Nickel Nanoparticles Anchored on Activated Attapulgite Clay for Ammonia Decomposition to Hydrogen
Abstract
1. Introduction
2. Experimental Section
2.1. Catalysts Preparation
2.2. Characterization
2.3. Catalytic Testing
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Shafie, M.; Kambara, S.; Hayakawa, Y. Plasma-enhanced catalytic ammonia decomposition over ruthenium (Ru/Al2O3) and soda glass (SiO2) materials. J. Energy Inst. 2021, 99, 145–153. [Google Scholar] [CrossRef]
- Schüth, F.; Palkovits, R.; Schlögl, R.; Su, D.S. Ammonia as a possible element in an energy infrastructure: Catalysts for ammonia decomposition. Energy Environ. Sci. 2012, 5, 6278–6289. [Google Scholar] [CrossRef]
- Su, Q.; Gu, L.; Yao, Y.; Zhao, J.; Ji, W.; Ding, W.; Au, C.-T. Layered double hydroxides derived Nix(MgyAlzOn) catalysts: Enhanced ammonia decomposition by hydrogen spillover effect. Appl. Catal. B 2017, 201, 451–460. [Google Scholar] [CrossRef]
- Feng, J.; Liu, L.; Ju, X.H.; Wang, J.; Zhang, X.; He, T.; Chen, P. Highly dispersed ruthenium nanoparticles on Y2O3 as superior catalyst for ammonia decomposition. ChemCatChem 2021, 13, 1552–1558. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Feng, J.; Ju, X.; Wang, J.; He, T.; Chen, P. Metal-support interaction-modulated catalytic activity of Ru nanoparticles on Sm2O3 for efficient ammonia decomposition. Catal. Sci. Technol. 2021, 11, 2915–2923. [Google Scholar]
- Kishida, K.; Kitano, M.; Sasase, M.; Sushko, P.V.; Abe, H.; Niwa, Y.; Ogasawara, K.; Yokoyama, T.; Hosono, H. Air-stable calcium cyanamide-supported ruthenium catalyst for ammonia synthesis and decomposition. ACS Appl. Energy Mater. 2020, 3, 6573–6582. [Google Scholar] [CrossRef]
- Le, T.A.; Kim, Y.; Kim, H.W.; Lee, S.-U.; Kim, J.-R.; Kim, T.-W.; Lee, Y.-J.; Chae, H.-J. Ru-supported lanthania-ceria composite as an efficient catalyst for COx-free H2 production from ammonia decomposition. Appl. Catal. B 2021, 285, 19831. [Google Scholar] [CrossRef]
- Hu, Z.-P.; Weng, C.-C.; Chen, C.; Yuan, Z.-Y. Two-dimensional mica nanosheets supported Fe nanoparticles for NH3 decomposition to hydrogen. Mol. Catal. 2018, 448, 162–170. [Google Scholar] [CrossRef]
- Lian, X.; Duan, H.; Zeng, W.; Guo, W. Theoretical insight into the reaction mechanism of ammonia dehydrogenation on iron-based clusters. Mater. Today Commun. 2022, 32, 104088. [Google Scholar] [CrossRef]
- Hu, Z.P.; Weng, C.C.; Yuan, G.G.; Lv, X.W.; Yuan, Z.Y. Ni nanoparticles supported on mica for efficient decomposition of ammonia to COx-free hydrogen. Int. J. Hydrogen Energy 2018, 43, 9663–9676. [Google Scholar] [CrossRef]
- Do, Q.C.; Kim, Y.; Le, T.A.; Kim, G.J.; Kim, J.R.; Kim, T.W.; Lee, Y.J.; Chae, H.J. Facile one-pot synthesis of Ni-based catalysts by cation-anion double hydrolysis method as highly active Ru-free catalysts for green H2 production via NH3 decomposition. Appl. Catal. B 2022, 307, 121167. [Google Scholar] [CrossRef]
- Bell, T.E.; Torrente-Murciano, L. H2 production via ammonia decomposition using non-noble metal catalysts: A review. Top. Catal. 2016, 59, 1438–1457. [Google Scholar] [CrossRef]
- Hu, Z.P.; Chen, L.; Chen, C.; Yuan, Z.Y. Fe/ZSM-5 catalysts for ammonia decomposition to COx-free hydrogen: Effect of SiO2/Al2O3 ratio. Mol. Catal. 2018, 455, 14–22. [Google Scholar] [CrossRef]
- Hu, Z.P.; Chen, L.; Weng, C.C.; Yuan, Z.Y. Fe nanocatalysts supported on dealuminated ZSM-5 for efficient decomposition of ammonia to COx-Free hydrogen. ChemistrySelect 2018, 3, 4439–4447. [Google Scholar] [CrossRef]
- Zhang, H.; Alhamed, Y.A.; Kojima, Y.; Al-Zahrani, A.A.; Miyaoka, H.; Petrov, L.A. Structure and catalytic properties of Ni/MWCNTs and Ni/AC catalysts for hydrogen production via ammonia decomposition. Int. J. Hydrogen Energy 2014, 39, 277–287. [Google Scholar] [CrossRef]
- Im, Y.; Muroyama, H.; Matsui, T.; Eguchi, K. Ammonia decomposition over nickel catalysts supported on alkaline earth metal aluminate for H2 production. Int. J. Hydrogen Energy 2020, 45, 26979–26988. [Google Scholar] [CrossRef]
- Sima, D.; Wu, H.; Tian, K.; Xie, S.; Foo, J.J.; Li, S.; Wang, D.; Ye, Y.; Zheng, Z.; Liu, Y.Q. Enhanced low temperature catalytic activity of Ni/AleCe0.8Zr0.2O2 for hydrogen production from ammonia decomposition. Int. J. Hydrogen Energy 2020, 45, 9342–9352. [Google Scholar] [CrossRef]
- Gu, Y.; Ma, Y.; Long, Z.; Zhao, S.; Wang, Y.; Zhang, W. One-pot synthesis of supported Ni@Al2O3 catalysts with uniform small-sized Ni for hydrogen generation via ammonia decomposition. Int. J. Hydrogen Energy 2021, 46, 4045–4054. [Google Scholar] [CrossRef]
- Wan, Z.; Tao, Y.; You, H.; Zhang, X.; Shao, J. Na-ZSM-5 zeolite nanocrystals supported nickel nanoparticles for efficient hydrogen production from ammonia decomposition. ChemCatChem 2021, 13, 3027–3036. [Google Scholar] [CrossRef]
- Hu, Z.P.; Weng, C.C.; Chen, C.; Yuan, Z.Y. Catalytic decomposition of ammonia to COx-free hydrogen over Ni/ZSM-5 catalysts: A comparative study of the preparation methods. Appl. Catal. A 2018, 562, 49–57. [Google Scholar] [CrossRef]
- Okura, K.; Okanishi, T.; Muroyama, H.; Matsui, T.; Eguchi, K. Ammonia decomposition over nickel catalysts supported on rare-earth oxides for the on-site generation of hydrogen. ChemCatChem 2016, 8, 2988–2995. [Google Scholar] [CrossRef]
- Deng, Q.F.; Zhang, H.; Hou, X.X.; Ren, T.Z.; Yuan, Z.Y. High-surface area Ce0.8Zr0.2O2 solid solutions supported Ni catalysts for ammonia decomposition to hydrogen. Int. J. Hydrogen Energy 2012, 37, 15901–15907. [Google Scholar] [CrossRef]
- Zhao, Y.; Shi, L.; Shen, Y.; Zhou, J.; Jia, Z.; Yan, T.; Wang, P.; Zhang, D. Self-defense effects of Ti-modified attapulgite for alkali-resistant NOx catalytic reduction. Environ. Sci. Technol. 2022, 56, 4386–4395. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Yu, P.; Liu, H.; Xiong, S.; Xiao, X.; Deng, J.; Huang, L. Ni-Based catalysts supported on natural clay of attapulgite applied in the dry reforming of methane reaction. New J. Chem. 2020, 44, 16101. [Google Scholar] [CrossRef]
- Li, X.; Wang, Z.; Shi, H.; Dai, D.; Zuo, S.; Yao, C.; Ni, C. Full spectrum driven SCR removal of NO over hierarchical CeVO4/attapulgite nanocomposite with high resistance to SO2 and H2O. J. Hazard. Mater. 2020, 386, 121977. [Google Scholar] [CrossRef]
- Yang, F.; Weng, J.; Ding, J.; Zhao, Z.; Qin, L.; Xia, F. Effective conversion of saccharides into hydroxymethylfurfural catalyzed by a natural clay, attapulgite. Renew. Energy 2020, 151, 829–836. [Google Scholar] [CrossRef]
- Yang, Y.; Fu, W.; Chen, X.; Chen, L.; Hou, C.; Tang, T.; Zhang, X. Ceramic nanofiber membrane anchoring nanosized Mn2O3 catalytic ozonation of sulfamethoxazole in water. J. Hazard. Mater. 2022, 436, 129168. [Google Scholar] [CrossRef]
- Cao, J.L.; Shao, G.S.; Wang, Y.; Liu, Y.; Yuan, Z.Y. CuO catalysts supported on attapulgite clay for low-temperature CO oxidation. Catal. Commun. 2008, 9, 2555–2559. [Google Scholar] [CrossRef]
- Hansgen, D.A.; Vlachos, D.G.; Chen, J.G.G. Using first principles to predict bimetallic catalysts for the ammonia decomposition reaction. Nat. Chem. 2010, 2, 484–489. [Google Scholar] [CrossRef]
- Li, L.; Chen, F.; Shao, J.; Dai, Y.; Ding, J.; Tang, Z. Attapulgite clay supported Ni nanoparticles encapsulated by porous silica: Thermally stable catalysts for ammonia decomposition to COx free hydrogen. Int. J. Hydrogen Energy 2016, 41, 21157–21165. [Google Scholar] [CrossRef]
- Huo, C.; Yang, H. Attachment of nickel oxide nanoparticles on the surface of palygorskite nanofibers. J. Colloid Interf. Sci. 2012, 384, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.L.; Yan, Z.L.; Deng, Q.F.; Yuan, Z.Y.; Wang, Y.; Sun, G.; Wang, X.D.; Hari, B.; Zhang, Z.Y. Homogeneous precipitation method preparation of modified red mud supported Ni mesoporous catalysts for ammonia decomposition. Catal. Sci. Technol. 2014, 4, 361–368. [Google Scholar] [CrossRef]
- England, A.H.; Duffin, A.M.; Schwartz, C.P.; Uejio, J.S.; Prendergast, D.; Saykally, R.J. On the hydration and hydrolysis of carbon dioxide. Chem. Phys. Lett. 2011, 514, 187–195. [Google Scholar] [CrossRef]
- Jayaprakash, S.; Dewangan, N.; Jangam, A.; Das, S.; Kawi, S. LDH-derived Ni-MgO-Al2O3 catalysts for hydrogen-rich syngas production via steam reforming of biomass tar model: Effect of catalyst synthesis methods. Int. J. Hydrogen Energy 2021, 46, 18338–18352. [Google Scholar] [CrossRef]
- Hibino, T.; Ohya, H. Synthesis of crystalline layered double hydroxides: Precipitation by using urea hydrolysis and subsequent hydrothermal reactions in aqueous solutions. Appl. Clay. Sci. 2009, 45, 123–132. [Google Scholar] [CrossRef]
- Cao, X.; Huo, W.; Wang, M.; Wei, H.; Lu, Z.; Li, K. Visible-light-assisted peroxydisulfate activation over Ag6Si2O7/Cu(II)-modified palygorskite composite for the effective degradation of organic pollutants by radical and nonradical pathways. Environ. Res. 2022, 214, 113970. [Google Scholar] [CrossRef]
- Boudriche, L.; Calvet, R.; Hamdi, B.; Balard, H. Surface properties evolution of attapulgite by IGC analysis as a function of thermal treatment. Colloids Surf. A 2012, 399, 1–10. [Google Scholar]
- Yuan, Z.Y.; Ren, T.Z.; Vantomme, A.; Su, B.L. Facile and generalized preparation of hierarchically mesoporous-macroporous binary metal oxide materials. Chem. Mater. 2004, 16, 5096–5106. [Google Scholar] [CrossRef]
- Kruk, M.; Jaroniec, M. Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem. Mater. 2001, 13, 3169–3183. [Google Scholar] [CrossRef]
- Wei, Z.P.; Arredondo, M.; Peng, H.Y.; Zhang, Z.; Guo, D.L.; Xing, G.Z.; Li, Y.F.; Wong, L.M.; Wang, S.J.; Valanoor, N.; et al. A template and catalyst-free metal-etching-oxidation method to synthesize aligned oxide nanowire arrays: NiO as an example. ACS Nano 2010, 4, 4785–4791. [Google Scholar] [CrossRef][Green Version]
- Cao, J.L.; Wang, Y.; Yu, X.L.; Wang, S.R.; Wu, S.H.; Yuan, Z.Y. Mesoporous CuO-Fe2O3 composite catalysts for low-temperature carbon monoxide oxidation. Appl. Catal. B 2008, 79, 26–34. [Google Scholar] [CrossRef]
- Huang, X.; Xue, G.; Wang, C.; Zhao, N.; Sun, N.; Wei, W.; Sun, Y. Highly stable mesoporous NiO-Y2O3-Al2O3 catalysts for CO2 reforming of methane: Effect of Ni embedding and Y2O3 promotion. Catal. Sci. Technol. 2016, 6, 449–459. [Google Scholar] [CrossRef]
- Ju, X.; Liu, L.; Yu, P.; Guo, J.; Zhang, X.; He, T.; Wu, G.; Chen, P. Mesoporous Ru/MgO prepared by a deposition-precipitation method as highly active catalyst for producing COx-free hydrogen from ammonia decomposition. Appl. Catal. B 2017, 211, 167–175. [Google Scholar] [CrossRef]
- Wang, Y.; Mao, X.; Yang, J.; Wang, J.; Guan, W.; Chen, J.; Han, B.; Tian, Z. One-step synthesis of Ni/yttrium-doped barium zirconates catalyst for on-site hydrogen production from NH3 decomposition. Int. J. Hydrogen Energy 2022, 47, 2608–2621. [Google Scholar] [CrossRef]
- Li, G.; Kanezashi, M.; Tsuru, T. Catalytic ammonia decomposition over high-performance Ru/graphene nanocomposites for efficient COx-free hydrogen production. Catalysts 2017, 7, 23. [Google Scholar] [CrossRef]
- Meng, T.; Xu, Q.Q.; Li, Y.T.; Chang, J.L.; Ren, T.Z.; Yuan, Z.Y. Nickle nanoparticles highly dispersed on reduced graphene oxide for ammonia decomposition to hydrogen. J. Ind. Eng. Chem. 2015, 32, 373–379. [Google Scholar] [CrossRef]
- Duan, X.; Qian, G.; Zhou, X.; Sui, Z.; Chen, D.; Yuan, W. Tuning the size and shape of Fe nanoparticles on carbon nanofibers for catalytic ammonia decomposition. Appl. Catal. B 2011, 101, 189–196. [Google Scholar] [CrossRef]
- Zhang, L.F.; Li, M.; Ren, T.Z.; Liu, X.; Yuan, Z.Y. Ce-modified Ni nanoparticles encapsulated in SiO2 for COx-free hydrogen production via ammonia decomposition. Int. J. Hydrogen Energy 2015, 40, 2648–2656. [Google Scholar] [CrossRef]
- Li, Y.; Yao, L.; Song, Y.; Liu, S.; Zhao, J.; Ji, W.; Au, C.T. Core-shell structured micro capsular-like Ru@SiO2 reactor for efficient generation of COx-free hydrogen through ammonia decomposition. Chem. Commun. 2010, 46, 5298–5300. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, H.; Li, W. Kinetic study of NH3 decomposition over Ni nanoparticles: The role of La promoter, structure sensitivity and compensation effect. Appl. Catal. A 2005, 296, 257–267. [Google Scholar] [CrossRef]
- Li, X.K.; Ji, W.J.; Zhao, J.; Wang, S.J.; Au, C.T. Ammonia decomposition over Ru and Ni catalysts supported on fumed SiO2, MCM-41, and SBA-15. J. Catal. 2005, 236, 181–189. [Google Scholar] [CrossRef]
- Yin, S.F.; Xu, B.Q.; Zhou, X.P.; Au, C.T. A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications. Appl. Catal. A 2004, 277, 1–9. [Google Scholar] [CrossRef]
- Yin, S.F.; Zhang, Q.H.; Xu, B.Q.; Zhu, W.X.; Ng, C.F.; Au, C.T. Investigation on the catalysis of COx-free hydrogen generation from ammonia. J. Catal. 2004, 224, 384–396. [Google Scholar] [CrossRef]
Samples | SBET (m2/g) | Vtot (cm3/g) | Ni Content 1 (wt%) | Conversion 2 (%) | H2 Production (mmol min−1 gcat−1) | Ea (kJ/mol) |
---|---|---|---|---|---|---|
ATP | 139 | 0.48 | - | - | - | - |
AATP | 262 | 0.60 | - | 31.8 | 10.6 | - |
NiO | - | - | - | 23.6 | 7.9 | - |
5%-Ni/AATP | 241 | 0.49 | 4.9 | 39.2 | 13.1 | 93.7 |
10%-Ni/AATP | 224 | 0.61 | 7.5 | 78.6 | 26.3 | 91.8 |
15%-Ni/AATP | 224 | 0.56 | 12.1 | 84.5 | 28.3 | 85.9 |
20%-Ni/AATP | 227 | 0.55 | 14.9 | 95.3 | 31.9 | 79.1 |
25%-Ni/AATP | 199 | 0.53 | 17.8 | 88.9 | 30.4 | 79.5 |
30%-Ni/AATP | 179 | 0.55 | 22.6 | 86.7 | 29.0 | 81.8 |
Catalyst | Metal Content (wt%) | T (oC) | GHSV (mL/h/g) | Conv. (%) | Ref |
---|---|---|---|---|---|
5%Ru/MgO-DP | 3.5% Ru | 450 | 30,000 | 56.5 | [43] |
Ru/graphene | - | 450 | 60,000 | 62 | [45] |
15%Ni/MRM | 15%Ni | 700 | 30,000 | 97.9 | [32] |
Ni-30/ATP@SiO2 | 8.7% | 650 | 30,000 | 73.4 | [30] |
Ni-50/ATP | 38.6% | 650 | 30,000 | 89.9 | [30] |
15%-Ni/rGO | 15% | 700 | 30,000 | 76.5 | [46] |
25Ni@Al2O3 | 25% | 600 | 24,000 | 93.9 | [18] |
25Ni@Al2O3 | 25% | 650 | 24,000 | 99.1 | [18] |
Fe-CNFs/mica | 3.5%Fe | 600 | 6500 | 98.9 | [46] |
Fe/mica | 3.5%Fe | 600 | 6000 | 51.3 | [47] |
20%-Ni/AATP | 14.9%Ni | 650 | 30,000 | 95.3 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.-F.; Hu, Z.-P.; Liang, S.-H.; Xu, F.; Yuan, Z.-Y. Nickel Nanoparticles Anchored on Activated Attapulgite Clay for Ammonia Decomposition to Hydrogen. Symmetry 2022, 14, 2627. https://doi.org/10.3390/sym14122627
Zhang L-F, Hu Z-P, Liang S-H, Xu F, Yuan Z-Y. Nickel Nanoparticles Anchored on Activated Attapulgite Clay for Ammonia Decomposition to Hydrogen. Symmetry. 2022; 14(12):2627. https://doi.org/10.3390/sym14122627
Chicago/Turabian StyleZhang, Ling-Feng, Zhong-Pan Hu, Shi-Hang Liang, Feng Xu, and Zhong-Yong Yuan. 2022. "Nickel Nanoparticles Anchored on Activated Attapulgite Clay for Ammonia Decomposition to Hydrogen" Symmetry 14, no. 12: 2627. https://doi.org/10.3390/sym14122627
APA StyleZhang, L.-F., Hu, Z.-P., Liang, S.-H., Xu, F., & Yuan, Z.-Y. (2022). Nickel Nanoparticles Anchored on Activated Attapulgite Clay for Ammonia Decomposition to Hydrogen. Symmetry, 14(12), 2627. https://doi.org/10.3390/sym14122627