Semi-Analytical Method for Unsymmetrical Doublet Flow Using Sink- and Source-Dominant Formulation
Abstract
:1. Introduction
2. Mathematical Formulation of Unsymmetrical Doublet Flow
3. Flow Structure of Unsymmetrical Doublet Flows
3.1. Pure Unsymmetrical Doublet Flow
3.2. Superposition of Unsymmetrical Doublet Flow with Far-Field Flow
3.2.1. Sink-Dominant Superposed Flow
3.2.2. Source-Dominant Superposed Flow
3.3. Effects of Far-Field Flow Orientation on Unsymmetrical Doublet Flow
4. Potential Aerodynamic Applications of Unsymmetrical Doublet Flows
5. Conclusions and Recommendation
- Doublet boundary would be distorted to form convex (due to low far-field velocity), concave (due to high far-field velocity), and other interesting shapes (in what condition).
- The conceptual study provides deeper insight into the flow structure of the effect of unbalanced sink-source strength.
- The research output potentially to apply in innovative environmental flow design and renders an alternative to formulate an aerodynamic curve for the design of bio-inspired structures in the near future.
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
Nomenclature
Symbol | Description |
ϕ | Velocity potential |
ψ | Stream function |
m | Strength of source/sink |
r | Distance from source/sink to arbitrary point within the problem domain |
u | Velocity |
References
- Bruce, R.M.; Donald, F.Y.; Theodore, H.O. Fundamentals of Fluid Mechanics, 5th ed.; John Wiley & Sons (Asia) Pte Ltd.: Singapore, 2006. [Google Scholar]
- Holzbecher, E. Potential Flow. In Encyclopedia of Water; Wiley: Hoboken, NJ, USA, 2019; pp. 1–10. [Google Scholar]
- Katopodes, N.D. Ideal Fluid Flow. In Free-Surface Flow; Elsevier: Amsterdam, The Netherlands, 2019; pp. 428–515. [Google Scholar]
- Jiang, T.; Zhang, J.; Wan, W.; Cui, S.; Deng, D. 3D transient numerical flow simulation of groundwater bypass seepage at the dam site of Dongzhuang hydro-junction. Eng. Geol. 2017, 231, 176–189. [Google Scholar] [CrossRef]
- Mategaonkar, M. Simulation of groundwater flow using meshfree collocation method with Cubic Spline function. Groundw. Sustain. Dev. 2021, 13, 100579. [Google Scholar] [CrossRef]
- Seyedpour, S.; Kirmizakis, P.; Brennan, P.; Doherty, R.; Ricken, T. Optimal remediation design and simulation of groundwater flow coupled to contaminant transport using genetic algorithm and radial point collocation method (RPCM). Sci. Total Environ. 2019, 669, 389–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, Y.-J.; Hwang, H.-T.; Suzuki, S.; Saegusa, H.; Nojiri, K.; Tanaka, T.; Bruines, P.; Abumi, K.; Morita, Y.; Illman, W. Improving precision in regional scale numerical simulations of groundwater flow into underground openings. Eng. Geol. 2020, 274, 105727. [Google Scholar] [CrossRef]
- Xie, Y.; Wu, J.; Nan, T.; Xue, Y.; Xie, C.; Ji, H. Efficient triple-grid multiscale finite element method for 3D groundwater flow simulation in heterogeneous porous media. J. Hydrol. 2017, 546, 503–514. [Google Scholar] [CrossRef]
- Xia, C.-A.; Pasetto, D.; Hu, B.X.; Putti, M.; Guadagnini, A. Integration of moment equations in a reduced-order modeling strategy for Monte Carlo simulations of groundwater flow. J. Hydrol. 2020, 590, 125257. [Google Scholar] [CrossRef]
- Pathania, T.; Eldho, T.; Bottacin-Busolin, A. Coupled simulation of groundwater flow and multispecies reactive transport in an unconfined aquifer using the element-free Galerkin method. Eng. Anal. Bound. Elem. 2020, 121, 31–49. [Google Scholar] [CrossRef]
- Swathi, B.; Eldho, T. Groundwater flow simulation in unconfined aquifers using meshless local Petrov–Galerkin method. Eng. Anal. Bound. Elem. 2014, 48, 43–52. [Google Scholar] [CrossRef]
- Hanssen, F.-C.W.; Greco, M. A potential flow method combining immersed boundaries and overlapping grids: Formulation, validation and verification. Ocean Eng. 2021, 227, 108841. [Google Scholar] [CrossRef]
- Anderson, E.I. An analytical solution representing groundwater-surface water interaction. Water Resour. Res. 2003, 39, 1071. [Google Scholar] [CrossRef]
- Wang, C.; Mu, X.; He, Y.; Li, D.; Shi, Y. A novel potential flow model for granular flow in two-dimensional flat-bottomed packed bed with centric discharge. Powder Technol. 2019, 342, 545–554. [Google Scholar] [CrossRef]
- Bakker, M.; Miller, A.D.; Morgan, L.; Werner, A. Evaluation of analytic solutions for steady interface flow where the aquifer extends below the sea. J. Hydrol. 2017, 551, 660–664. [Google Scholar] [CrossRef]
- Liu, W.-Q.; Xiong, L.-N.; Zhang, G.-W.; Yang, M.; Wu, W.-G.; Song, X.-M. Research on Hydroelastic Response of an FMRC Hexagon Enclosed Platform. Symmetry 2021, 13, 1110. [Google Scholar] [CrossRef]
- Magdalena, I.; Firdaus, K. Numerical Study for Unsteady Waves Generated by Flow over a Permeable Wavy Bed. Fluids 2021, 7, 9. [Google Scholar] [CrossRef]
- Chen, Z.-M.; Price, W.G. Dissipative free-surface solver for potential flow around hydrofoil distributed with doublets. Appl. Math. Mech. 2012, 33, 1467–1480. [Google Scholar] [CrossRef]
- Frayssinhes, R.; Girardon, S.; Denaud, L.; Collet, R. Modeling the Influence of Knots on Douglas-Fir Veneer Fiber Orientation. Fibers 2020, 8, 54. [Google Scholar] [CrossRef]
- Sahin, I.; Hyman, M. Numerical calculation for the flow of submerged bodies under a free surface. Ocean Eng. 1993, 20, 339–347. [Google Scholar] [CrossRef]
- Huggins, A.; Packwood, A. The optimum dimensions for a long-range, autonomous, deep-diving, underwater vehicle for oceanographic research. Ocean Eng. 1994, 21, 45–56. [Google Scholar] [CrossRef]
- Xu, Z.; Li, Q.; Gorodtsov, V. Wave drag of rapidly and horizontally moving Rankine ovoid in uniformly stratified fluid. Prog. Nat. Sci. 2008, 18, 723–727. [Google Scholar] [CrossRef]
- Suner, M.; Salci, S.A.; Yigit, K.S.; Kandemir, I. Analytical analysis of hydrodynamics of the perforated Rankine oval. Ocean Eng. 2015, 108, 227–240. [Google Scholar] [CrossRef]
- Raven, H.C. A method to correct shallow-water model tests for tank wall effects. J. Mar. Sci. Technol. 2018, 24, 437–453. [Google Scholar] [CrossRef]
- Roisman, I.; Yarin, A.; Rubin, M. Normal penetration of an eroding projectile into an elastic–plastic target. Int. J. Impact Eng. 2001, 25, 573–597. [Google Scholar] [CrossRef]
- Rubin, M.; Kositski, R.; Rosenberg, Z. Essential physics of target inertia in penetration problems missed by cavity expansion models. Int. J. Impact Eng. 2016, 98, 97–104. [Google Scholar] [CrossRef]
- Rubin, M. A simplified and modified model for long rod penetration based on ovoids of Rankine. Int. J. Impact Eng. 2021, 156, 103927. [Google Scholar] [CrossRef]
- Trivedi, C. A review on fluid structure interaction in hydraulic turbines: A focus on hydrodynamic damping. Eng. Fail. Anal. 2017, 77, 1–22. [Google Scholar] [CrossRef]
- Cola, B.A.; Schaffer, D.; Fisher, T.S.; Stremler, M. A Pulsed Source-Sink Fluid Mixing Device. J. Microelectromech. Syst. 2006, 15, 259–266. [Google Scholar] [CrossRef]
- Basu, A.S.; Gianchandani, Y.B. Microfluidic doublets in aqueous samples generated by microfabricated thermal probes. Sens. Actuators A Phys. 2010, 158, 116–120. [Google Scholar] [CrossRef]
- Benouaguef, I.; Musunuri, N.; Amah, E.C.; Blackmore, D.; Fischer, I.S.; Singh, P. Solutocapillary Marangoni flow induced in a waterbody by a solute source. J. Fluid Mech. 2021, 922. [Google Scholar] [CrossRef]
- Pinsker, F.; Berloff, N.G. Transitions and excitations in a superfluid stream passing small impurities. Phys. Rev. A 2014, 89, 053605. [Google Scholar] [CrossRef] [Green Version]
- Luo, F.; Xu, R.-N.; Jiang, P.-X. Numerical investigation of fluid flow and heat transfer in a doublet enhanced geothermal system with CO2 as the working fluid (CO2–EGS). Energy 2014, 64, 307–322. [Google Scholar] [CrossRef]
- Willems, C.; Nick, H.M.; Weltje, G.J.; Bruhn, D.F. An evaluation of interferences in heat production from low enthalpy geothermal doublets systems. Energy 2017, 135, 500–512. [Google Scholar] [CrossRef]
- Zhao, Z.; Dou, Z.; Liu, G.; Chen, S.; Tan, X. Equivalent flow channel model for doublets in heterogeneous porous geothermal reservoirs. Renew. Energy 2021, 172, 100–111. [Google Scholar] [CrossRef]
- Mahbaz, S.B.; Yaghoubi, A.; Dehghani-Sanij, A.; Sarvaramini, E.; Leonenko, Y.; Dusseault, M.B. Well-Doublets: A First-Order Assessment of Geothermal SedHeat Systems. Appl. Sci. 2021, 11, 697. [Google Scholar] [CrossRef]
- Kong, Y.; Pang, Z.; Shao, H.; Kolditz, O. Optimization of well-doublet placement in geothermal reservoirs using numerical simulation and economic analysis. Environ. Earth Sci. 2017, 76, 118. [Google Scholar] [CrossRef]
- Romanov, D.; Leiss, B. Analysis of Enhanced Geothermal System Development Scenarios for District Heating and Cooling of the Göttingen University Campus. Geosciences 2021, 11, 349. [Google Scholar] [CrossRef]
- Haghiabi, A.H.; Mohammadzadeh-Habili, J.; Parsaie, A. Development of an evaluation method for velocity distribution over cylindrical weirs using doublet concept. Flow Meas. Instrum. 2018, 61, 79–83. [Google Scholar] [CrossRef]
- Severino, G. Dispersion in doublet-type flows through highly anisotropic porous formations. J. Fluid Mech. 2021, 931. [Google Scholar] [CrossRef]
- Weijermars, R.; Van Harmelen, A. Breakdown of doublet recirculation and direct line drives by far-field flow in reservoirs: Implications for geothermal and hydrocarbon well placement. Geophys. J. Int. 2016, 206, 19–47. [Google Scholar] [CrossRef] [Green Version]
- Cengel, Y.A.; Cimbala, J.M. Fluid Mechanics: Fundamentals and Applications; McGraw Hill: New York, NY, USA, 2014; ISBN 9780073380322. [Google Scholar]
- Chapra, S.C.; Canale, R.P. Numerical Differentiation and Integration. In Numerical Methods for Engineers; McGraw Hill: New York, NY, USA, 2010; pp. 585–698. [Google Scholar]
- Lancaster, P.; Salkauskas, K. Surfaces generated by moving least squares methods. Math. Comput. 1981, 37, 141–158. [Google Scholar] [CrossRef]
- Cheah, C.K.; Tey, W.Y. Construction on Morphology of Aquatic Animals via Moving Least Squares Method. J. Phys. Conf. Ser. 2020, 1489, 012014. [Google Scholar] [CrossRef]
- Tey, W.Y.; Sidik, N.A.C.; Asako, Y.; Muhieldeen, M.W.; Afshar, O. Moving Least Squares Method and its Improvement: A Concise Review. J. Appl. Comput. Mech. 2021, 7, 883–889. [Google Scholar]
- Durst, F. Potential Flow. In Fluid Mechanics: An Introduction to the Theory of Fluids; Springer: Berlin/Heidelberg, Germany, 2008; pp. 275–288. [Google Scholar]
- Wright, J.R.; Cooper, J.E. Potential Flow Aerodynamics. In Introduction to Aircraft Aeroelasticity and Loads; John Wiley & Sons Ltd.: Chichester, UK, 2015; pp. 415–436. [Google Scholar]
- Lippert, T.; Bandelin, J.; Schlederer, F.; Drewes, J.E.; Koch, K. Impact of ultrasound-induced cavitation on the fluid dynamics of water and sewage sludge in ultrasonic flatbed reactors. Ultrason. Sonochem. 2019, 55, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Aono, H.; Liu, H. Flapping wing aerodynamics of a numerical biological flyer model in hovering flight. Comput. Fluids 2013, 85, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Liu, Y.; Sun, M. Aerodynamics of Ascending Flight in Fruit Flies. J. Bionic Eng. 2017, 14, 75–87. [Google Scholar] [CrossRef]
- Liu, H. Integrated modeling of insect flight: From morphology, kinematics to aerodynamics. J. Comput. Phys. 2009, 228, 439–459. [Google Scholar] [CrossRef] [Green Version]
- Zimmerman, S.; Abdelkefi, A. Review of marine animals and bioinspired robotic vehicles: Classifications and characteristics. Prog. Aerosp. Sci. 2017, 93, 95–119. [Google Scholar] [CrossRef]
- Scaradozzi, D.; Palmieri, G.; Costa, D.; Pinelli, A. BCF swimming locomotion for autonomous underwater robots: A review and a novel solution to improve control and efficiency. Ocean Eng. 2017, 130, 437–453. [Google Scholar] [CrossRef]
- Bian, J.; Xiang, J. QUUV: A quadrotor-like unmanned underwater vehicle with thrusts configured as X shape. Appl. Ocean Res. 2018, 78, 201–211. [Google Scholar] [CrossRef]
- Salazar, R.; Fuentes, V.; Abdelkefi, A. Classification of biological and bioinspired aquatic systems: A review. Ocean Eng. 2018, 148, 75–114. [Google Scholar] [CrossRef]
- Hudson, O.A.; Fanni, M.; Ahmed, S.M.; Sameh, A. Autonomous Flight Take-off in Flapping Wing Aerial Vehicles. J. Intell. Robot. Syst. 2019, 98, 135–152. [Google Scholar] [CrossRef]
- Hilfinger, A.; Chattopadhyay, A.K.; Jülicher, F. Nonlinear dynamics of cilia and flagella. Phys. Rev. E 2009, 79, 051918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frumkin, V.; Gommed, K.; Bercovici, M. Dipolar thermocapillary motor and swimmer. Phys. Rev. Fluids 2019, 4, 074002. [Google Scholar] [CrossRef] [Green Version]
- Klindt, G.S.; Friedrich, B.M. Flagellar swimmers oscillate between pusher- and puller-type swimming. Phys. Rev. E 2015, 92, 063019. [Google Scholar] [CrossRef] [Green Version]
- Junqiang, L.; Yiling, Y.; Chuanyu, W.; Guoping, L.; Tehuan, C.; Jianqiang, M. Underwater oscillation performance and 3D vortex distribution generated by miniature caudal fin-like propulsion with macro fiber composite actuation. Sens. Actuators A Phys. 2020, 303, 111587. [Google Scholar] [CrossRef]
- Moore, P. Examining dolphin hydrodynamics provides clues to calf-loss during tuna fishing. J. Biol. 2004, 3, 6. [Google Scholar] [CrossRef] [Green Version]
- Herrel, A.; Choi, H.-F.; De Schepper, N.; Aerts, P.; Adriaens, D. Kinematics of swimming in two burrowing anguilliform fishes. Zoology 2011, 114, 78–84. [Google Scholar] [CrossRef] [Green Version]
- Xiang, J.; Liu, K.; Li, D.; Du, J. Effects of micro-structure on aerodynamics of Coccinella septempunctata elytra (ladybird) in forward flight as assessed via electron microscopy. Micron 2017, 102, 21–34. [Google Scholar] [CrossRef]
- Lehmann, F.-O.; Wehmann, H.-N. Aerodynamic interference depends on stroke plane spacing and wing aspect ratio in damselfly model wings. Int. J. Odonatol. 2020, 23, 51–61. [Google Scholar] [CrossRef]
αg | tan (αgθg) |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tey, W.Y.; Lam, W.H.; Teng, K.H.; Wong, K.Y. Semi-Analytical Method for Unsymmetrical Doublet Flow Using Sink- and Source-Dominant Formulation. Symmetry 2022, 14, 391. https://doi.org/10.3390/sym14020391
Tey WY, Lam WH, Teng KH, Wong KY. Semi-Analytical Method for Unsymmetrical Doublet Flow Using Sink- and Source-Dominant Formulation. Symmetry. 2022; 14(2):391. https://doi.org/10.3390/sym14020391
Chicago/Turabian StyleTey, Wah Yen, Wei Haur Lam, Kah Hou Teng, and Keng Yinn Wong. 2022. "Semi-Analytical Method for Unsymmetrical Doublet Flow Using Sink- and Source-Dominant Formulation" Symmetry 14, no. 2: 391. https://doi.org/10.3390/sym14020391
APA StyleTey, W. Y., Lam, W. H., Teng, K. H., & Wong, K. Y. (2022). Semi-Analytical Method for Unsymmetrical Doublet Flow Using Sink- and Source-Dominant Formulation. Symmetry, 14(2), 391. https://doi.org/10.3390/sym14020391