Effects of Hydroxyselenomethionine with Symmetrical and Chelated Chemical Structure on Lactation Performances, Anti-Oxidative Status and Immunities, Selenium Transfer Efficiencies for Early-Lactating Dairy Cows
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal, Diets, and Experimental Design
2.2. Sampling, Measurement, and Analyses
2.3. Calculations and Statistical Analysis
3. Results
3.1. Feed Intake and Lactation Performances
3.2. Serum Parameters and Anti-Oxidative Status
3.3. Whole Blood Parameters and Immunities
3.4. Milk and Serum Se Status
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ceballos, A.; Sánchez, J.; Stryhn, H.; Montgomery, J.B.; Barkema, H.W.; Wichtel, J.J. Meta-analysis of the effect of oral selenium supplementation on milk selenium concentration in cattle. J. Dairy Sci. 2009, 92, 324–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suksombat, W.; Nanon, A.; Klangnork, P.; Homkhao, J. Effects of Met Hydroxy Analog plus MINTREX® Dairy Supplementation on Performance of Lactating Dairy Cows. J. Anim. Vet. Adv. 2011, 10, 2814–2818. [Google Scholar]
- Phipps, R.H.; Grandison, A.S.; Jones, A.K.; Juniper, D.T.; Ramos Morales, E.; Bertin, G. Selenium supplementation of lactating dairy cows: Effects on milk production and total selenium content and speciation in blood, milk and cheese. Animal 2008, 2, 1610–1618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, B.; Fedele, V.; Ferlay, A.; Grolier, P.; Rock, E.; Gruffat, D.; Chilliard, Y. Effects of grass-based diets on the content of micronutrients and fatty acids in bovine and caprine dairy products. Grassl. Sci. Eur. 2004, 9, 876–886. [Google Scholar]
- Yang, Z.W.; Aygul, N.; Liu, X.R.; Zhao, S.S.; Zhao, W.Q.; Yang, S. Structure of copper chelate of 2-Hydroxy-4-methylthiobutanoic acid as trace mineral additive in animal feeding. Chinese J. Struct. Chem. 2015, 34, 147–153. [Google Scholar]
- Conti, G.; Castillo, G.; Gallardo, M.; Toffano, S.; Vazquez-Anon, M. Supplementation of methionine hydroxy analog, trace mineral chelates and dietary antioxidants in the diet of dairy cows for milk production, milk composition, and hoof status. J. Dairy Sci. 2010, 93, 718. [Google Scholar]
- Katya, K.; Lee, S.; Bharadwaj, A.S.; Browdy, C.L.; Vazquez-Anon, M.; Bai, S.C. Effects of inorganic and chelated trace mineral (Cu, Zn, Mn and Fe) premixes in marine rockfish, Sebastes schlegeli (Hilgendorf), fed diets containing phytic acid. Aquac. Res. 2017, 48, 4165–4173. [Google Scholar] [CrossRef]
- St-Pierre, N.R.; Sylvester, J.T. Effects of 2-hydroxy-4-(methylthio) butanoic acid (HMB) and its isopropyl ester on milk production and composition by Holstein cows. J. Dairy Sci. 2005, 88, 2487–2497. [Google Scholar] [CrossRef] [Green Version]
- Sun, P.; Wang, J.; Liu, W.; Bu, D.P.; Liu, S.J.; Zhang, K.Z. Hydroxy-selenomethionine: A novel organic selenium source that improves antioxidant status and selenium concentrations in milk and serum of mid-lactation dairy cows. J. Dairy Sci. 2017, 100, 9602–9610. [Google Scholar] [CrossRef] [Green Version]
- MOA (Ministry of Agriculture of P. R. China). Feeding Standard of Dairy Cattle (NY/T 34-2004); MOA: Beijing, China, 2004.
- West, J.W.; Mullinix, B.G.; Bernard, J.K. Effects of hot, humid weather on milk temperature, dry matter intake, and milk yield of lactating dairy cows. J. Dairy Sci. 2003, 86, 232–242. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.M.; Liu, H.Y.; Wang, C.; Liu, J.X.; Ferguson, J.D. Effects of rumen-protected gamma-aminobutyric acid on feed intake, performance and antioxidative status in transition cows. Livest. Sci. 2013, 153, 66–72. [Google Scholar] [CrossRef]
- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis, 15th ed.; AOAC: Arlington, VA, USA, 1990. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Symposium: Carbohydrate methodology, metabolism and nutritional implications in dairy cattle methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 4377–4384. [Google Scholar] [CrossRef]
- Wang, D.M.; Wang, C.; Liu, H.Y.; Liu, J.X.; Ferguson, J.D. Effects of rumen-protected γ-aminobutyric acid on feed intake, lactation performance, and antioxidative status in early lactating dairy cows. J. Dairy Sci. 2013, 96, 3222–3227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laporte, M.F.; Paquin, P. Near-infrared analysis of fat, protein, and casein in cow’s milk. J. Agric. Food Chem. 1999, 47, 2600–2605. [Google Scholar] [CrossRef] [PubMed]
- Bashtani, M.; Farhangfar, H.; Naeimipour, H.; Asghari, M.R. Application of milk urea nitrogen index (MUN I) for monitoring protein nutrition status in lactating dairy cow. J. Agric. Sci. Nat. Resour. 2009, 16, 110–118. [Google Scholar]
- Davidson, S.; Hopkins, B.A.; Odle, J.; Brownie, C.; Fellner, V.; Whitlow, L.W. Supplementing limited methionine diets with rumen-protected methionine, betaine, and choline in early lactation Holstein cows. J. Dairy Sci. 2008, 91, 1552–1559. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Tan, Y.L.; Cao, L.Y.; Wu, G.Y.; Xu, Q.; Shen, Y.; Zhou, D.F. Antioxidant enzymes and lipid peroxidation in different forms of schizophrenia treated with typical and atypical antipsychotics. Schizophr. Res. 2006, 81, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Faggio, C. Haematological and biochemical response of Mugil cephalus after acclimation to captivity. Cah. De Biol. Mar. 2014, 55, 31–36. [Google Scholar]
- Silva, R.G.D.; Costa, M.J.R.P.D.; Sobrinho, A.G.S. Influence of hot environments on some blood variables of sheep. Int. J. Biometeorol. 1992, 36, 223–225. [Google Scholar] [CrossRef]
- Arthur, J. The glutathione peroxidases. Cell Mol Life Sci. CMLS. 2001, 57, 1825–1835. [Google Scholar] [CrossRef]
- Ran, L.; Wu, X.; Shen, X.; Zhang, K.; Ren, F.; Huang, K. Effects of selenium form on blood and milk selenium concentrations, milk component and milk fatty acid composition in dairy cows. J. Sci. Food Agric. 2010, 90, 2214–2219. [Google Scholar] [CrossRef]
- Trevisi, E.; Amadori, M.; Cogrossi, S.; Razzuoli, E.; Bertoni, G. Metabolic stress and inflammatory response in high-yielding, periparturient dairy cows. Res. Vet. Sci. 2012, 93, 695–704. [Google Scholar] [CrossRef] [PubMed]
- Serrapica, F.; Masucci, F.; Romano, R.; Napolitano, F.; Sabia, E.; Aiello, A.; Francia, A.D. Effects of chickpea in substitution of soybean meal on milk production, blood profile and reproductive response of primiparous buffaloes in early lactation. Animals 2020, 10, 515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calamari, L.; Petrera, F.; Bertin, G. Effects of either sodium selenite or Se yeast (Sc CNCM I-3060) supplementation on selenium status and milk characteristics in dairy cows. Livest. Sci. 2010, 128, 154–165. [Google Scholar] [CrossRef]
- Juniper, D.T.; Phipps, R.H.; Jones, A.K.; Bertin, G. Selenium supplementation of lactating dairy cows: Effect on selenium concentration in blood, milk, urine, and feces. J. Dairy Sci. 2006, 89, 3544–3551. [Google Scholar] [CrossRef]
- Gong, J.; Ni, L.; Wang, D.; Shi, B.; Yan, S. Effect of dietary organic selenium on milk selenium concentration and antioxidant and immune status in midlactation dairy cows. Livest. Sci. 2014, 170, 84–90. [Google Scholar] [CrossRef]
- Batistel, F.; Arroyo, J.M.; Bellingeri, A.; Wang, L.; Saremi, B.; Parys, C.; Trevisi, E.; Cardoso, F.C.; Loor, J. Ethyl-cellulose rumen-protected methionine enhances performance during the periparturient period and early lactation in Holstein dairy cows. J. Dairy Sci. 2017, 100, 7455–7467. [Google Scholar] [CrossRef] [Green Version]
- Batistel, F.; Arroyo, J.M.; Garces, C.I.; Trevisi, M.E.; Parys, C.; Ballou, M.A.; Cardoso, F.C.; Loor, J.J. Ethyl-cellulose rumen-protected methionine alleviates inflammation and oxidative stress and improves neutrophil function during the periparturient period and early lactation in Holstein dairy cows. J. Dairy Sci. 2018, 101, 480–490. [Google Scholar] [CrossRef] [Green Version]
- Sordillo, L.M.; Aitken, S.L. Impact of oxidative stress on the health and immune function of dairy cattle. Vet. Immunol. Immunop. 2009, 128, 104–109. [Google Scholar] [CrossRef]
- Ibeagha, A.E.; Ibeagha-Awemu, E.M.; Mehrzad, J.; Baurhoo, B.; Kgwatalala, P.; Zhao, X. The effect of selenium sources and supplementation on neutrophil functions in dairy cows. Animal 2009, 3, 1037–1043. [Google Scholar] [CrossRef]
- Hall, J.A.; Bobe, G.; Vorachek, W.R.; Kasper, K.; Traber, M.G.; Mosher, W.D.; Pirelli, G.J.; Gamroth, M. Effect of supranutritional organic selenium supplementation on postpartum blood micronutrients, antioxidants, metabolites, and inflammation biomarkers in selenium-replete dairy cows. Biol. Trace Elem. Res. 2014, 161, 272–287. [Google Scholar] [CrossRef] [PubMed]
- Pilarczyk, B.; Jankowiak, D.; Tomza-Marciniak, A.; Pilarczyk, R.; Sablik, P.; Drozd, R.; Tylkowska, A.; Skólmowska, M. Selenium Concentration and Glutathione Peroxidase (GSH-Px) Activity in Serum of Cows at Different Stages of Lactation. Biol. Trace Elem. Res. 2012, 147, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Guo, F.; Zhang, L.; Dong, B.; Gong, L. Effects of dietary selenomethionine supplementation on growth performance, antioxidant status, plasma selenium concentration, and immune function in weaning pigs. J. Anim. Sci. Biotechnol. 2014, 5, 46. [Google Scholar] [CrossRef] [Green Version]
- Ortman, K.; Pehrson, B. Effect of selenate as a feed supplement to dairy cows in comparison to selenite and selenium yeast. J. Anim. Sci. 1999, 77, 3365–3370. [Google Scholar] [CrossRef] [PubMed]
- Knowles, S.O.; Grace, N.; Wurms, K.; Lee, J. Significance of amount and form of dietary selenium on blood, milk, and casein selenium concentrations in grazing cows. J. Dairy Sci. 1999, 82, 429–437. [Google Scholar] [CrossRef]
- Rao, J.R. Study on functions of red blood cell immunity in Kunming Holstein cows. J. China Dairy Cattle 1999, 2, 20–21. [Google Scholar]
- Sivertsen, T.; Overnes, G.; Osterås, O.; Nymoen, U.; Lunder, T. Plasma vitamin E and blood selenium concentrations in Norwegian dairy cows: Regional differences and relations to feeding and health. Acta Vet. Scand. 2005, 46, 177–191. [Google Scholar] [CrossRef] [Green Version]
- Gong, J.; Xiao, M. Selenium and antioxidant status in dairy cows at different stages of lactation. Biol. Trace Elem. Res. 2016, 171, 89–93. [Google Scholar] [CrossRef]
- Fairweather-Tait, S.J.; Collings, R.; Hurst, R. Selenium bioavailability: Current knowledge and future research requirements. Am. J. Clin. Nutr. 2010, 91, 1484–1491. [Google Scholar] [CrossRef] [Green Version]
Items | % |
---|---|
Ingredients | |
Ground corn | 21.10 |
Soybean meal, 44% CP | 9.10 |
Barley | 3.40 |
Wheat bran | 2.10 |
Dried distillers grains with solubles | 13.00 |
Cottonseed meal | 4.40 |
Corn silage | 12.10 |
Alfalfa hay | 14.40 |
Grass hay | 7.90 |
Beet pulp | 8.00 |
Premix 1 | 4.50 |
Nutrient Composition 2 (DM basis) | |
Dry matter | 44.90 |
Crude protein | 16.60 |
Ether extract | 2.62 |
Neutral detergent fiber | 36.30 |
Acid detergent fiber | 23.40 |
Selenium | 0.04 |
Calcium | 0.71 |
Phosphorous | 0.37 |
Ash | 8.56 |
Net energy for lactation 3, Mcal/kg | 1.66 |
Item | Treatment | SEM | P-Value | ||
---|---|---|---|---|---|
Control | SS | HMBSe | |||
Dry matter intake, kg/d | 21.24 | 21.09 | 21.00 | 0.07 | 0.38 |
Yield, kg/d | |||||
Milk | 34.33 b | 33.44 b | 36.84 a | 0.35 | <0.01 |
4% Fat-corrected milk | 33.18 b | 32.37 b | 35.25 a | 0.31 | <0.01 |
Energy-corrected milk | 35.35 b | 35.14 b | 36.97 a | 0.32 | 0.03 |
Protein | 1.08 | 1.09 | 1.13 | 0.01 | 0.10 |
Fat | 1.29 | 1.29 | 1.32 | 0.02 | 0.60 |
Lactose | 1.73 | 1.74 | 1.79 | 0.02 | 0.24 |
Total solid | 4.49 | 4.54 | 4.60 | 0.04 | 0.39 |
Milk content, g/100 g | |||||
Protein | 3.11 | 3.19 | 3.14 | 0.02 | 0.28 |
Fat | 3.75 | 3.84 | 3.75 | 0.03 | 0.28 |
Lactose | 4.99 | 5.02 | 5.04 | 0.01 | 0.32 |
Total solid | 13.06 | 13.13 | 12.96 | 0.06 | 0.48 |
Milk urea nitrogen, mg/dL | 13.81 | 14.04 | 13.94 | 0.11 | 0.69 |
Feed efficiency | 1.63 b | 1.60 b | 1.72 a | 0.02 | 0.01 |
Item | Treatment | SEM | P-Value | ||
---|---|---|---|---|---|
Control | SS | HMBSe | |||
Albumin (g/L) | 42.49 | 40.96 | 42.18 | 0.50 | 0.43 |
Alkaline phosphatase (U/L) | 52.37 | 49.03 | 46.77 | 1.75 | 0.43 |
γ-glutamyltransferase (U/L) | 36.50 | 33.37 | 31.40 | 1.08 | 0.15 |
Aspartate Aminotransferase (U/L) | 91.27 | 97.83 | 92.57 | 3.13 | 0.67 |
Blood urea nitrogen (mmol/L) | 7.12 | 7.49 | 7.22 | 0.13 | 0.59 |
Cholesterol (mg/Dl) | 6.34 | 5.80 | 6.06 | 0.15 | 0.35 |
Globulin (g/L) | 37.97 | 42.59 | 40.66 | 1.05 | 0.20 |
Glucose (mmol/L) | 3.22 | 3.34 | 3.17 | 0.05 | 0.37 |
β- hydroxybutyric acid (μg/mL) | 43.25 | 38.04 | 39.89 | 1.34 | 0.28 |
Nonesterified fatty acids (μmol/L) | 245.66 | 230.42 | 274.67 | 9.31 | 0.15 |
Glutathione peroxidase (U/mL) | 112.71 | 109.53 | 122.04 | 2.44 | 0.09 |
Superoxide dismutase (U/mL) | 103.32 b | 105.74 b | 116.04 a | 2.04 | 0.02 |
Total antioxidant capacity (U/mL) | 2.27 | 2.35 | 2.57 | 0.05 | 0.06 |
Malondialdehyde (nmol/L) | 5.86 | 5.91 | 5.61 | 0.06 | 0.07 |
Item | Treatment | SEM | P-Value | ||
---|---|---|---|---|---|
Control | SS | HMBSe | |||
Red blood cells (106/μL) | 6.60 b | 6.84 b | 7.70 a | 0.14 | <0.01 |
Hemoglobin (g/dL) | 10.91 b | 11.20 b | 12.81 a | 0.27 | 0.01 |
Mean corpuscular hemoglobin (pg) | 16.61 | 16.40 | 16.75 | 0.15 | 0.65 |
White blood cells (103/uL) | 13.66 b | 14.07 b | 19.57 a | 0.89 | 0.01 |
Neutrophil (103/uL) | 5.24 | 4.58 | 5.16 | 0.64 | 0.90 |
Lymphocytes (103/uL) | 6.59 | 8.74 | 7.62 | 0.93 | 0.64 |
Monocytes (103/uL) | 1.10 | 1.08 | 0.98 | 0.10 | 0.87 |
Eosinophil (103/uL) | 0.69 | 0.51 | 0.67 | 0.05 | 0.35 |
Item | Treatment | SEM | P-Value | ||
---|---|---|---|---|---|
Control | SS | HMBSe | |||
Total Se | |||||
Milk, µg/kg | 25.18 b | 26.49 b | 42.06 a | 1.78 | <0.01 |
Serum, µg/kg | 77.09 b | 83.76 b | 94.56 a | 2.03 | <0.01 |
Milk/serum, % | 32.57 b | 32.06 b | 44.77 a | 1.71 | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhang, W.; Zhou, H.; Zhu, J.; Pan, C. Effects of Hydroxyselenomethionine with Symmetrical and Chelated Chemical Structure on Lactation Performances, Anti-Oxidative Status and Immunities, Selenium Transfer Efficiencies for Early-Lactating Dairy Cows. Symmetry 2022, 14, 916. https://doi.org/10.3390/sym14050916
Li Y, Zhang W, Zhou H, Zhu J, Pan C. Effects of Hydroxyselenomethionine with Symmetrical and Chelated Chemical Structure on Lactation Performances, Anti-Oxidative Status and Immunities, Selenium Transfer Efficiencies for Early-Lactating Dairy Cows. Symmetry. 2022; 14(5):916. https://doi.org/10.3390/sym14050916
Chicago/Turabian StyleLi, Yong, Weixian Zhang, Hualin Zhou, Jinfeng Zhu, and Chunmei Pan. 2022. "Effects of Hydroxyselenomethionine with Symmetrical and Chelated Chemical Structure on Lactation Performances, Anti-Oxidative Status and Immunities, Selenium Transfer Efficiencies for Early-Lactating Dairy Cows" Symmetry 14, no. 5: 916. https://doi.org/10.3390/sym14050916
APA StyleLi, Y., Zhang, W., Zhou, H., Zhu, J., & Pan, C. (2022). Effects of Hydroxyselenomethionine with Symmetrical and Chelated Chemical Structure on Lactation Performances, Anti-Oxidative Status and Immunities, Selenium Transfer Efficiencies for Early-Lactating Dairy Cows. Symmetry, 14(5), 916. https://doi.org/10.3390/sym14050916