An Adaptive Moving Mesh Method for Solving Optimal Control Problems in Viscous Incompressible Fluid
Abstract
:1. Introduction
2. Optimal Control Problem and Sensitivity Analysis
3. Moving Mesh Strategy
4. Numerical Algorithm and Numerical Example
4.1. Numerical Algorithm
- I
- Divide the working domain uniformly to obtain the initial triangulation and the corresponding coordinates of the node is . Then, solve the Navier–Stokes problem (3) to obtain the solution and the solution of the adjoint problem (10) . Obtain the value . Select the appropriate parameters , , ; given the termination criteria ;.
- II
- If , then iterate as follows. Step includes the following items:
- From , we find the new triangulation .
- Solve the Navier–Stokes problem (3) to obtain the solution and the solution of the adjoint problem (10) . Find the values of . Calculate .
4.2. Numerical Example
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bonnans, J.F.; Shapiro, A. Perturbation Analysis of Optimization Problem; Springer: New York, NY, USA, 2000. [Google Scholar]
- Clarke, F.H. Optimization and Nonsmooth Analysis; John Wiley Sons: Amsterdam, The Netherlands, 1983. [Google Scholar]
- Lions, J.L. Optinal Control of System Governed by Partial Differential Equations; Springer: Berlin, Germany, 1971. [Google Scholar]
- Hinze, M.; Pinnau, R.; Ulbrich, M.; Ulbrich, S. Optimization with PDE Constraints; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar]
- Liu, W.B.; Yan, N.N. Adaptive Finite Elements Methods for Optimal Control Problem Governed by PDEs; Sciences Press: Beijing, China, 2008. [Google Scholar]
- Neittaanmaki, P.; Sprekels, J.; Tiba, D. Optimization of Elliptic Systems: Theory and Applications; Springer Science Business Media Inc.: New York, NY, USA, 2006. [Google Scholar]
- Tiba, D. Optimal Control of Nonsmooth Distributed Parameter Systems; Lecture Notes in Math. 459; Springer: Berlin, Germany, 1990. [Google Scholar]
- Jameson, A. Aerodynamic design via control theory. J. Sci. Comput. 1998, 3, 233–260. [Google Scholar] [CrossRef] [Green Version]
- Jameson, A.; Martinelli, L.; Pierce, N.A. Optimum aerodynamic design using the Navier–Stokes equations. Theor. Comput. Fluid Dyn. 1998, 10, 213–237. [Google Scholar] [CrossRef] [Green Version]
- Mackenzie, J.A.; Nolan, M.; Rowlatt, C.F.; Insall, R.H. An adaptive moving mesh method for forced curve shortening flow. SIAM J. Sci. Comput. 2019, 41, A1170–A1200. [Google Scholar] [CrossRef]
- Abergel, F.; Temam, R. On Some Control Problems in Fluid Mechanics. Theor. Comput. Fluid Dyn. 1990, 1, 303–325. [Google Scholar] [CrossRef]
- Barbu, V. Optimal contrtol of Navier–Stokes equations with perioeic inputs. Nonlinear Anal. 1998, 31, 1531. [Google Scholar] [CrossRef]
- De Los Reyes, J.C.; Griesse, R. State-constrained optimal control of the three dimensional stationary Navier–Stokes equations. J. Math. Anal. Appl. 2008, 343, 257–272. [Google Scholar] [CrossRef] [Green Version]
- De los Reyes, J.C.; Troltzsch, F. Optimal control of the stationary Navier–Stokes equations with mixed control-state constraints. SIAM J. Control Optim. 2007, 46, 604–629. [Google Scholar] [CrossRef] [Green Version]
- Gunzburger, M.D. Flow Control; Springer: New York, NY, USA, 1995. [Google Scholar]
- Casas, E. Error estimates for the numerical approximation of a distributed control prob lem for the steady-state Navier-stokes equations. SIAM J. Control Optim. 2007, 46, 952–982. [Google Scholar] [CrossRef]
- Roul, P. A robust adaptive moving mesh technique for a time-fractional reaction–diffusion model. Commun. Nonlinear Sci. Numer. Simul. 2022, 109, 106290. [Google Scholar] [CrossRef]
- Girault, V.; Raviart, P. Finite Element Method for Navier–Stokes Equations: Theory and Algorithms; Springer: Heidelberg, Germany, 1996. [Google Scholar]
- Temam, R. Navier–Stokes Equations and Nonlinear Functional Analysis; SIAM: Philadelphia, PA, USA, 1983. [Google Scholar]
- Liu, W.B.; Yan, N.N. A posteriori error estimates for control problems governed by Stokes equations. SIAM J. Numer. Anal. 2003, 40, 1850–1869. [Google Scholar] [CrossRef]
- Wang, G. Optimal control of 3-dimensional Navier–Stokes equations with state constraints. SIAM J. Control Optim. 2002, 41, 583–606. [Google Scholar] [CrossRef]
- Li, R.; Liu, W.B.; Ma, H.; Tang, T. Adaptive finite element approximation of elliptic optimal control. SIAM J. Control Optim. 2002, 41, 1321–1349. [Google Scholar] [CrossRef] [Green Version]
- Kurganov, A.; Qu, Z.; Rozanova, O.S.; Wu, T. Adaptive Moving Mesh Central-Upwind Schemes for Hyperbolic System of PDEs: Applications to Compressible Euler Equations and Granular Hydrodynamics. Commun. Appl. Math. Comput. 2021, 3, 445–480. [Google Scholar] [CrossRef]
- Duan, J.M.; Tang, H.Z. High-order accurate entropy stable adaptive moving mesh finite difference schemes for special relativistic (magneto)hydrodynamics. J. Comput. Phys. 2022, 456, 111038. [Google Scholar] [CrossRef]
- Almatrafi, M.B.; Alharbi, A.; Lotfy, K.; El-Bary, A.A. Exact and numerical solutions for the GBBM equation using an adaptive moving mesh method. Alex. Eng. J. 2021, 60, 4441–4450. [Google Scholar] [CrossRef]
- Babuska, I.; Rheinboldt, W.C. Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 1978, 15, 736–754. [Google Scholar] [CrossRef]
- Oden, J.T.; Wu, W.; Ainsworth, M. An a posteriori error estimate for finite element approximations of the Navier-stokes equations. Comput. Methods Appl. Mech. Eng. 1993, 111, 185–202. [Google Scholar] [CrossRef]
- Verfurth, R. A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques; Wiley: Hoboken, NJ, USA, 1996. [Google Scholar]
- Verfurth, R. A posteriori error estimators for the Stokes equations. Numer. Math. 1989, 55, 309–325. [Google Scholar] [CrossRef]
- Luo, D.; Huang, W.; Qiu, J. A quasi-lagrangian moving mesh discontinuous galerkin method for hyperbolic conservation laws. J. Comput. Phys. 2019, 396, 544–578. [Google Scholar] [CrossRef] [Green Version]
- Hubbard, M.E.; Ricchiuto, M.; Sarmany, D. Space-time residual distribution on moving meshes. Comput. Math. Appl. 2020, 79, 1561–1589. [Google Scholar] [CrossRef] [Green Version]
- Bagherpoorfard, M.; Soheili, A.R. Moving mesh version of wave propagation algorithm based on augmented riemann solver. Appl. Math. Comput. 2020, 375, 125087–125103. [Google Scholar] [CrossRef]
- Ainsworth, M.; Oden, J.T. A Posteriori Error Estimation in Finite Element Analysis; Pure and Applied Mathematics; Wiley-Interscience: Hoboken, NJ, USA, 2000. [Google Scholar]
- Koncz, V.; Izsák, F.; Noszticzius, Z.; Kály-Kullai, K. Adaptive moving mesh algorithm based on local reaction rate. Heliyon 2021, 7, e05842. [Google Scholar] [CrossRef] [PubMed]
- Tang, T. Moving mesh methods for computational fluid dynamics. Contemp. Math. 2004, 383, 141–173. [Google Scholar]
- Mackenzie, J.A.; Mekwi, W.R. On the Use of Moving Mesh Methods to Solve PDEs. In Adaptive Computations: Theory and Algorithms; Tang, T., Xu, J., Eds.; Science Press: Beijing, China, 2007. [Google Scholar]
- Ceniceros, H.D.; Hou, T.Y. An efficient dynamically adaptive mesh for potentially singular solutions. J. Comput. Phys. 2001, 172, 609–639. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Zhan, X. Adaptive moving mesh modeling for two dimensional groundwater flow and transport. In Recent Advances in Adaptive Computation, Contemporary Mathematics; AMS: Providence, RI, USA, 2004; Volume 383, pp. 283–296. [Google Scholar]
- Budd, C.J.; Williams, J.F. Parabolic Monge-Ampere methods for blow-up problems in several spatial dimensions. J. Phys. A 2006, 39, 5425–5444. [Google Scholar] [CrossRef]
- Zegeling, P.A.; Kok, H.P. Adaptive moving mesh computations for reaction-diffusion systems. J. Comput. Appl. Math. 2004, 168, 519–528. [Google Scholar] [CrossRef] [Green Version]
- Duan, X.; Cao, Q.; Tan, H. A new moving mesh method for solving the two-dimensional Navier–Stokes equation. Chin. J. Eng. Math. 2019, 36, 431–438. [Google Scholar]
- Di, Y.; Li, R.; Tang, T.; Zhang, P. Moving Mesh Finite Element Methods for the Incompressible Navier–Stokes Equations. SIAM J. Sci. Comput. 2016, 26, 1036–1056. [Google Scholar] [CrossRef] [Green Version]
- Song, L.; Su, H.; Feng, X. Recovery-based error estimatorfor stabilized finite element method for the stationary Navier–Stokes problem. SIAM J. Sci. Comput. 2016, 38, A3758–A3772. [Google Scholar] [CrossRef]
- Zhang, T.; Li, S. A posteriori error estimates of finite element method for the time-dependent navier-stokes equations. Appl. Math. Comput. 2017, 315, 13–26. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Xue, H.; Duan, X. An Adaptive Moving Mesh Method for Solving Optimal Control Problems in Viscous Incompressible Fluid. Symmetry 2022, 14, 707. https://doi.org/10.3390/sym14040707
Lu J, Xue H, Duan X. An Adaptive Moving Mesh Method for Solving Optimal Control Problems in Viscous Incompressible Fluid. Symmetry. 2022; 14(4):707. https://doi.org/10.3390/sym14040707
Chicago/Turabian StyleLu, Junxiang, Hong Xue, and Xianbao Duan. 2022. "An Adaptive Moving Mesh Method for Solving Optimal Control Problems in Viscous Incompressible Fluid" Symmetry 14, no. 4: 707. https://doi.org/10.3390/sym14040707
APA StyleLu, J., Xue, H., & Duan, X. (2022). An Adaptive Moving Mesh Method for Solving Optimal Control Problems in Viscous Incompressible Fluid. Symmetry, 14(4), 707. https://doi.org/10.3390/sym14040707