Generalization of Some Fractional Integral Operator Inequalities for Convex Functions via Unified Mittag–Leffler Function
Abstract
:1. Introduction
- (i)
- A-convex function is an example of convex function;
- (ii)
- A -convex function is an example of an α-convex function;
- (iii)
- A -convex function is an example of an m-convex function.
2. Main Results
- (i)
- (ii)
- (iii)
- (iv)
- (v)
- (vi)
- (i)
- (ii)
- (iii)
- (iv)
- (v)
- (vi)
- (i)
- (ii)
- (iii)
- (iv)
- (v)
- (vi)
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mittag-Leffler, G. Sur la nouvelle fonction Eα(ϑ). Comptes Randus l’Academie Des Sci. Paris 1903, 137, 554–558. [Google Scholar]
- Srivastava, H.M.; Kumar, A.; Das, S.; Mehrez, K. Geometric properties of a certain class of Mittag–Leffler-type functions. Fractal Fract. 2020, 6, 54. [Google Scholar] [CrossRef]
- Singh, P.; Jain, S.; Cattani, C. Some unified integrals for generalized Mittag–Leffler functions. Axioms 2021, 10, 261. [Google Scholar] [CrossRef]
- Toader, G. Some generalizations of the convexity. In Proceedings of the Colloquium on Approximation and Optimization, Cluj-Napoca, Romania, 25–27 October 1985; pp. 329–338. [Google Scholar]
- Ion, D.A. Some estimates on the Hermite-Hadamard inequality through quasi-convex functions. An. Univ. Craiova Ser. Mat. Inform 2007, 34, 82–87. [Google Scholar]
- Polyak, B.T. Existence theorems and convergence of minimizing sequences in extremum problems with restrictions. Soviet Math. Dokl. 1966, 7, 72–75. [Google Scholar]
- Weir, T.; Mond, B. Pre-invex functions in multiple objective optimization. J. Math. Anal. Appl. 1988, 136, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.K.; Giorgi, G. Invexity and Optimization; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Alp, N.; Sarıkaya, M.Z.; Kunt, M.; İşcan, İ. q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J. King Saud Univ. Sci. 2018, 30, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Sun, W. Hermite–Hadamard type local fractional integral inequalities for generalized s-preinvex functions and their generalization. Fractals 2021, 29, 2150098. [Google Scholar] [CrossRef]
- Rashid, S.; Latif, M.A.; Hammouch, Z.; Chu, Y.M. Fractional integral inequalities for strongly h-preinvex functions for a kth order differentiable functions. Symmetry 2019, 11, 1448. [Google Scholar] [CrossRef] [Green Version]
- Rashid, S.; Safdar, F.; Akdemir, A.O.; Noor, M.A.; Noor, K.I. Some new fractional integral inequalities for exponentially m-convex functions via extended generalized Mittag-Leffler function. J. Inequal. Appl. 2019, 2019, 1–17. [Google Scholar] [CrossRef]
- Zhang, Y.; Farid, G.; Salleh, Z.; Ahmad, A. On a unified Mittag-Leffler function and associated fractional integral operator. Math. Probl. Eng. 2021, 2021, 1–9. [Google Scholar] [CrossRef]
- Mubeen, S.; Habibullah, G.M. k-Fractional integrals and applications. Int. J. Contemp. Math. Sci. 2012, 7, 89–94. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Akkurt, A.; Yildirim, M.E.; Yildirim, H. On some integral inequalities for (k, h)-Riemann-Liouville fractional integral. New Trends Math. Sci. 2016, 4, 138–146. [Google Scholar] [CrossRef]
- Andrić, M.; Farid, G.; Pečarić, J. A further extension of Mittag-Leffler function. Fract. Calc. Appl. Anal. 2018, 21, 1377–1395. [Google Scholar] [CrossRef]
- Farid, G. A unified integral operator and its consequences. Open J. Math. Anal. 2020, 4, 1–7. [Google Scholar] [CrossRef]
- Bhatnagar, D.; Pandey, R.M. A study of some integral transforms on Q function. South East Asian J. Math. Math. Sci. 2020, 16, 99–110. [Google Scholar]
- Gao, T.; Farid, G.; Ahmad, A.; Luangboon, W.; Nonlaopon, K. Fractional Minkowski-Type Integral Inequalities via the Unified Generalized Fractional Integral Operator. J. Funct. Spaces. 2022, 2022, 1–11. [Google Scholar] [CrossRef]
- Fejér, L. Uber die fourierreihen, II, Math. Naturwise. Anz Ungar. Akad. Wiss 1906, 24, 369–390. [Google Scholar]
- Farid, G. Some Riemann-Liouville fractional integral for inequalities for convex functions. J. Anal. 2018, 27, 1095–1102. [Google Scholar] [CrossRef]
- Mihesan, V.G. A Generalization of the Convexity, Seminar on Functional Equations; Approx. and Convex: Cluj-Napoca, Romania, 1993. [Google Scholar]
- Ni, B.; Farid, G.; Mahreen, K. Inequalities for a unified integral operator via (α,m)-convex functions. J. Math. 2020, 2020, 2345416. [Google Scholar] [CrossRef]
- Kwun, Y.C.; Farid, G.; Ullah, S.; Nazeer, W.; Mahreen, K.; Kang, S.M. Inequalities for a unified integral operator and associated results in fractional calculus. IEEE Access 2019, 7, 126283–126292. [Google Scholar] [CrossRef]
- Kang, S.M.; Farid, G.; Waseem, M.; Ullah, S.; Nazeer, W.; Mehmood, S. Generalized k-fractional integral inequalities associated with (α,m)-convex functions. J. Inequal. Appl. 2019, 2019, 255. [Google Scholar] [CrossRef] [Green Version]
- Farid, G.; Nazeer, W.; Saleem, M.S.; Mehmood, S.; Kang, S.M. Bounds of Riemann-Liouville fractional integrals in general form via convex functions and their applications. Mathematics 2018, 6, 248. [Google Scholar] [CrossRef] [Green Version]
- Farid, G. Estimation of Riemann-Liouville k-fractional integrals via convex functions. Acta Comment. Univ. Tartu. Math. 2019, 23, 71–78. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nonlaopon, K.; Farid, G.; Yasmeen, H.; Shah, F.A.; Jung, C.Y. Generalization of Some Fractional Integral Operator Inequalities for Convex Functions via Unified Mittag–Leffler Function. Symmetry 2022, 14, 922. https://doi.org/10.3390/sym14050922
Nonlaopon K, Farid G, Yasmeen H, Shah FA, Jung CY. Generalization of Some Fractional Integral Operator Inequalities for Convex Functions via Unified Mittag–Leffler Function. Symmetry. 2022; 14(5):922. https://doi.org/10.3390/sym14050922
Chicago/Turabian StyleNonlaopon, Kamsing, Ghulam Farid, Hafsa Yasmeen, Farooq Ahmed Shah, and Chahn Yong Jung. 2022. "Generalization of Some Fractional Integral Operator Inequalities for Convex Functions via Unified Mittag–Leffler Function" Symmetry 14, no. 5: 922. https://doi.org/10.3390/sym14050922
APA StyleNonlaopon, K., Farid, G., Yasmeen, H., Shah, F. A., & Jung, C. Y. (2022). Generalization of Some Fractional Integral Operator Inequalities for Convex Functions via Unified Mittag–Leffler Function. Symmetry, 14(5), 922. https://doi.org/10.3390/sym14050922