Algebra of the Symmetry Operators of the Klein–Gordon–Fock Equation for the Case When Groups of Motions G3 Act Transitively on Null Subsurfaces of Spacetime
Abstract
:1. Introduction
2. Admissible Electromagnetic Fields
2.1. Conditions for the Existence of the Symmetry Operators Algebra in the Case of a Charged Test Particle Motion
2.2. Notations and Necessary Information from Petrov Group Classification
3. Solvable Groups. Killing Vector Fields Do Not Depend on a Non-Ignored Variable
3.1. Groups with the Singular Operators
3.2. Groups
3.3. Groups
3.4. Groups
3.5. Groups
3.6. Group
3.7. Group
3.8. Group
4. Insolvable Groups
4.1. Groups
4.2. Groups
5. Killing Vector Fields Depend on the Non-Ignored Variable
5.1. Group
5.2. Group
5.3. Groups with the Singular Operators
6. Conclutions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shapovalov, V.N. Stackel spaces. Sib. Math. J. 1979, 20, 1117–1130. [Google Scholar] [CrossRef]
- Miller, W. Symmetry And Separation Of Variables; Cambridge University Press: Cambridge, UK, 1984; p. 318. [Google Scholar] [CrossRef] [Green Version]
- Bagrov, V.G.; Obukhov, V.V. Complete separation of variables in the free Hamilton-Jacobi equation. Theor. Math. Phys. 1993, 97, 1275–1289. [Google Scholar] [CrossRef]
- Benenti, S. Separability in Riemannian Manifolds. SIGMA 2016, 12, 1–21. [Google Scholar] [CrossRef]
- Carter, B. New family of Einstein spaces. Phys. Lett. 1968, 26, 399–400. [Google Scholar] [CrossRef]
- Rajaratnam, K.; Mclenaghan, R.G.; Valero, C. Orthogonal separation of the Hamilton Jacobi equation on spaces of constant curvature. SIGMA 2016, 117, 30. [Google Scholar] [CrossRef] [Green Version]
- McLenaghan, R.G.; Rastelli, G.; Valero, C. Complete separability of the Hamilton-Jacobi equation for the charged particle orbits in a Lienard-Wiehert field. J. Math. Phys. 2020, 61, 122903. [Google Scholar] [CrossRef]
- Obukhov, V.V. Hamilton-Jacobi equation for a charged test particle in the Stackel space of type (2.0). Symmetry 2020, 12, 1289. [Google Scholar] [CrossRef]
- Obukhov, V.V. Hamilton-Jacobi equation for a charged test particle in the Stackel space of type (2.1). Int. J. Geom. Meth. Mod. Phys. 2020, 14, 2050186. [Google Scholar] [CrossRef]
- Obukhov, V.V. Separation of variables in Hamilton-Jacobi and Klein-Gordon-Fock equations for a charged test particle in the stackel spaces of type (1.1). Int. J. Geom. Meth. Mod. Phys. 2021, 18, 2150036. [Google Scholar] [CrossRef]
- Osetrin, K.E.; Filippov, A.E.; Osetrin, E.K. Models of generalized scalar-tensor gravitation theories with radiation allowing the separation of variables in the eikonal equation. Russ. Phys. J. 2018, 61, 1383–1391. [Google Scholar] [CrossRef]
- Osetrin, E.K.; Osetrin, K.E.; Filippov, A.E. Stationary homogeneous models of Stackel spaces of type (2.1). Russ.Phys. J. 2020, 63, 410–419. [Google Scholar] [CrossRef]
- Osetrin, E.K.; Osetrin, K.E.; Filippov, A.E. Spatially homogeneous conformally stackel spaces of type (3.1). Russ. Phys. J. 2020, 63, 403–409. [Google Scholar] [CrossRef]
- Osetrin, K.; Osetrin, E. Shapovalov wave-like spacetimes. Symmetry 2020, 12, 1372. [Google Scholar] [CrossRef]
- Capozziello, S.; De Laurentis, M.; Odintsov, D. Hamiltonian dynamics and Noether symmetries in extended gravity cosmology. Eur. Phys. J. 2012, 72, 1–21. [Google Scholar] [CrossRef]
- Mitsopoulos, A.; Tsamparlis, M.; Leon, G.; Paliathanasis, A. New conservation laws and exact cosmological solutions in Brans–Dicke cosmology with an extra scalar field. arXiv 2021, arXiv:2105.02766. [Google Scholar] [CrossRef]
- Shapovalov, A.V.; Shirokov, I.V. Noncommutative integration method of linear differential equations. Theoret. Math. Phys. 1995, 104, 921–934. [Google Scholar] [CrossRef]
- Shapovalov, A.V.; Shirokov, I.V. Noncommutative integration method for linear partial differential equations. functional algebras and dimensional reduction. Theoret. Math. Phys. 1996, 106, 1–10. [Google Scholar] [CrossRef]
- Petrov, A.Z. Einstein Spaces; Elsevier: Oxford, UK, 1969. [Google Scholar]
- Magazev, A.A. Integrating Klein-Gordon-Fock equations in an extremal electromagnetic field on Lie groups. Theor. Math. Phys. 2012, 173, 1654–1667. [Google Scholar] [CrossRef] [Green Version]
- Magazev, A.A.; Shirokov, I.V.; Yurevich, Y.A. Integrable magnetic geodesic flows on Lie groups. Theor. Math. Phys. 2008, 156, 1127–1140. [Google Scholar] [CrossRef]
- Obukhov, V.V. Algebra of Symmetry Operators for Klein-Gordon-Fock Equation. Symmetry 2021, 13, 727. [Google Scholar] [CrossRef]
- Obukhov, V.V.; Myrzakulov, K.R.; Guselnikova, U.A.; Zhadyranova, A. Elementary particle physics and field theory Algebras of symmetry operators of the Klein–Gordon–Fock equation for groups acting transitively on two-dimensional subspaces of a spacetime manifold. Izv. Vuz. Fizika 2021, 7, 126–131. [Google Scholar] [CrossRef]
- Obukhov, V.V. Algebras of integrals of motion for the Hamilton-Jacobi and Klein-Gordon-Fock equations in spacetime with a four-parameter groups of motions in the presence of an external electromagnetic field. arXiv 2021, arXiv:2112.15138. [Google Scholar]
- Bianchi, L. Lezioni Sulla Teoria Dei Gruppi Continui Finiti Di Trasformazioni; Pisa: Enrico, Spoerri, 1918. [Google Scholar]
- Shapovalov, A.V.; Breev, A.I. Non-Commutative Integration of the Dirac Equation in Homogeneous Spaces. Symmetry 2020, 12, 1867. [Google Scholar] [CrossRef]
- Magazev, A.A. Constructing a complete integral of the Hamilton-Jacobi equation on pseudo-riemannian spaces with simply transitive groups of motions. Math. Phys. Anal. Geom. 2021, 24, 1–15. [Google Scholar] [CrossRef]
- Magazev, A.A.; Boldyreva, M.N. Schrodinger equations in electromagnetic fields: Symmetries and noncommutative integration. Symmetry 2021, 13, 1527. [Google Scholar] [CrossRef]
- Jafari, H.; Tajadodi, H. Nematollah Kadkhoda, Dumitru Baleanu, Fractional Subequation Method for Cahn-Hilliard and Klein-Gordon Equations. Abstr. Appl. Anal. 2013, 2013, 587179. [Google Scholar] [CrossRef] [Green Version]
- Jafari, H.; Goodarzi, K.; Khorshidi, M.; Parvaneh, V.; Hammouch, Z. Lie symmetry and μ-symmetry methods for nonlinear generalized Camassa-Holm equation. Adv. Differ. Equ. 2021, 322. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obukhov, V.V. Algebra of the Symmetry Operators of the Klein–Gordon–Fock Equation for the Case When Groups of Motions G3 Act Transitively on Null Subsurfaces of Spacetime. Symmetry 2022, 14, 346. https://doi.org/10.3390/sym14020346
Obukhov VV. Algebra of the Symmetry Operators of the Klein–Gordon–Fock Equation for the Case When Groups of Motions G3 Act Transitively on Null Subsurfaces of Spacetime. Symmetry. 2022; 14(2):346. https://doi.org/10.3390/sym14020346
Chicago/Turabian StyleObukhov, Valeriy V. 2022. "Algebra of the Symmetry Operators of the Klein–Gordon–Fock Equation for the Case When Groups of Motions G3 Act Transitively on Null Subsurfaces of Spacetime" Symmetry 14, no. 2: 346. https://doi.org/10.3390/sym14020346
APA StyleObukhov, V. V. (2022). Algebra of the Symmetry Operators of the Klein–Gordon–Fock Equation for the Case When Groups of Motions G3 Act Transitively on Null Subsurfaces of Spacetime. Symmetry, 14(2), 346. https://doi.org/10.3390/sym14020346