An Adaptive Moving Mesh Method for Solving Optimal Control Problems in Viscous Incompressible Fluid
Abstract
1. Introduction
2. Optimal Control Problem and Sensitivity Analysis
3. Moving Mesh Strategy
4. Numerical Algorithm and Numerical Example
4.1. Numerical Algorithm
- I
- Divide the working domain uniformly to obtain the initial triangulation and the corresponding coordinates of the node is . Then, solve the Navier–Stokes problem (3) to obtain the solution and the solution of the adjoint problem (10) . Obtain the value . Select the appropriate parameters , , ; given the termination criteria ;.
- II
- If , then iterate as follows. Step includes the following items:
- From , we find the new triangulation .
- Solve the Navier–Stokes problem (3) to obtain the solution and the solution of the adjoint problem (10) . Find the values of . Calculate .
4.2. Numerical Example
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bonnans, J.F.; Shapiro, A. Perturbation Analysis of Optimization Problem; Springer: New York, NY, USA, 2000. [Google Scholar]
- Clarke, F.H. Optimization and Nonsmooth Analysis; John Wiley Sons: Amsterdam, The Netherlands, 1983. [Google Scholar]
- Lions, J.L. Optinal Control of System Governed by Partial Differential Equations; Springer: Berlin, Germany, 1971. [Google Scholar]
- Hinze, M.; Pinnau, R.; Ulbrich, M.; Ulbrich, S. Optimization with PDE Constraints; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar]
- Liu, W.B.; Yan, N.N. Adaptive Finite Elements Methods for Optimal Control Problem Governed by PDEs; Sciences Press: Beijing, China, 2008. [Google Scholar]
- Neittaanmaki, P.; Sprekels, J.; Tiba, D. Optimization of Elliptic Systems: Theory and Applications; Springer Science Business Media Inc.: New York, NY, USA, 2006. [Google Scholar]
- Tiba, D. Optimal Control of Nonsmooth Distributed Parameter Systems; Lecture Notes in Math. 459; Springer: Berlin, Germany, 1990. [Google Scholar]
- Jameson, A. Aerodynamic design via control theory. J. Sci. Comput. 1998, 3, 233–260. [Google Scholar] [CrossRef]
- Jameson, A.; Martinelli, L.; Pierce, N.A. Optimum aerodynamic design using the Navier–Stokes equations. Theor. Comput. Fluid Dyn. 1998, 10, 213–237. [Google Scholar] [CrossRef]
- Mackenzie, J.A.; Nolan, M.; Rowlatt, C.F.; Insall, R.H. An adaptive moving mesh method for forced curve shortening flow. SIAM J. Sci. Comput. 2019, 41, A1170–A1200. [Google Scholar] [CrossRef]
- Abergel, F.; Temam, R. On Some Control Problems in Fluid Mechanics. Theor. Comput. Fluid Dyn. 1990, 1, 303–325. [Google Scholar] [CrossRef]
- Barbu, V. Optimal contrtol of Navier–Stokes equations with perioeic inputs. Nonlinear Anal. 1998, 31, 1531. [Google Scholar] [CrossRef]
- De Los Reyes, J.C.; Griesse, R. State-constrained optimal control of the three dimensional stationary Navier–Stokes equations. J. Math. Anal. Appl. 2008, 343, 257–272. [Google Scholar] [CrossRef][Green Version]
- De los Reyes, J.C.; Troltzsch, F. Optimal control of the stationary Navier–Stokes equations with mixed control-state constraints. SIAM J. Control Optim. 2007, 46, 604–629. [Google Scholar] [CrossRef]
- Gunzburger, M.D. Flow Control; Springer: New York, NY, USA, 1995. [Google Scholar]
- Casas, E. Error estimates for the numerical approximation of a distributed control prob lem for the steady-state Navier-stokes equations. SIAM J. Control Optim. 2007, 46, 952–982. [Google Scholar] [CrossRef]
- Roul, P. A robust adaptive moving mesh technique for a time-fractional reaction–diffusion model. Commun. Nonlinear Sci. Numer. Simul. 2022, 109, 106290. [Google Scholar] [CrossRef]
- Girault, V.; Raviart, P. Finite Element Method for Navier–Stokes Equations: Theory and Algorithms; Springer: Heidelberg, Germany, 1996. [Google Scholar]
- Temam, R. Navier–Stokes Equations and Nonlinear Functional Analysis; SIAM: Philadelphia, PA, USA, 1983. [Google Scholar]
- Liu, W.B.; Yan, N.N. A posteriori error estimates for control problems governed by Stokes equations. SIAM J. Numer. Anal. 2003, 40, 1850–1869. [Google Scholar] [CrossRef]
- Wang, G. Optimal control of 3-dimensional Navier–Stokes equations with state constraints. SIAM J. Control Optim. 2002, 41, 583–606. [Google Scholar] [CrossRef]
- Li, R.; Liu, W.B.; Ma, H.; Tang, T. Adaptive finite element approximation of elliptic optimal control. SIAM J. Control Optim. 2002, 41, 1321–1349. [Google Scholar] [CrossRef]
- Kurganov, A.; Qu, Z.; Rozanova, O.S.; Wu, T. Adaptive Moving Mesh Central-Upwind Schemes for Hyperbolic System of PDEs: Applications to Compressible Euler Equations and Granular Hydrodynamics. Commun. Appl. Math. Comput. 2021, 3, 445–480. [Google Scholar] [CrossRef]
- Duan, J.M.; Tang, H.Z. High-order accurate entropy stable adaptive moving mesh finite difference schemes for special relativistic (magneto)hydrodynamics. J. Comput. Phys. 2022, 456, 111038. [Google Scholar] [CrossRef]
- Almatrafi, M.B.; Alharbi, A.; Lotfy, K.; El-Bary, A.A. Exact and numerical solutions for the GBBM equation using an adaptive moving mesh method. Alex. Eng. J. 2021, 60, 4441–4450. [Google Scholar] [CrossRef]
- Babuska, I.; Rheinboldt, W.C. Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 1978, 15, 736–754. [Google Scholar] [CrossRef]
- Oden, J.T.; Wu, W.; Ainsworth, M. An a posteriori error estimate for finite element approximations of the Navier-stokes equations. Comput. Methods Appl. Mech. Eng. 1993, 111, 185–202. [Google Scholar] [CrossRef]
- Verfurth, R. A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques; Wiley: Hoboken, NJ, USA, 1996. [Google Scholar]
- Verfurth, R. A posteriori error estimators for the Stokes equations. Numer. Math. 1989, 55, 309–325. [Google Scholar] [CrossRef]
- Luo, D.; Huang, W.; Qiu, J. A quasi-lagrangian moving mesh discontinuous galerkin method for hyperbolic conservation laws. J. Comput. Phys. 2019, 396, 544–578. [Google Scholar] [CrossRef]
- Hubbard, M.E.; Ricchiuto, M.; Sarmany, D. Space-time residual distribution on moving meshes. Comput. Math. Appl. 2020, 79, 1561–1589. [Google Scholar] [CrossRef]
- Bagherpoorfard, M.; Soheili, A.R. Moving mesh version of wave propagation algorithm based on augmented riemann solver. Appl. Math. Comput. 2020, 375, 125087–125103. [Google Scholar] [CrossRef]
- Ainsworth, M.; Oden, J.T. A Posteriori Error Estimation in Finite Element Analysis; Pure and Applied Mathematics; Wiley-Interscience: Hoboken, NJ, USA, 2000. [Google Scholar]
- Koncz, V.; Izsák, F.; Noszticzius, Z.; Kály-Kullai, K. Adaptive moving mesh algorithm based on local reaction rate. Heliyon 2021, 7, e05842. [Google Scholar] [CrossRef] [PubMed]
- Tang, T. Moving mesh methods for computational fluid dynamics. Contemp. Math. 2004, 383, 141–173. [Google Scholar]
- Mackenzie, J.A.; Mekwi, W.R. On the Use of Moving Mesh Methods to Solve PDEs. In Adaptive Computations: Theory and Algorithms; Tang, T., Xu, J., Eds.; Science Press: Beijing, China, 2007. [Google Scholar]
- Ceniceros, H.D.; Hou, T.Y. An efficient dynamically adaptive mesh for potentially singular solutions. J. Comput. Phys. 2001, 172, 609–639. [Google Scholar] [CrossRef]
- Huang, W.; Zhan, X. Adaptive moving mesh modeling for two dimensional groundwater flow and transport. In Recent Advances in Adaptive Computation, Contemporary Mathematics; AMS: Providence, RI, USA, 2004; Volume 383, pp. 283–296. [Google Scholar]
- Budd, C.J.; Williams, J.F. Parabolic Monge-Ampere methods for blow-up problems in several spatial dimensions. J. Phys. A 2006, 39, 5425–5444. [Google Scholar] [CrossRef]
- Zegeling, P.A.; Kok, H.P. Adaptive moving mesh computations for reaction-diffusion systems. J. Comput. Appl. Math. 2004, 168, 519–528. [Google Scholar] [CrossRef]
- Duan, X.; Cao, Q.; Tan, H. A new moving mesh method for solving the two-dimensional Navier–Stokes equation. Chin. J. Eng. Math. 2019, 36, 431–438. [Google Scholar]
- Di, Y.; Li, R.; Tang, T.; Zhang, P. Moving Mesh Finite Element Methods for the Incompressible Navier–Stokes Equations. SIAM J. Sci. Comput. 2016, 26, 1036–1056. [Google Scholar] [CrossRef]
- Song, L.; Su, H.; Feng, X. Recovery-based error estimatorfor stabilized finite element method for the stationary Navier–Stokes problem. SIAM J. Sci. Comput. 2016, 38, A3758–A3772. [Google Scholar] [CrossRef]
- Zhang, T.; Li, S. A posteriori error estimates of finite element method for the time-dependent navier-stokes equations. Appl. Math. Comput. 2017, 315, 13–26. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Xue, H.; Duan, X. An Adaptive Moving Mesh Method for Solving Optimal Control Problems in Viscous Incompressible Fluid. Symmetry 2022, 14, 707. https://doi.org/10.3390/sym14040707
Lu J, Xue H, Duan X. An Adaptive Moving Mesh Method for Solving Optimal Control Problems in Viscous Incompressible Fluid. Symmetry. 2022; 14(4):707. https://doi.org/10.3390/sym14040707
Chicago/Turabian StyleLu, Junxiang, Hong Xue, and Xianbao Duan. 2022. "An Adaptive Moving Mesh Method for Solving Optimal Control Problems in Viscous Incompressible Fluid" Symmetry 14, no. 4: 707. https://doi.org/10.3390/sym14040707
APA StyleLu, J., Xue, H., & Duan, X. (2022). An Adaptive Moving Mesh Method for Solving Optimal Control Problems in Viscous Incompressible Fluid. Symmetry, 14(4), 707. https://doi.org/10.3390/sym14040707