Influence of an External Classical Field on a ♢ Four-Level Atom Inside a Quantized Field
Abstract
:1. Introduction
2. Description of the Physical Model
3. Atomic Inversion
4. Linear Entropy
5. l1 Norm of Coherence
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rabi, I.I. Space quantization in a gyrating magnetic field. Phys. Rev. 1937, 51, 652–654. [Google Scholar] [CrossRef]
- Jaynes, E.T.; Cummings, F.W. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 1963, 51, 89–109. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Hafez, A.M.; Abu-Sitta, A.M.M.; Obada, A.-S.F. A generalized Jaynes-Cummings model for the N-level atom and (N − 1) modes. Physica A 1989, 156, 689–712. [Google Scholar] [CrossRef]
- Skrypnyk, T. The N-level, N- 1-mode Jaynes-Cummings model: Spectrum and eigenvectors. J. Phys. A 2013, 46, 052001. [Google Scholar] [CrossRef]
- Abdel-Hafez, A.M.; Obada, A.-S.F. Amplitude-squared squeezing in the multiphoton Jaynes-Cummings model: Effect of phases. Phys. Rev. A 1991, 44, 6017–6022. [Google Scholar] [CrossRef]
- Abdel-Khalek, S.; Khalil, E.M.; Alotaibi, H.; Abo-Dahab, S.M.; Mahmoud, E.E.; Higazy, M.; Marin, M. Effects of energy dissipation and deformation function on the entanglement, photon statistics and quantum fisher information of three-level atom in photon-added coherent states for morse potential. Symmetry 2021, 13, 2188. [Google Scholar] [CrossRef]
- Salah, A.; Thabet, L.E.; El-Shahat, T.M.; El-Wahab, N.H.A. On the interaction between tripod-type four-level atom and one-mode field in the presence of a classical homogeneous gravitational field. Pramana 2020, 94, 143. [Google Scholar] [CrossRef]
- Obada, A.-S.F.; Ahmed, M.M.A.; Farouk, A.M. The dynamics of a five-level (double λ)-type atom interacting with two-mode field in a cross Kerr-like medium. Int. J. Theor. Phys. 2018, 57, 1210–1223. [Google Scholar] [CrossRef]
- Baghshahi, H.R.; Tavassoly, M.K.; Behjat, A. Entanglement of a damped non-degenerat ♢-type atom interacting nonlinearly with a single-mode cavity. Eur. Phys. J. Plus 2016, 131, 80. [Google Scholar] [CrossRef]
- Zidan, N.; Abdel-Hameed, H.F.; Metwally, N. Quantum Fisher information of atomic system interacting with a single cavity mode in the presence of kerr medium. Sci. Rep. 2019, 9, 2699. [Google Scholar] [CrossRef]
- Liao, Q.; He, G. Maximal entanglement and switch squeezing with atom coupled to cavity field and graphene membrane. Quantum Inf. Process. 2020, 19, 91. [Google Scholar] [CrossRef]
- Alotibi, M.F.; Khalil, E.M.; Abdel-Khalek, S.; Abd-Rabbou, M.Y.; Omri, M. Effects of the vibrating graphene membrane and the driven classical field on an atomic system coupled to a cavity field. Results Phys. 2021, 31, 105012. [Google Scholar] [CrossRef]
- Abdalla, M.S.; Khalil, E.M.; Obada, A.S.-F. Exact treatment of the Jaynes-Cummings model under the action of an external classical field. Ann. Phys. 2011, 326, 2486–2498. [Google Scholar] [CrossRef]
- Metwally, N.; Hassan, S.S. Estimation of pulsed driven qubit parameters via quantum Fisher information. Laser Phys. Lett. 2017, 14, 115204. [Google Scholar] [CrossRef] [Green Version]
- Abd-Rabbou, M.Y.; Khalil, E.M.; Ahmed, M.M.A.; Obada, A.S.F. External classical field and damping effects on a moving two level atom in a cavity field interaction with Kerr-like medium. Int. J. Theor. Phys. 2019, 58, 4012–4024. [Google Scholar] [CrossRef]
- Metwally, N. Dynamics of information in the presence of deformation. Int. J. Quantum Inf. 2011, 9, 937–946. [Google Scholar] [CrossRef] [Green Version]
- Altowyan, A.S.; Abdel-Khalek, S.; Berrada, K. Emission spectrum and geometric phase in deformed Jaynes-Cummings model. Results Phys. 2020, 16, 102924. [Google Scholar] [CrossRef]
- Shen, J.-Q.; Ruan, Z.-C.; He, S. Influence of the signal light on the transient optical properties of a four-level EIT medium. Phys. Lett. A 2004, 330, 487–495. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Wahab, N.H. General formalism of the interaction of a single-mode cavity field with a four-level atom. Eur. Phys. J. Plus 2011, 126, 1–10. [Google Scholar] [CrossRef]
- Sheng, J.; Yang, X.; Khadka, U.; Xiao, M. All-optical switching in an N-type four-level atom-cavity system. Opt. Express 2011, 19, 17059–17064. [Google Scholar] [CrossRef]
- Chen, Y.-Y.; Li, Y.-N.; Wan, R.-G. Double-cavity optical bistability and all-optical switching in four-level N-type atomic system. JOSA B 2018, 35, 1240–1247. [Google Scholar] [CrossRef]
- Parvaz, M.; Askari, H.R.; Baghshahi, H.R. Mechanical squeezing of the tripod-type four-level atom-assisted optomechanical system. Phys. Scr. 2019, 94, 125105. [Google Scholar] [CrossRef]
- Obada, A.-S.F.; Khalil, E.M.; Ahmed, M.M.A.; Elmalky, M.M.Y. Influence of an external classical field on the interaction between a field and an atom in presence of intrinsic damping. Int. J. Theor. Phys. 2018, 57, 2787–2801. [Google Scholar] [CrossRef]
- Obada, A.-S.F.; Alshehri, N.A.; Khalil, E.M.; Abdel-Khalek, S.; Habeba, H.F. Entropy squeezing and atomic Wehrl density for the interaction between SU(1, 1) Lie algebra and a three-level atom in presence of laser field. Results Phys. 2021, 30, 104759. [Google Scholar] [CrossRef]
- Coffman, V.; Kundu, J.; Wootters, W.K. Distributed entanglement. Phys. Rev. A 2000, 61, 052306. [Google Scholar] [CrossRef] [Green Version]
- Horodecki, R.; Horodecki, P.l.; Horodecki, M.l.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 2009, 81, 865–942. [Google Scholar] [CrossRef] [Green Version]
- Baghshahi, H.R.; Tavassoly, M.K.; Behjat, A. Dynamics of entropy and non-classicality features of the interaction between a ♢-type four-level atom and a single-mode field in the presence of intensity-dependent coupling and Kerr non-linearity. Commun. Theor. Phys. 2014, 62, 430. [Google Scholar] [CrossRef] [Green Version]
- Pan, G.; Xiao, R.; Gao, J. Enhanced entanglement and output squeezing of optomechanical system via a single four-level atom. Laser Phys. Lett. 2020, 17, 085204. [Google Scholar] [CrossRef]
- Anwar, S.J.; Ramzan, M.; Khan, M.K. Dynamics of entanglement and quantum Fisher information for N-level atomic system under intrinsic decoherence. Quantum Inf. Process. 2017, 16, 142. [Google Scholar] [CrossRef]
- Anwar, S.J.; Ramzan, M.; Usman, M.; Khan, M.K. Entanglement dynamics of three and four level atomic system under stark effect and kerr-like medium. Quantum Rep. 2019, 1, 23–36. [Google Scholar] [CrossRef] [Green Version]
- Baumgratz, T.; Cramer, M.; Plenio, M.B. Quantifying coherence. Phys. Rev. Lett. 2014, 113, 140401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radhakrishnan, C.; Parthasarathy, M.; Jambulingam, S.; Byrnes, T. Distribution of quantum coherence in multipartite systems. Phys. Rev. Lett. 2016, 116, 150504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Streltsov, A.; Singh, U.; Dhar, H.S.; Bera, M.N.; Adesso, G. Measuring quantum coherence with entanglement. Phys. Rev. Lett. 2015, 115, 020403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winter, A.; Yang, D. Operational resource theory of coherence. Phys. Rev. Lett. 2016, 116, 120404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, P.-G.; Li, C.; Wang, Y.; Song, J.; Liu, S.-T.; Jiang, Y.-Y.; Xia, Y. Quantum phase transitions triggered by a four-level atomic system in dissipative environments. Phys. Rev. A. 2019, 99, 043829. [Google Scholar] [CrossRef]
- Wen, F.; Zheng, H.; Xue, X.; Chen, H.; Song, J.; Zhang, Y. Electromagnetically induced transparency-assisted four-wave mixing process in the diamond-type four-level atomic system. Opt. Mater. 2014, 37, 724–726. [Google Scholar] [CrossRef]
- Li, S.; Yang, X.; Cao, X.; Zhang, C.; Xie, C.; Wang, H. Enhanced Cross-Phase Modulation Based on a Double Electromagnetically Induced Transparency in a Four-Level Tripod Atomic System. Phys. Rev. Lett. 2008, 101, 073602. [Google Scholar] [CrossRef] [Green Version]
- Wei, T.C.; Nemoto, K.; Goldbart, P.M.; Kwiat, P.G.; Munro, W.J.; Verstraete, F. Maximal entanglement versus entropy for mixed quantum states. Phys. Rev. A 2003, 67, 022110. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalil, E.M.; Abu-Zinadah, H.; Abd-Rabbou, M.Y. Influence of an External Classical Field on a ♢ Four-Level Atom Inside a Quantized Field. Symmetry 2022, 14, 811. https://doi.org/10.3390/sym14040811
Khalil EM, Abu-Zinadah H, Abd-Rabbou MY. Influence of an External Classical Field on a ♢ Four-Level Atom Inside a Quantized Field. Symmetry. 2022; 14(4):811. https://doi.org/10.3390/sym14040811
Chicago/Turabian StyleKhalil, Eied Mahmoud, Hanaa Abu-Zinadah, and Mahmoud Youssef Abd-Rabbou. 2022. "Influence of an External Classical Field on a ♢ Four-Level Atom Inside a Quantized Field" Symmetry 14, no. 4: 811. https://doi.org/10.3390/sym14040811
APA StyleKhalil, E. M., Abu-Zinadah, H., & Abd-Rabbou, M. Y. (2022). Influence of an External Classical Field on a ♢ Four-Level Atom Inside a Quantized Field. Symmetry, 14(4), 811. https://doi.org/10.3390/sym14040811