾 = 1 𝒿 ( τ ,   ν )   ν ν + 𝒿 ( τ ,   ν ) G * ( o , λ ) V ( o ) d o ,   0 1 G * ( ν + 𝒾 𝒿 ( τ ,   ν ) ,   λ ) V ( ν + 𝒾 𝒿 ( τ ,   ν ) ) d 𝒾 = 0 1 G * ( ν + ( 1 𝒾 ) 𝒿 ( τ , ν ) ,   λ ) V ( ν + ( 1 𝒾 ) 𝒿 ( τ , ν ) ) d 𝒾 = 1 𝒿 ( τ ,   ν )   ν ν + 𝒿 ( τ ,   ν ) G * ( o ,   λ ) V ( o ) d o .    
From (39), we have
1 𝒿 ( τ ,   ν )   ν ν + 𝒿 ( τ ,   ν ) G * ( o , λ ) V ( o ) d o [ G * ( ν ,   λ ) + G * ( τ ,   λ ) ] 0 1 𝒾 V ( ν + 𝒾 𝒿 ( τ ,   ν ) ) d 𝒾 ,   1 𝒿 ( τ ,   ν )   ν ν + 𝒿 ( τ ,   ν ) G * ( o , λ ) V ( o ) d o [ G * ( ν ,   λ ) + G * ( τ ,   λ ) ] 0 1 𝒾 V ( ν + 𝒾 𝒿 ( τ ,   ν ) ) d 𝒾 ,  
that is
[ 1 𝒿 ( τ ,   ν )   ν ν + 𝒿 ( τ ,   ν ) G * ( o , λ ) V ( o ) d o ,     1 𝒿 ( τ ,   ν )   ν ν + 𝒿 ( τ ,   ν ) G * ( o , λ ) V ( o ) d o ] I [ G * ( ν ,   λ ) + G * ( τ ,   λ ) ,     G * ( ν ,   λ ) + G * ( τ ,   λ ) ] 0 1 𝒾 V ( ν + 𝒾 𝒿 ( τ ,   ν ) ) d 𝒾 ,
Hence
1 𝒿 ( τ ,   ν )   ( F A ) ν ν + 𝒿 ( τ ,   ν ) G ˜ ( o ) V ( o ) d o F [ G ˜ ( ν )     G ˜ ( τ ) ] 0 1 𝒾 V ( ν + 𝒾 𝒿 ( τ ,   ν ) ) d 𝒾 .
Next, we construct the first 𝐻𝐻-Fejér inequality for up and down pre-invex F-N-V∙M, which generalizes first 𝐻𝐻-Fejér inequalities for up and down pre-invex mapping; see [94,96]. □
Theorem 8.
Suppose that G ˜ : [ ν ,   ν + 𝒿 ( τ ,   ν ) ] E are two up and down pre-invex F-N-V∙Ms along with ν < ν + 𝒿 ( τ ,   ν ) and family of I-V∙Ms G λ : [ ν ,   ν + 𝒿 ( τ ,   ν ) ] K C + as well as G λ ( o ) = [ G * ( o , λ ) ,   G * ( o , λ ) ] for all o [ ν ,   ν + 𝒿 ( τ ,   ν ) ] and for all λ [ 0 ,   1 ] . If G ˜ F R ( [ ν ,   ν + 𝒿 ( τ ,   ν ) ] ,   λ ) and V : [ ν ,   ν + 𝒿 ( τ ,   ν ) ] ,   V ( o ) 0 , symmetric with respect to ν + 1 2 𝒿 ( τ ,   ν ) , and ν ν + 𝒿 ( τ ,   ν ) V ( o ) d o > 0 , and Condition C for 𝒿 , then
  G ˜ ( ν + 1 2 𝒿 ( τ ,   ν ) ) F 1 ν ν + 𝒿 ( τ ,   ν ) V ( o ) d o   ( F A ) ν ν + 𝒿 ( τ ,   ν ) G ˜ ( o ) V ( o ) d o .  
Proof .
Using Condition C, we can write
ν + 1 2 𝒿 ( τ ,   ν ) = ν + 𝒾 𝒿 ( τ ,   ν ) + 1 2 𝒿 ( ν + ( 1 𝒾 ) 𝒿 ( τ , ν ) ,   ν + 𝒾 𝒿 ( τ , ν ) )
Since G is an up and down pre-invex, then for λ [ 0 ,   1 ] , we have
G * ( ν + 1 2 𝒿 ( τ ,   ν ) ,   λ )   = G * ( ν + 𝒾 𝒿 ( τ ,   ν ) + 1 2 𝒿 ( ν + ( 1 𝒾 ) 𝒿 ( τ , ν ) ,   ν + 𝒾 𝒿 ( τ , ν ) ) ,   λ ) 1 2 ( G * ( ν + ( 1 𝒾 ) 𝒿 ( τ , ν ) ,   λ ) + G * ( ν + 𝒾 𝒿 ( τ , ν ) ,   λ ) ) , G * ( ν + 1 2 𝒿 ( τ ,   ν ) ,   λ )   = G * ( ν + 𝒾 𝒿 ( τ ,   ν ) + 1 2 𝒿 ( ν + ( 1 𝒾 ) 𝒿 ( τ , ν ) ,   ν + 𝒾 𝒿 ( τ , ν ) ) ,   λ ) ( G * ( ν + ( 1 𝒾 ) 𝒿 ( τ , ν ) ,   λ ) + G * ( ν + 𝒾 𝒿 ( τ , ν ) ,   λ ) ) .
By multiplying (41) by V ( ν + ( 1 𝒾 ) 𝒿 ( τ , ν ) ) = V ( ν + 𝒾 𝒿 ( τ , ν ) ) and integrating it by 𝒾 over [ 0 ,   1 ] , we obtain
G * ( ν + 1 2 𝒿 ( τ ,   ν ) ,   λ ) 0 1 V ( ν + 𝒾 𝒿 ( τ ,   ν ) ) d 𝒾   1 2 ( 0 1 G * ( ν + ( 1 𝒾 ) 𝒿 ( τ , ν ) ,   λ ) V ( ν + ( 1 𝒾 ) 𝒿 ( τ ,   ν ) ) d 𝒾 + 0 1 G * ( ν + 𝒾 𝒿 ( τ , ν ) ,   λ ) d 𝒾 V ( ν + 𝒾 𝒿 ( τ ,   ν ) ) d 𝒾 ) , G * ( ν + 1 2 𝒿 ( τ ,   ν ) ,   λ ) 0 1 V ( ν + 𝒾 𝒿 ( τ ,   ν ) ) d 𝒾 1 2 ( 0 1 G * ( ν + ( 1 𝒾 ) 𝒿 ( τ , ν ) ,   λ ) V ( ν + ( 1 𝒾 ) 𝒿 ( τ ,   ν ) ) d 𝒾 + 0 1 G * ( ν + 𝒾 𝒿 ( τ , ν ) ,   λ ) V ( ν + 𝒾 𝒿 ( τ ,   ν ) ) d 𝒾 ) .
Since
0 1 G * ( ν + 𝒾 𝒿 ( τ ,   ν ) ,   λ ) V ( ν + 𝒾 𝒿 ( τ ,   ν ) ) d 𝒾 = 0 1 G * ( ν + ( 1 𝒾 ) 𝒿 ( τ , ν ) ,   λ ) V ( ν + ( 1 𝒾 ) 𝒿 ( τ , ν ) ) d 𝒾 = 1 𝒿 ( τ ,   ν )   ν ν + 𝒿 ( τ ,   ν ) G * ( o , λ ) V ( o ) d o , 0 1 G * ( ν + 𝒾 𝒿 ( τ ,   ν ) ,   λ ) V ( ν + 𝒾 𝒿 ( τ ,   ν ) ) d 𝒾     = 0 1 G * ( ν + ( 1 𝒾 ) 𝒿 ( τ , ν ) ,   λ ) V ( ν + ( 1 𝒾 ) 𝒿 ( τ , ν ) ) d 𝒾 = 1 𝒿 ( τ ,   ν )   ν ν + 𝒿 ( τ ,   ν ) G * ( o ,   λ ) V ( o ) d o .      
From (43), we have
G * ( ν + 1 2 𝒿 ( τ ,   ν ) ,   λ ) 1 ν ν + 𝒿 ( τ ,   ν ) V ( o ) d o   ν ν + 𝒿 ( τ ,   ν ) G * ( o , λ ) V ( o ) d o ,       G * ( ν + 1 2 𝒿 ( τ ,   ν ) ,   λ ) 1 ν ν + 𝒿 ( τ ,   ν ) V ( o ) d o   ν ν + 𝒿 ( τ ,   ν ) G * ( o , λ ) V ( o ) d o .
From this, we have
[ G * ( ν + 1 2 𝒿 ( τ ,   ν ) ,   λ ) ,     G * ( ν + 1 2 𝒿 ( τ ,   ν ) ,   λ ) ] I 1 ν ν + 𝒿 ( τ ,   ν ) V ( o ) d o [   ν ν + 𝒿 ( τ ,   ν ) G * ( o , λ ) V ( o ) d o ,     ν ν + 𝒿 ( τ ,   ν ) G * ( o , λ ) V ( o ) d o ] ,    
From (44), we have
G ˜ ( ν + 1 2 𝒿 ( τ ,   ν ) ) F 1 ν ν + 𝒿 ( τ ,   ν ) V ( o ) d o   ( F A ) ν ν + 𝒿 ( τ ,   ν ) G ˜ ( o ) V ( o ) d o .
This completes the proof. □
Remark 5.
If 𝒿 ( τ , ν ) = τ ν , then the inequalities in Theorems 7 and 8 reduce for up and down convex F-N-V∙Ms; see [93].
If G * ( ν , λ ) = G * ( ν ,   λ ) with λ = 1 , then Theorems 7 and 8 reduces to classical first and second 𝐻𝐻-Fejér inequality for pre-invex mapping; see [94].
If G * ( ν , λ ) = G * ( ν ,   λ ) with λ = 1 and 𝒿 ( τ ,   ν ) = τ ν then Theorems 7 and 8 reduce to classical first and second 𝐻𝐻-Fejér inequality for convex mapping; see [96].
Example 2.
We consider the F-N-V∙M G : [ 0 ,   𝒿 ( 2 ,   0 ) ] E C defined by,
G ( o ) ( θ ) = { θ 2 + o 1 2 3 2 2 o 1 2                                     θ [ 2 o 1 2 ,   3 2 ]   2 + o 1 2 θ 2 + o 1 2 3 2                                 θ ( 3 2 ,   2 + o 1 2 ]   0                                     o t h e r w 𝒾 s e ,  
Then, for each λ [ 0 ,   1 ] , we have G λ ( o ) = [ ( 1 λ ) ( 2 o 1 2 ) + 3 2 λ , ( 1 + λ ) ( 2 + o 1 2 ) + 3 2 λ ] . Since end point mappings G * ( o , λ ) , and G * ( o , λ ) are pre-invex and pre-incave mappings with 𝒿 ( τ , ν ) = τ ν , respectively, for each λ [ 0 ,   1 ] , then G ( o ) is up and down pre-invex F-N-V∙M. If
B ( o ) = { o ,             σ [ 0 , 1 ] , 2 o ,       σ ( 1 ,   2 ] ,    
then B ( 2 o ) = B ( o ) 0 , for all o [ 0 ,   2 ] . Since G * ( o , λ ) = ( 1 λ ) ( 2 o 1 2 ) + 3 2 λ and G * ( o , λ ) = ( 1 + λ ) ( 2 + o 1 2 ) + 3 2 λ . Now, we compute the following:
1 𝒿 ( τ ,   ν ) τ ν + 𝒿 ( τ ,   ν ) [ G * ( o , λ ) ] B ( o ) d o = 1 2 0 2 [ G * ( o , λ ) ] B ( o ) d o                 = 1 2 0 1 [ G * ( o , λ ) ] B ( o ) d o + 1 2 1 2 G * ( o , λ ) B ( o ) d o , = 1 2 0 1 [ ( 1 λ ) ( 2 o 1 2 ) + 3 2 λ ] ( o ) d o + 1 2 1 2 [ ( 1 λ ) ( 2 o 1 2 ) + 3 2 λ ] ( 2 o ) d o = 1 4 [ 13 3 π 2 ] + λ [ π 8 1 12 ] ,   1 𝒿 ( τ ,   ν ) τ ν + 𝒿 ( τ ,   ν ) [ G * ( o , λ ) ] B ( o ) d o = 1 2 0 2 [ G * ( o , λ ) ] B ( o ) d o     = 1 2 0 1 [ G * ( o , λ ) ] B ( o ) d o + 1 2 1 2 G * ( o , λ ) B ( o ) d o , = 1 2 0 1 [ ( 1 + λ ) ( 2 + o 1 2 ) + 3 2 λ ] ( o ) d o + 1 2 1 2 [ ( 1 + λ ) ( 2 + o 1 2 ) + 3 2 λ ] ( 2 o ) d o = 1 4 [ 19 3 + π 2 ] + λ [ π 8 + 31 12 ] .            
And
[ G * ( τ ,   λ ) + G * ( ν ,   λ ) ] 0 1 𝒾 B ( ν + 𝒾 𝒿 ( τ ,   ν ) ) d 𝒾   = [ 4 ( 1 λ ) 2 ( 1 λ ) + 3 λ ] [ 0 1 2 𝒾 2 𝒾 d 𝒾 + 1 2 1 𝒾 2 ( 1 𝒾 ) d 𝒾 ] = 1 3 ( 4 ( 1 λ ) 2 ( 1 λ ) + 3 λ ) , [ G * ( τ ,   λ ) + G * ( ν ,   λ ) ] 0 1 𝒾 B ( ν + 𝒾 𝒿 ( τ ,   ν ) ) d 𝒾     = [ 4 ( 1 + λ ) + 2 ( 1 + λ ) + 3 λ ] [ 0 1 2 𝒾 2 𝒾 d 𝒾 + 1 2 1 𝒾 2 ( 1 𝒾 ) d 𝒾 ] = 1 3 ( 4 ( 1 + λ ) + 2 ( 1 + λ ) + 3 λ ) .
From (47) and (48), we have
[ 1 4 [ 13 3 π 2 ] + λ [ π 4 7 6 ] ,   1 4 [ 19 3 + π 2 ] + λ [ π 4 + 25 6 ] ] I [ 1 3 ( 4 ( 1 λ ) 2 ( 1 λ ) + 3 λ ) ,   1 3 ( 4 ( 1 + λ ) + 2 ( 1 + λ ) + 3 λ ) ] ,   for   all   λ [ 0 ,   1 ] .  
Hence, Theorem 7 is verified.
For Theorem 8, we have
G * ( 2 ν + 𝒿 ( τ ,   ν ) 2 ,   λ ) = G * ( 1 ,   λ ) = 2 + λ 2 ,       G * ( 2 ν + 𝒿 ( τ ,   ν ) 2 ,   λ ) = G * ( 1 ,   λ ) = 3 ( 2 + 3 λ ) 2 ,  
τ ν + 𝒿 ( τ ,   ν ) B ( o ) d o = 0   1 o d o + 1 2 2 o d o = 4 3 ,
1 τ ν + 𝒿 ( τ ,   ν ) B ( o ) d o   τ ν + 𝒿 ( τ ,   ν ) G * ( o , λ ) B ( o ) d o = 3 8 [ 13 3 π 2 ] + 3 λ 2 [ π 8 1 12 ] ,   1 τ ν + 𝒿 ( τ ,   ν ) B ( o ) d o   τ ν + 𝒿 ( τ ,   ν ) G * ( o , λ ) B ( o ) d o = 3 8 [ 19 3 + π 2 ] + 3 λ 2 [ π 8 + 31 12 ] .                            
From (49) and (50), we have
[ 2 + λ 2 ,   3 ( 2 + 3 λ ) 2 ] I [ 3 8 [ 13 3 π 2 ] + 3 λ 2 [ π 8 1 12 ] ,   3 8 [ 19 3 + π 2 ] + 3 λ 2 [ π 8 + 31 12 ] ] .  
Hence, Theorem 8 has been verified.
Further, we also offer the fuzzy integral relations of the product of two up and down pre-invex F-N-V∙Ms.
Theorem 9.
Suppose that G ˜ , E ˜   : [ ν ,   ν + 𝒿 ( τ ,   ν ) ] E are two up and down pre-invex F-N-V∙Ms along with the family of I-V∙Ms G λ ,   E λ : [ ν ,   ν + 𝒿 ( τ ,   ν ) ] K C + as well as G λ ( o ) = [ G * ( o , λ ) ,   G * ( o , λ ) ] and E λ ( o ) = [ E * ( o , λ ) ,   E * ( o , λ ) ] for all o [ ν ,   ν + 𝒿 ( τ ,   ν ) ] and for all λ [ 0 ,   1 ] . If 𝒿 satisfy Condition C and G ˜ ( o ) E ˜ ( o ) F R ( [ ν ,   ν + 𝒿 ( τ ,   ν ) ] ,   λ ) , then
1 𝒿 ( τ ,   ν )   ( F A ) ν ν + 𝒿 ( τ ,   ν ) G ˜ ( o ) E ˜ ( o ) d o F Δ ˜ ( ν , τ ) 3 ˜ ( ν , τ ) 6 ,  
where Δ ˜ ( ν , τ ) = G ˜ ( ν ) E ˜ ( ν ) G ˜ ( τ ) E ˜ ( τ ) ,   ˜ ( ν , τ ) = G ˜ ( ν ) E ˜ ( τ )     G ˜ ( τ ) E ˜ ( ν ) , and Δ λ ( ν , τ ) = [ Δ * ( ( ν , τ ) ,   λ ) ,   Δ * ( ( ν , τ ) ,   λ ) ] and λ ( ν , τ ) = [ * ( ( ν , τ ) ,   λ ) ,   * ( ( ν , τ ) ,   λ ) ] .
Example 3.
Let [ τ , ν ] = [ 0 , 2 ] , and the F-N-V∙Ms G , E : [ τ ,   ν ] = [ 0 , 2 ] E C , which is defined by
G ˜ ( o ) ( θ ) = { θ o                             θ [ 0 ,   o ]   2 o θ o                 θ ( o ,   2 o ] 0                           o t h e r w 𝒾 s e ,  
E ˜ ( o ) ( θ ) = { θ o 2 o                             θ [ o ,   2 ]   8 e o θ 8 e o 2       θ ( 2 ,   8 e o ] 0                       o t h e r w 𝒾 s e .
Then, for each λ [ 0 ,   1 ] , we have G λ ( o ) = [ λ o , ( 2 λ ) o ] and E λ ( o ) = [ ( 1 λ ) o + 2 λ , ( 1 λ ) ( 8 e o ) + 2 λ ] . Since left and right end point mappings G * ( o , λ ) = λ o ,   G * ( o ,   λ ) = ( 2 λ ) o , E * ( o , λ ) = ( 1 λ ) o + 2 λ and E * ( o ,   λ ) = ( 1 λ ) ( 8 e o ) + 2 λ are pre-invex and pre-incave mappings with 𝒿 ( τ , ν ) = τ ν for each λ [ 0 ,   1 ] , respectively, then G ( o ) and E ( o ) both are up and down pre-invex F-N-V∙Ms with 𝒿 ( τ , ν ) = τ ν . We clearly see that G ( o ) E ( o ) L ( [ τ ,   ν ] , E C ) and
1 𝒿 ( τ ,   ν )   τ ν + 𝒿 ( τ ,   ν ) G * ( o , λ ) × E * ( o , λ ) d o = 1 2 0 2   ( λ ( 1 λ ) o 2 + 2 λ 2 o ) d o = 2 3 λ ( 2 + λ ) , 1 𝒿 ( τ ,   ν )   τ ν + 𝒿 ( τ ,   ν ) G * ( o , λ ) × E * ( o , λ ) d o = 1 2 0 2 ( ( 1 λ ) ( 2 λ ) o ( 8 e o ) + 2 λ ( 2 λ ) o ) d o ( 2 λ ) 2 ( 1903 250 903 250 λ ) .
Note that
Δ * ( τ , ν ) = [ G * ( τ ) × E * ( τ ) + G * ( ν ) × E * ( ν ) ] = 4 λ  
Δ * ( τ , ν ) = [ G * ( τ ) × E * ( τ ) + G * ( ν ) × E * ( ν ) ] = 2 ( 2 λ ) [ ( 1 λ ) ( 8 e 2 ) + 2 λ ] ,
* ( τ , ν ) = [ G * ( τ ) × E * ( ν ) + G * ( ν ) × E * ( τ ) ] = 4 λ 2 ,
* ( τ , ν ) = [ G * ( τ ) × E * ( ν ) + G * ( ν ) × E * ( τ ) ] = 2 ( 2 λ ) ( 7 5 λ ) .  
Therefore, we have
1 3 Δ λ ( ( τ , ν ) ,   λ ) + 1 6 λ ( ( τ , ν ) ,   λ ) = 1 3 [ 4 λ , 2 ( 2 λ ) [ ( 1 λ ) ( 8 e 2 ) + 2 λ ] ] + 1 3 [ 2 λ 2 , ( 2 λ ) ( 7 5 λ ) ] = 1 3 [ 2 λ ( 2 + λ ) , ( 2 λ ) [ 2 ( 1 λ ) ( 8 e 2 ) λ + 7 ] ] .  
It follows that
[ 2 3 λ ( 1 + 2 λ ) , ( 2 λ ) 2 ( 1903 250 903 250 λ ) ] I 1 3 [ 2 λ ( 2 + λ ) , ( 2 λ ) [ 2 ( 1 λ ) ( 8 e 2 ) λ + 7 ] ]  
and Theorem 9 has been demonstrated.
Theorem 10.
Suppose that G , E ˜   : [ ν ,   ν + 𝒿 ( τ ,   ν ) ] E are two up and down pre-invex F-N-V∙Ms along with the family of I-V∙Ms G λ ,   E λ : [ ν ,   ν + 𝒿 ( τ ,   ν ) ] K C + as well as G λ ( o ) = [ G * ( o , λ ) ,   G * ( o , λ ) ] and E λ ( o ) = [ E * ( o , λ ) ,   E * ( o , λ ) ] for all o [ ν ,   ν + 𝒿 ( τ ,   ν ) ] and for all λ [ 0 ,   1 ] . If 𝒿 satisfy Condition C and G ˜ ( o ) × ˜ E ˜ ( o ) F R ( [ ν ,   ν + 𝒿 ( τ ,   ν ) ] ,   λ ) , then
2 G ˜ ( 2 ν + 𝒿 ( τ ,   ν ) 2 ) E ˜ ( 2 ν + 𝒿 ( τ ,   ν ) 2 ) F 1 𝒾 ( τ ,   ν )   ( F A ) ν ν + 𝒿 ( τ ,   ν ) G ˜ ( o ) E ˜ ( o ) d o     Δ ˜ ( ν , τ ) 6 ˜ ( ν , τ ) 3 ,
where   Δ ˜ ( ν , τ ) = G ˜ ( ν ) E ˜ ( ν )     G ˜ ( τ ) E ˜ ( τ ) ,   ˜ ( ν , τ ) = G ˜ ( ν ) E ˜ ( τ )     G ˜ ( τ ) E ˜ ( ν ) , and Δ λ ( ν , τ ) = [ Δ * ( ( ν , τ ) ,   λ ) ,   Δ * ( ( ν , τ ) ,   λ ) ] and λ ( ν , τ ) = [ * ( ( ν , τ ) ,   λ ) ,   * ( ( ν , τ ) ,   λ ) ] .
Proof. 
Using Condition C, we can write
ν + 1 2 𝒿 ( τ ,   ν ) = ν + 𝒾 𝒿 ( τ ,   ν ) + 1 2 𝒿 ( ν + ( 1 𝒾 ) 𝒿 ( τ , ν ) ,   ν + 𝒾 𝒿 ( τ , ν ) ) .
By hypothesis, for each λ [ 0 ,   1 ] , we have
G * ( 2 ν + 𝒿 ( τ ,   ν ) 2 , λ ) × E * ( 2 ν + 𝒿 ( τ ,   ν ) 2 , λ ) G * ( 2 ν + 𝒿 ( τ ,   ν ) 2 , λ ) × E * ( 2 ν + 𝒿 ( τ ,   ν ) 2 , λ )
= G * ( ν + 𝒾 𝒿 ( τ ,   ν ) + 1 2 𝒿 ( ν + ( 1 𝒾 ) 𝒿 ( τ , ν ) ,   ν + 𝒾 𝒿 ( τ , ν ) ) , λ )
× E * ( ν + 𝒾 𝒿 ( τ ,   ν ) + 1 2 𝒿 ( ν + ( 1 𝒾 ) 𝒿 ( τ , ν ) ,   ν + 𝒾 𝒿 ( τ , ν ) ) , λ )
= G * ( ν + 𝒾 𝒿 ( τ ,   ν ) + 1 2 𝒿 ( ν + ( 1 𝒾 ) 𝒿 ( τ , ν ) ,   ν + 𝒾 𝒿 ( τ , ν ) ) , λ )
× E * ( ν + 𝒾 𝒿 ( τ ,   ν ) + 1 2 𝒿 ( ν + ( 1 𝒾 ) 𝒿 ( τ , ν ) ,   ν + 𝒾 𝒿 ( τ , ν ) ) , λ )
1 4 [ G * ( ν + ( 1 𝒾 ) 𝒿 ( τ ,   ν ) ,   λ ) × E * ( ν + ( 1 𝒾 ) 𝒿 ( τ ,   ν ) ,   λ ) + G * ( ν + ( 1 𝒾 ) 𝒿 ( τ ,   ν ) ,   λ ) × E * ( ν + 𝒾 𝒿 ( τ ,   ν ) ,   λ ) ]
+ 1 4 [ G * ( ν + 𝒾 𝒿 ( τ ,   ν ) ,   λ ) × E * ( ν + ( 1 𝒾 ) 𝒿 ( τ ,   ν ) ,   λ ) + G * ( ν + 𝒾 𝒿 ( τ ,   ν ) ,   λ ) × E * ( ν + 𝒾 𝒿 ( τ ,   ν ) ,   λ ) ] ,    
1 4 [ G * ( ν + ( 1 𝒾 ) 𝒿 ( τ ,   ν ) ,   λ ) × E * ( ν + ( 1 𝒾 ) 𝒿 ( τ ,   ν ) ,   λ ) + G * ( ν + ( 1 𝒾 ) 𝒿 ( τ ,   ν ) ,   λ ) × E * ( ν + 𝒾 𝒿 ( τ ,   ν ) ,   λ ) ]
+ 1 4 [ G * ( ν + 𝒾 𝒿 ( τ ,   ν ) ,   λ ) × E * ( ν + ( 1 𝒾 ) 𝒿 ( τ ,   ν ) ,   λ ) + G * ( ν + 𝒾 𝒿 ( τ ,   ν ) ,   λ ) × E * ( ν + 𝒾 𝒿 ( τ ,   ν ) ,   λ ) ] ,
1 4 [ G * ( ν + ( 1 𝒾 ) 𝒿 ( τ ,   ν ) ,   λ ) × E * ( ν + ( 1 𝒾 ) 𝒿 ( τ ,   ν ) ,   λ ) + G * ( ν + 𝒾 𝒿 ( τ ,   ν ) ,   λ ) × E * ( ν + 𝒾 𝒿 ( τ ,   ν ) ,   λ ) ]
+ 1 4 [ ( 𝒾 G * ( ν ,   λ ) + ( 1 𝒾 ) G * ( τ ,   λ ) ) × ( ( 1 𝒾 ) E * ( ν ,   λ ) + 𝒾 E * ( τ ,   λ ) ) + ( ( 1 𝒾 ) G * ( ν ,   λ ) + 𝒾 G * ( τ ,   λ ) ) × ( 𝒾 E * ( ν ,   λ ) + ( 1 𝒾 ) E * ( τ ,   λ ) ) ] ,
1 4 [ G * ( ν + ( 1 𝒾 ) 𝒿 ( τ ,   ν ) ,   λ ) × E * ( ν + ( 1 𝒾 ) 𝒿 ( τ ,   ν ) ,   λ ) + G * ( ν + 𝒾 𝒿 ( τ ,   ν ) ,   λ ) × E * ( ν + 𝒾 𝒿 ( τ ,   ν ) ,   λ ) ]
+ 1 4 [ ( 𝒾 G * ( ν ,   λ ) + ( 1 𝒾 ) G * ( τ ,   λ ) ) × ( ( 1 𝒾 ) E * ( ν ,   λ ) + 𝒾 E * ( τ ,   λ ) ) + ( ( 1 𝒾 ) G * ( ν ,   λ ) + 𝒾 G * ( τ ,   λ ) ) × ( 𝒾 E * ( ν ,   λ ) + ( 1 𝒾 ) E * ( τ ,   λ ) ) ] ,
= 1 4 [ G * ( ν + ( 1 𝒾 ) 𝒿 ( τ ,   ν ) ,   λ ) × E * ( ν + ( 1 𝒾 ) 𝒿 ( τ ,   ν ) ,   λ ) + G * ( ν + 𝒾 𝒿 ( τ ,   ν ) ,   λ ) × E * ( ν + 𝒾 𝒿 ( τ ,   ν ) ,   λ ) ]    
+ 1 2 [ { 𝒾 2 + ( 1 𝒾 ) 2 } * ( ( ν , τ ) ,   λ ) + { 𝒾 ( 1 𝒾 ) + ( 1 𝒾 ) 𝒿 } Δ * ( ( ν , τ ) ,   λ ) ] ,
= 1 4 [ G * ( ν + ( 1 𝒾 ) 𝒿 ( τ ,   ν ) ,   λ ) × E * ( ν + ( 1 𝒾 ) 𝒿 ( τ ,   ν ) ,   λ ) + G * ( ν + 𝒾 𝒿 ( τ ,   ν ) ,   λ ) × E * ( ν + 𝒾 𝒿 ( τ ,   ν ) ,   λ ) ]
+ 1 2 [ { 𝒾 2 + ( 1 𝒾 ) 2 } * ( ( ν , τ ) ,   λ ) + { 𝒾 ( 1 𝒾 ) + ( 1 𝒾 ) 𝒾 } Δ * ( ( ν , τ ) ,   λ ) ] .
Integrating over [ 0 ,   1 ] , we have
2   G * ( 2 ν + 𝒿 ( τ ,   ν ) 2 , λ ) × E * ( 2 ν + 𝒿 ( τ ,   ν ) 2 , λ )       1 𝒿 ( τ ,   ν )   ν ν + 𝒿 ( τ ,   ν ) G * ( o , λ ) × E * ( o , λ ) d o   + Δ * ( ( ν , τ ) ,   λ ) 6 + * ( ( ν , τ ) ,   λ ) 3 , 2   G * ( 2 ν + 𝒿 ( τ ,   ν ) 2 , λ ) × E * ( 2 ν + 𝒿 ( τ ,   ν ) 2 , λ ) 1 𝒿 ( τ ,   ν )   ν ν + 𝒿 ( τ ,   ν ) G * ( o , λ ) × E * ( o , λ ) d o   + Δ * ( ( ν , τ ) ,   λ ) 6 + * ( ( ν , τ ) ,   λ ) 3 ,
from which, we have
2 [ G * ( 2 ν + 𝒿 ( τ ,   ν ) 2 , λ ) × E * ( 2 ν + 𝒿 ( τ ,   ν ) 2 , λ ) ,     G * ( 2 ν + 𝒿 ( τ ,   ν ) 2 , λ ) × E * ( 2 ν + 𝒿 ( τ ,   ν ) 2 , λ ) ] I 1 𝒿 ( τ ,   ν ) [ ν ν + 𝒿 ( τ ,   ν ) G * ( o , λ ) × E * ( o , λ ) d o ,     ν ν + 𝒿 ( τ ,   ν ) G * ( o , λ ) × E * ( o , λ ) d o ] + [ Δ * ( ( ν , τ ) ,   λ ) 6 ,   Δ * ( ( ν , τ ) ,   λ ) 6 ] + [ * ( ( ν , τ ) ,   λ ) 3 ,   * ( ( ν , τ ) ,   λ ) 3 ] ,
that is
2   G ˜ ( 2 ν + 𝒿 ( τ ,   ν ) 2 ) E ˜ ( 2 ν + 𝒿 ( τ ,   ν ) 2 ) F 1 𝒿 ( τ ,   ν )   ( F A ) ν ν + 𝒿 ( τ ,   ν ) G ˜ ( o ) E ˜ ( o ) d o     Δ ˜ ( ν , τ ) 6 ˜ ( ν , τ ) 32 τ d τ l u e d   f u n c t i o n s   i o n s   w i t h .
This completes the proof. □
Example 4.
We consider the F-N-V∙Ms G ˜ ,   E ˜ : [ τ ,   ν ] = [ 0 ,   𝒿 ( 2 ,   0 ) ] F C ( ) . Then, for each λ [ 0 ,   1 ] , we have G λ ( o ) = [ λ o , ( 2 λ ) o ] and E λ ( o ) = [ ( 1 λ ) o + 2 λ , ( 1 λ ) ( 8 e o ) + 2 λ ] , as in Example 3, then G ˜ and E ˜ are pre-invex and pre-incave functions with 𝒿 ( τ , ν ) = τ ν . We have G * ( o , λ ) = λ o ,   G * ( o ,   λ ) = ( 2 λ ) o and E * ( o , λ ) = ( 1 λ ) o + 2 λ , E * ( o ,   λ ) = ( 1 λ ) ( 8 e o ) + 2 λ , then
2   G * ( τ + ν 2 , λ ) × E * ( τ + ν 2 , λ ) = 2 λ ( 1 + λ ) ,                   2   G * ( τ + ν 2 , λ ) × E * ( τ + ν 2 , λ ) = 2 [ 16 20 λ + 6 λ 2 + ( 2 3 λ + λ 2 ) e ] ,  
1 ν τ   τ ν G * ( o , λ ) × E * ( o , λ ) d o = 1 2 0 2   ( λ ( 1 λ ) o 2 + 2 λ 2 o ) d o = 4 3 λ ( 3 λ ) ,
1 ν τ   τ ν G * ( o , λ ) × E * ( o , λ ) d o = 1 2 0 2 ( ( 1 λ ) ( 2 λ ) o ( 8 e o ) + 2 λ ( 2 λ ) o ) d o ( 2 λ ) 2 ( 1903 250 903 250 λ ) .
Δ * ( τ , ν ) = [ G * ( τ ) × E * ( τ ) + G * ( ν ) × E * ( ν ) ] = 4 λ  
Δ * ( τ , ν ) = [ G * ( τ ) × E * ( τ ) + G * ( ν ) × E * ( ν ) ] = 2 ( 2 λ ) [ ( 1 λ ) ( 8 e 2 ) + 2 λ ] ,
* ( τ , ν ) = [ G * ( τ ) × E * ( ν ) + G * ( ν ) × E * ( τ ) ] = 4 λ 2 ,  
* ( τ , ν ) = [ G * ( τ ) × E * ( ν ) + G * ( ν ) × E * ( τ ) ] = 2 ( 2 λ ) ( 7 5 λ ) .
Therefore, we have
1 6 Δ λ ( ( τ , ν ) ,   λ ) + 1 3 λ ( ( τ , ν ) ,   λ ) = 1 3 [ 2 λ , ( 2 λ ) [ ( 1 λ ) ( 8 e 2 ) + 2 λ ] ] + 2 3 [ 2 λ 2 , ( 2 λ ) ( 7 5 λ ) ] = 1 3 [ 2 λ ( 1 + 2 λ ) , ( 2 λ ) [ ( 1 λ ) ( 8 e 2 ) 8 λ + 14 ] ] .
It follows that
2 [ λ ( 1 + λ ) , [ 16 20 λ + 6 λ 2 + ( 2 3 λ + λ 2 ) e ] ] I [ 2 3 λ ( 2 + λ ) , ( 2 λ ) 2 ( 1903 250 903 250 λ ) ] + 1 3 [ 2 λ ( 1 + 2 λ ) , ( 2 λ ) [ ( 1 λ ) ( 8 e 2 ) 8 λ + 14 ] ] ,
and Theorem 10 has been demonstrated.

4. Conclusions

In this study, we have discussed the notion of fuzzy number valued up and down pre-invex functions as an extension of convex functions. Hermite–Hadamard-type fuzzy inclusions for up and down convex F-N-V∙Ms have been constructed. In addition, some new Hermite–Hadamard-type fuzzy inclusions are used to study the product of two up and down convex F-N-V∙Ms. Some exceptional cases are also obtained. Moreover, some useful examples are presented to study the validity of our main results. To extend the findings of this study, other fuzzy number valued up and down convex functions on the coordinates can be applied. In the future, we can investigate Fejér–Hermite–Hadamard-type inequalities for fuzzy number valued up and down pre-invex mappings by using fuzzy number valued fractional and Riemann integrals on coordinates. The ideas and conclusions offered in this article are intended to motivate readers to conduct more study.

Author Contributions

Conceptualization, M.B.K.; methodology, M.B.K.; validation, M.S.S.; formal analysis, M.S.S.; investigation, M.B.K.; resources, M.S.S.; data curation, G.S.-G.; writing—original draft preparation, M.B.K.; writing—review and editing, M.B.K. and M.S.S.; visualization, G.S.-G.; supervision, M.B.K. and S.T.; project administration, M.B.K. and S.T.; funding acquisition, M.S.S. and G.S.-G. All authors have read and agreed to the published version of the manuscript.

Funding

The research of Santos-García was funded by the project ProCode-UCM (PID2019-108528RBC22) from the Spanish Ministerio de Ciencia e Innovación.

Data Availability Statement

Not applicable.

Acknowledgments

The authors would like to thank the COMSATS University Islamabad, Islamabad, Pakistan, for providing excellent research and academic environments.

Conflicts of Interest

The authors declare that they have no competing interest.

References

  1. Narges Hajiseyedazizi, S.; Samei, M.E.; Alzabut, J.; Chu, Y.-M. On multi-step methods for singular fractional q-integro-differential equations. Open Math. 2021, 19, 1378–1405. [Google Scholar] [CrossRef]
  2. Jin, F.; Qian, Z.-S.; Chu, Y.-M.; ur Rahman, M. On nonlinear evolution model for drinking behavior under Caputo-Fabrizio derivative. J. Appl. Anal. Comput. 2022, 12, 790–806. [Google Scholar] [CrossRef]
  3. Wang, F.-Z.; Khan, M.N.; Ahmad, I.; Ahmad, H.; Abu-Zinadah, H.; Chu, Y.-M. Numerical solution of traveling waves in chemical kinetics: Time-fractional fishers equations. Fractals 2022, 30, 2240051. [Google Scholar] [CrossRef]
  4. Zhao, T.-H.; Bhayo, B.A.; Chu, Y.-M. Inequalities for generalized Grötzsch ring function. Comput. Methods Funct. Theory 2022, 22, 559–574. [Google Scholar] [CrossRef]
  5. Iqbal, S.A.; Hafez, M.G.; Chu, Y.-M.; Park, C. Dynamical Analysis of nonautonomous RLC circuit with the absence and presence of Atangana-Baleanu fractional derivative. J. Appl. Anal. Comput. 2022, 12, 770–789. [Google Scholar] [CrossRef]
  6. Huang, T.-R.; Chen, L.; Chu, Y.-M. Asymptotically sharp bounds for the complete p-elliptic integral of the first kind. Hokkaido Math. J. 2022, 51, 189–210. [Google Scholar] [CrossRef]
  7. Zhao, T.-H.; Qian, W.-M.; Chu, Y.-M. On approximating the arc lemniscate functions. Indian J. Pure Appl. Math. 2022, 53, 316–329. [Google Scholar] [CrossRef]
  8. Liu, Z.-H.; Motreanu, D.; Zeng, S.-D. Generalized penalty and regularization method for differential variational-hemivariational inequalities. SIAM J. Optim. 2021, 31, 1158–1183. [Google Scholar] [CrossRef]
  9. Liu, Y.-J.; Liu, Z.-H.; Wen, C.-F.; Yao, J.-C.; Zeng, S.-D. Existence of solutions for a class of noncoercive variational–hemivariational inequalities arising in contact problems. Appl. Math. Optim. 2021, 84, 2037–2059. [Google Scholar] [CrossRef]
  10. Zeng, S.-D.; Migorski, S.; Liu, Z.-H. Well-posedness, optimal control, and sensitivity analysis for a class of differential variational- hemivariational inequalities. SIAM J. Optim. 2021, 31, 2829–2862. [Google Scholar] [CrossRef]
  11. Dragomir, S.S.; Pearce, V. Selected Topics on Hermite-Hadamard Inequalities and Applications. In RGMIA Monographs; Victoria University: Victoria, Australia, 2000. [Google Scholar]
  12. Mehrez, K.; Agarwal, P. New Hermite–Hadamard type integral inequalities for convex functions and their applications. J. Comput. Appl. Math. 2019, 350, 274–285. [Google Scholar] [CrossRef]
  13. Mitrinović, D.S.; Pečarić, J.E.; Fink, A.M. Classical and new inequalities in analysis. In Mathematics and Its Applications (East European Series); Kluwer Academic Publishers Group: Dordrecht, The Netherland, 1993; p. 61. [Google Scholar]
  14. Ata, E.; Kıymaz, I.O. A study on certain properties of generalized special functions defined by Fox-Wright function. Appl. Math. Nonlinear Sci. 2020, 5, 147–162. [Google Scholar] [CrossRef] [Green Version]
  15. Ilhan, E.; Kıymaz, I.O. A generalization of truncated M-fractional derivative and applications to fractional differential equations. Appl. Math. Nonlinear Sci. 2020, 5, 171–188. [Google Scholar] [CrossRef] [Green Version]
  16. Rezazadeh, H.; Korkmaz, A.; EL Achab, A.; Adel, W.; Bekir, A. New Travelling Wave Solution-Based New Riccati Equation for Solving KdV and Modified KdV Equations. Appl. Math. Nonlinear Sci. 2021, 5, 447–458. [Google Scholar] [CrossRef]
  17. Touchent, K.; Hammouch, Z.; Mekkaoui, T. A modified invariant subspace method for solving partial differential equations with non-singular kernel fractional derivatives. Appl. Math. Nonlinear Sci. 2020, 5, 35–48. [Google Scholar] [CrossRef]
  18. Sahin, S.; Yagci, O. Fractional calculus of the extended hyper geometric function. Appl. Math. Nonlinear Sci. 2020, 5, 369–384. [Google Scholar] [CrossRef]
  19. Khurshid, Y.; Adil Khan, M.; Chu, Y.M. Conformable integral inequalities of the Hermite-Hadamard type in terms of GG- and GA-convexities. J. Funct. Spaces 2019, 2019, 6926107. [Google Scholar] [CrossRef]
  20. Niculescu, C.P.; Persson, L.E. Convex Functions and Their Applications; Springer: New York, NY, USA, 2006. [Google Scholar]
  21. Varošanec, S. On h–convexity. J. Math. Anal. Appl. 2007, 326, 303–311. [Google Scholar] [CrossRef] [Green Version]
  22. Kaur, D.; Agarwal, P.; Rakshit, M.; Chand, M. Fractional calculus involving (p, q)-Mathieu type series. Appl. Math. Nonlinear Sci. 2020, 5, 15–34. [Google Scholar] [CrossRef]
  23. Kabra, S.; Nagar, H.; Nisar, K.S.; Suthar, D.L. The Marichev-Saigo-Maeda fractional calculus operators pertaining to the generalized k-Struve function. Appl. Math. Nonlinear Sci. 2020, 5, 593–602. [Google Scholar] [CrossRef]
  24. Gürbüz, M.; Yıldız, Ç. Some new inequalities for convex functions via Riemann-Liouville fractional integrals. Appl. Math. Nonlinear Sci. 2021, 6, 537–544. [Google Scholar] [CrossRef]
  25. Akdemir, A.O.; Deniz, E.; Yüksel, E. On Some Integral Inequalities via Conformable Fractional Integrals. Appl. Math. Nonlinear Sci. 2021, 6, 489–498. [Google Scholar] [CrossRef]
  26. Vanli, A.; Ünal, I.; Özdemir, D. Normal complex contact metric manifolds admitting a semi symmetric metric connection. Appl. Math. Nonlinear Sci. 2020, 5, 49–66. [Google Scholar] [CrossRef]
  27. Toplu, T.; Kadakal, M.; İşcan, İ. On n-polynomial convexity and some related inequalities. AIMS Math. 2020, 5, 1304–1318. [Google Scholar] [CrossRef]
  28. Zhao, T.-H.; Zhou, B.-C.; Wang, M.-K.; Chu, Y.-M. On approximating the quasi-arithmetic mean. J. Inequal. Appl. 2019, 2019, 42. [Google Scholar] [CrossRef] [Green Version]
  29. Zhao, T.-H.; Wang, M.-K.; Zhang, W.; Chu, Y.-M. Quadratic transformation inequalities for Gaussian hyper geometric function. J. Inequal. Appl. 2018, 2018, 251. [Google Scholar] [CrossRef] [Green Version]
  30. Chu, Y.-M.; Zhao, T.-H. Concavity of the error function with respect to Hölder means. Math. Inequal. Appl. 2016, 19, 589–595. [Google Scholar] [CrossRef]
  31. Qian, W.-M.; Chu, H.-H.; Wang, M.-K.; Chu, Y.-M. Sharp inequalities for the Toader mean of order−1 in terms of other bivariate means. J. Math. Inequal. 2022, 16, 127–141. [Google Scholar] [CrossRef]
  32. Zhao, T.-H.; Chu, H.-H.; Chu, Y.-M. Optimal Lehmer mean bounds for the nth power-type Toader mean of n = −1, 1, 3. J. Math. Inequal. 2022, 16, 157–168. [Google Scholar] [CrossRef]
  33. Zhao, T.-H.; Wang, M.-K.; Dai, Y.-Q.; Chu, Y.-M. On the generalized power-type Toader mean. J. Math. Inequal. 2022, 16, 247–264. [Google Scholar] [CrossRef]
  34. Liu, Y.-J.; Liu, Z.-H.; Motreanu, D. Existence and approximated results of solutions for a class of nonlocal elliptic variational-hemivariational inequalities. Math. Methods Appl. Sci. 2020, 43, 9543–9556. [Google Scholar] [CrossRef]
  35. Liu, Y.-J.; Liu, Z.-H.; Wen, C.-F. Existence of solutions for space-fractional parabolic hemivariational inequalities. Discret. Contin. Dyn. Syst. Ser. B 2019, 24, 1297–1307. [Google Scholar] [CrossRef] [Green Version]
  36. Liu, Z.-H.; Loi, N.V.; Obukhovskii, V. Existence and global bifurcation of periodic solutions to a class of differential variational inequalities. Int. J. Bifurc. Chaos 2013, 23, 1350125. [Google Scholar] [CrossRef]
  37. Shi, H.N.; Zhang, J. Some new judgement theorems of Schur geometric and schur harmonic convexities for a class of symmetric function. J. Inequalities Appl. 2013, 2013, 527. [Google Scholar] [CrossRef] [Green Version]
  38. Anderson, G.D.; Vamanamurthy, M.K.; Vuorinen, M. Generalized convexity and inequalities. J. Math. Anal. Appl. 2007, 335, 1294–1308. [Google Scholar] [CrossRef] [Green Version]
  39. Noor, M.A.; Noor, K.I.; Iftikhar, S. Harmite–Hadamard inequalities for harmonic nonconvex function. MAGNT Res. Rep. 2016, 4, 24–40. [Google Scholar]
  40. Awan, M.U.; Akhtar, N.; Iftikhar, S.; Noor, M.A.; Chu, Y.M. New Hermite–Hadamard type inequalities for n-polynomial harmonically convex functions. J. Inequalities Appl. 2020, 2020, 125. [Google Scholar] [CrossRef]
  41. Khan, M.B.; Macías-Díaz, J.E.; Treanta, S.; Soliman, M.S.; Zaini, H.G. Hermite-Hadamard Inequalities in Fractional Calculus for Left and Right Harmonically Convex Functions via Interval-Valued Settings. Fractal Fract. 2022, 6, 178. [Google Scholar] [CrossRef]
  42. Khan, M.B.; Noor, M.A.; Noor, K.I.; Nisar, K.S.; Ismail, K.A.; Elfasakhany, A. Some Inequalities for LR-(h1,h2)-Convex Interval-Valued Functions by Means of Pseudo Order Relation. Int. J. Comput. Intell. Syst. 2021, 14, 180. [Google Scholar] [CrossRef]
  43. Liu, P.; Khan, M.B.; Noor, M.A.; Noor, K.I. New Hermite-Hadamard and Jensen inequalities for log-s-convex fuzzy-interval-valued functions in the second sense. Complex Intell. Syst. 2022, 8, 413–427. [Google Scholar] [CrossRef]
  44. Khan, M.B.; Noor, M.A.; Al-Bayatti, H.M.; Noor, K.I. Some New Inequalities for LR-Log-h-Convex Interval-Valued Functions by Means of Pseudo Order Relation. Appl. Math. 2021, 15, 459–470. [Google Scholar]
  45. Khan, M.B.; Noor, M.A.; Abdeljawad, T.; Mousa, A.A.A.; Abdalla, B.; Alghamdi, S.M. LR-Preinvex Interval-Valued Functions and Riemann–Liouville Fractional Integral Inequalities. Fractal Fract. 2021, 5, 243. [Google Scholar] [CrossRef]
  46. Macías-Díaz, J.E.; Khan, M.B.; Noor, M.A.; Abd Allah, A.M.; Alghamdi, S.M. Hermite-Hadamard inequalities for generalized convex functions in interval-valued calculus. AIMS Math. 2022, 7, 4266–4292. [Google Scholar] [CrossRef]
  47. Khan, M.B.; Zaini, H.G.; Treanțǎ, S.; Soliman, M.S.; Nonlaopon, K. Riemann–Liouville Fractional Integral Inequalities for Generalized Pre-Invex Functions of Interval-Valued Settings Based upon Pseudo Order Relation. Mathematics 2022, 10, 204. [Google Scholar] [CrossRef]
  48. Khan, M.B.; Treanțǎ, S.; Budak, H. Generalized p-Convex Fuzzy-Interval-Valued Functions and Inequalities Based upon the Fuzzy-Order Relation. Fractal Fract. 2022, 6, 63. [Google Scholar] [CrossRef]
  49. Zhao, T.-H.; Castillo, O.; Jahanshahi, H.; Yusuf, A.; Alassafi, M.O.; Alsaadi, F.E.; Chu, Y.-M. A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak. Appl. Comput. Math. 2021, 20, 160–176. [Google Scholar]
  50. Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. On the bounds of the perimeter of an ellipse. Acta Math. Sci. 2022, 42B, 491–501. [Google Scholar] [CrossRef]
  51. Zhao, T.-H.; Wang, M.-K.; Hai, G.-J.; Chu, Y.-M. Landen inequalities for Gaussian hypergeometric function. Rev. La Real Acad. Cienc. Exactas Físicas Naturales Ser. A Matemáticas RACSAM 2022, 116, 53. [Google Scholar] [CrossRef]
  52. Wang, M.-K.; Hong, M.-Y.; Xu, Y.-F.; Shen, Z.-H.; Chu, Y.-M. Inequalities for generalized trigonometric and hyperbolic functions with one parameter. J. Math. Inequal. 2020, 14, 1–21. [Google Scholar] [CrossRef]
  53. Zhao, T.-H.; Qian, W.-M.; Chu, Y.-M. Sharp power mean bounds for the tangent and hyperbolic sine means. J. Math. Inequal. 2021, 15, 1459–1472. [Google Scholar] [CrossRef]
  54. Butt, S.I.; Kashuri, A.; Tariq, M.; Nasir, J.; Aslam, A.; Gao, W. n–polynomial exponential type p–convex function with some related inequalities and their applications. Heliyon 2020, 6, e05420. [Google Scholar] [CrossRef] [PubMed]
  55. Butt, S.I.; Kashuri, A.; Tariq, M.; Nasir, J.; Aslam, A.; Gao, W. Hermite–Hadamard-type inequalities via n-polynomial exponential-type convexity and their applications. Adv. Differ. Equ. 2020, 2020, 508. [Google Scholar] [CrossRef]
  56. Dragomir, S.S.; Gomm, I. Some Hermite–Hadamard’s inequality functions whose exponentials are convex. Babes Bolyai Math. 2015, 60, 527–534. [Google Scholar]
  57. Awan, M.U.; Akhtar, N.; Iftikhar, S.; Noor, M.A.; Chu, Y.M. Hermite–Hadamard type inequalities for exponentially convex functions. Appl. Math. Inf. Sci. 2018, 12, 405–409. [Google Scholar] [CrossRef]
  58. Kadakal, M.; İşcan, İ. Exponential type convexity and some related inequalities. J. Inequalities Appl. 2020, 2020, 82. [Google Scholar] [CrossRef]
  59. Geo, W.; Kashuri, A.; Butt, S.I.; Tariq, M.; Aslam, A.; Nadeem, M. New inequalities via n–polynomial harmoniaclly exponential type convex functions. AIMS Math. 2020, 5, 6856–6873. [Google Scholar] [CrossRef]
  60. Alirezaei, G.; Mahar, R. On Exponentially Concave Functions and Their Impact in Information Theory; Information Theory and Applications Workshop (ITA): San Diego, CA, USA, 2018; Volume 2018, pp. 1–10. [Google Scholar]
  61. Pal, S.; Wong, T.K.L. Exponentially concave functions and new information geometry. Ann. Probab. 2018, 46, 1070–1113. [Google Scholar] [CrossRef] [Green Version]
  62. Iqbal, A.; Khan, M.A.; Mohammad, N.; Nwaeze, E.R.; Chu, Y.M. Revisiting the Hermite–Hadamard fractional integral inequality via a Green function. AIMS Math. 2020, 5, 6087–6107. [Google Scholar] [CrossRef]
  63. 63. Sahoo, S.K.; Latif, M.A.; Alsalami, O.M.; Treanţă, S.; Sudsutad, W.; Kongson, J. Hermite–Hadamard, Fejér and Pachpatte-Type Integral Inequalities for Center-Radius Order Interval-Valued Preinvex Functions. Fractal Fract. 2022, 6, 506. [Google Scholar] [CrossRef]
  64. Noor, M.A.; Noor, K.I.; Awan, M.U.; Li, J. On Hermite–Hadamard inequalities for h–preinvex functions. Filomat 2014, 28, 1463–1474. [Google Scholar] [CrossRef]
  65. Cristescu, G.; Noor, M.A.; Awan, M.U. Bounds of the second degree cumulative frontier gaps of functions with generalized convexity. Carpath. J. Math. 2015, 31, 173–180. [Google Scholar] [CrossRef]
  66. Zhao, D.; An, T.; Ye, G.; Liu, W. New Jensen and Hermite–Hadamard type inequalities for h–convex interval-valued functions. J. Inequal. Appl. 2018, 2018, 302. [Google Scholar] [CrossRef] [Green Version]
  67. Santos-García, G.; Khan, M.B.; Alrweili, H.; Alahmadi, A.A.; Ghoneim, S.S. Hermite–Hadamard and Pachpatte type inequalities for coordinated preinvex fuzzy-interval-valued functions pertaining to a fuzzy-interval double integral operator. Mathematics 2022, 10, 2756. [Google Scholar] [CrossRef]
  68. Macías-Díaz, J.E.; Khan, M.B.; Alrweili, H.; Soliman, M.S. Some Fuzzy Inequalities for Harmonically’s-Convex Fuzzy Number Valued Functions in the Second Sense Integral. Symmetry 2022, 14, 1639. [Google Scholar] [CrossRef]
  69. Khan, M.B.; Noor, M.A.; Macías-Díaz, J.E.; Soliman, M.S.; Zaini, H.G. Some integral inequalities for generalized left and right log convex interval-valued functions based upon the pseudo-order relation. Demonstr. Math. 2022, 55, 387–403. [Google Scholar] [CrossRef]
  70. Khan, M.B.; Noor, M.A.; Zaini, H.G.; Santos-García, G.; Soliman, M.S. The New Versions of Hermite–Hadamard Inequalities for Pre-invex Fuzzy-Interval-Valued Mappings via Fuzzy Riemann Integrals. Int. J. Comput. Intell. Syst. 2022, 15, 66. [Google Scholar] [CrossRef]
  71. Khan, M.B.; Noor, M.A.; Al-Shomrani, M.M.; Abdullah, L. Some Novel Inequalities for LR-h-Convex Interval-Valued Functions by Means of Pseudo Order Relation. Math. Meth. Appl. Sci. 2022, 45, 1310–1340. [Google Scholar] [CrossRef]
  72. Saeed, T.; Khan, M.B.; Treanțǎ, S.; Alsulami, H.H.; Alhodaly, M.S. Interval Fejér-Type Inequalities for Left and Right-λ-Preinvex Functions in Interval-Valued Settings. Axioms 2022, 11, 368. [Google Scholar] [CrossRef]
  73. Khan, M.B.; Cătaş, A.; Alsalami, O.M. Some New Estimates on Coordinates of Generalized Convex Interval-Valued Functions. Fractal Fract. 2022, 6, 415. [Google Scholar] [CrossRef]
  74. Işcan, I. Hermite-Hadamard type inequalities for harmonically convex functions. Hacet. J. Math. Stat. 2014, 43, 935–942. [Google Scholar] [CrossRef]
  75. Mihai, M.V.; Noor, M.A.; Noor, K.I.; Awan, M.U. Some integral inequalities for harmonic h-convex functions involving hypergeometric functions. Appl. Math. Comput. 2015, 252, 257–262. [Google Scholar] [CrossRef]
  76. Nanda, N.; Kar, K. Convex fuzzy mappings. Fuzzy Sets Syst. 1992, 48, 129–132. [Google Scholar] [CrossRef]
  77. Khan, M.B.; Noor, M.A.; Noor, K.I.; Chu, Y.M. New Hermite–Hadamard–type inequalities for (h1, h2)–convex fuzzy-interval-valued functions. Adv. Differ. Equ. 2021, 2021, 149. [Google Scholar] [CrossRef]
  78. Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Alsharif, A.M.; Noor, K.I. New fuzzy-interval inequalities in fuzzy-interval fractional calculus by means of fuzzy order relation. AIMS Math. 2021, 6, 10964–10988. [Google Scholar] [CrossRef]
  79. Sana, G.; Khan, M.B.; Noor, M.A.; Mohammed, P.O.; Chu, Y.M. Harmonically convex fuzzy-interval-valued functions and fuzzy-interval Riemann–Liouville fractional integral inequalities. Int. J. Comput. Intell. Syst. 2021, 2021, 1809–1822. [Google Scholar] [CrossRef]
  80. Kulish, U.; Miranker, W. Computer Arithmetic in Theory and Practice; Academic Press: New York, NY, USA, 2014. [Google Scholar]
  81. Moore, R.E. Interval Analysis; Prentice Hall: Englewood Cliffs, NJ, USA, 1996. [Google Scholar]
  82. Bede, B. Mathematics of Fuzzy Sets and Fuzzy Logic. In Studies in Fuzziness and Soft Computing; Springer: Berlin/Heidelberg, Germany, 2013; p. 295. [Google Scholar]
  83. Diamond, P.; Kloeden, P.E. Metric Spaces of Fuzzy Sets: Theory and Applications; World Scientific: Singapore, 1994. [Google Scholar]
  84. Kaleva, O. Fuzzy differential equations. Fuzzy Sets Syst. 1987, 24, 301–317. [Google Scholar] [CrossRef]
  85. Costa, T.M.; Roman-Flores, H. Some integral inequalities for fuzzy-interval-valued functions. Inf. Sci. 2017, 420, 110–125. [Google Scholar] [CrossRef]
  86. Breckner, W.W. Continuity of generalized convex and generalized concave set–valued functions. Rev. Anal Numér. Théor. Approx. 1993, 22, 39–51. [Google Scholar]
  87. Sadowska, E. Hadamard inequality and a refinement of Jensen inequality for set-valued functions. Result Math. 1997, 32, 332–337. [Google Scholar] [CrossRef]
  88. Khan, M.B.; Treanțǎ, S.; Soliman, M.S.; Nonlaopon, K.; Zaini, H.G. Some Hadamard–Fejér Type Inequalities for LR-Convex Interval-Valued Functions. Fractal Fract. 2022, 6, 6. [Google Scholar] [CrossRef]
  89. Aubin, J.P.; Cellina, A. Differential Inclusions: Set-Valued Maps and Viability Theory, Grundlehren der Mathematischen Wissenschaften; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
  90. Aubin, J.P.; Frankowska, H. Set-Valued Analysis; Birkhäuser: Boston, UK, 1990. [Google Scholar]
  91. Costa, T.M. Jensen’s inequality type integral for fuzzy-interval-valued functions. Fuzzy Sets Syst. 2017, 327, 31–47. [Google Scholar] [CrossRef]
  92. Zhang, D.; Guo, C.; Chen, D.; Wang, G. Jensen’s inequalities for set-valued and fuzzy set-valued functions. Fuzzy Sets Syst. 2020, 2020, 1–27. [Google Scholar] [CrossRef] [Green Version]
  93. Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. Some new concepts related to fuzzy fractional calculus for up and down convex fuzzy-number valued functions and inequalities. Chaos Solitons Fractals 2022, 164, 112692. [Google Scholar] [CrossRef]
  94. Matłoka, M. Inequalities for h-preinvex functions. Appl. Math. Comput. 2014, 234, 52–57. [Google Scholar] [CrossRef]
  95. Duc, D.T.; Hue, N.N.; Nhan, N.D.V.; Tuan, V.T. Convexity according to a pair of quasi-arithmetic means and inequalities. J. Math. Anal. Appl. 2020, 488, 124059. [Google Scholar] [CrossRef]
  96. Fejer, L. Uber die Fourierreihen, II. Math. Naturwiss. Anz Ungar. Akad. Wiss. 1906, 24, 369–390. (In Hungarian) [Google Scholar]
  97. Khan, M.B.; Noor, M.A.; Abdullah, L.; Chu, Y.M. Some new classes of preinvex fuzzy-interval-valued functions and inequalities. Int. J. Comput. Intell. Syst. 2021, 14, 1403–1418. [Google Scholar] [CrossRef]
  98. Zhao, T.-H.; He, Z.-Y.; Chu, Y.-M. Sharp bounds for the weighted H\”{o}lder mean of the zero-balanced generalized complete elliptic integrals. Comput. Methods Funct. Theory 2021, 21, 413–426. [Google Scholar] [CrossRef]
  99. Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. Concavity and bounds involving generalized elliptic integral of the first kind. J. Math. Inequal. 2021, 15, 701–724. [Google Scholar] [CrossRef]
  100. Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. Monotonicity and convexity involving generalized elliptic integral of the first kind. Rev. La Real Acad. Cienc. Exactas Físicas Naturales Ser. A Matemáticas RACSAM 2021, 115, 46. [Google Scholar] [CrossRef]
  101. Khan, M.B.; Treanțǎ, S.; Alrweili, H.; Saeed, T.; Soliman, M.S. Some new Riemann-Liouville fractional integral inequalities for interval-valued mappings. AIMS Math. 2022, 7, 15659–15679. [Google Scholar] [CrossRef]
  102. Khan, M.B.; Alsalami, O.M.; Treanțǎ, S.; Saeed, T.; Nonlaopon, K. New class of convex interval-valued functions and Riemann Liouville fractional integral inequalities. AIMS Math. 2022, 7, 15497–15519. [Google Scholar] [CrossRef]
  103. Chu, H.-H.; Zhao, T.-H.; Chu, Y.-M. Sharp bounds for the Toader mean of order 3 in terms of arithmetic, quadratic and contra harmonic means. Math. Slovaca 2020, 70, 1097–1112. [Google Scholar] [CrossRef]
  104. Zhao, T.-H.; He, Z.-Y.; Chu, Y.-M. On some refinements for inequalities involving zero-balanced hyper geometric function. AIMS Math. 2020, 5, 6479–6495. [Google Scholar] [CrossRef]
  105. Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. A sharp double inequality involving generalized complete elliptic integral of the first kind. AIMS Math. 2020, 5, 4512–4528. [Google Scholar] [CrossRef]
  106. Zhao, T.-H.; Shi, L.; Chu, Y.-M. Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means. Rev. La Real Acad. Cienc. Exactas Físicas Naturales Ser. A Matemáticas RACSAM 2020, 114, 96. [Google Scholar] [CrossRef]
  107. Reddy, S.; Panwar, L.K.; Panigrahi, B.K.; Kumar, R. Computational intelligence for demand response exchange considering temporal characteristics of load profile via adaptive fuzzy inference system. IEEE Trans. Emerg. Top. Comput. Intell. 2017, 2, 235–245. [Google Scholar] [CrossRef]
  108. Tang, Y.M.; Zhang, L.; Bao, G.Q.; Ren, F.J.; Pedrycz, W. Symmetric implicational algorithm derived from intuitionistic fuzzy entropy. Iran. J. Fuzzy Syst. 2022, 2022, 2104–6628. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Khan, M.B.; Santos-García, G.; Treanțǎ, S.; Soliman, M.S. New Class Up and Down Pre-Invex Fuzzy Number Valued Mappings and Related Inequalities via Fuzzy Riemann Integrals. Symmetry 2022, 14, 2322. https://doi.org/10.3390/sym14112322

AMA Style

Khan MB, Santos-García G, Treanțǎ S, Soliman MS. New Class Up and Down Pre-Invex Fuzzy Number Valued Mappings and Related Inequalities via Fuzzy Riemann Integrals. Symmetry. 2022; 14(11):2322. https://doi.org/10.3390/sym14112322

Chicago/Turabian Style

Khan, Muhammad Bilal, Gustavo Santos-García, Savin Treanțǎ, and Mohamed S. Soliman. 2022. "New Class Up and Down Pre-Invex Fuzzy Number Valued Mappings and Related Inequalities via Fuzzy Riemann Integrals" Symmetry 14, no. 11: 2322. https://doi.org/10.3390/sym14112322

APA Style

Khan, M. B., Santos-García, G., Treanțǎ, S., & Soliman, M. S. (2022). New Class Up and Down Pre-Invex Fuzzy Number Valued Mappings and Related Inequalities via Fuzzy Riemann Integrals. Symmetry, 14(11), 2322. https://doi.org/10.3390/sym14112322

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop