Thermodynamics for a Rotating Chiral Fermion System in the Uniform Magnetic Field
Abstract
1. Introduction
2. Dirac Equation in a Uniformly Rotating Frame
3. Landau Levels for a Single Right-Handed Fermion in a Rotating Frame
- When ,
- When ,
4. Particle Current
4.1. Ensemble Average
4.2. Particle Number Density
4.3. Particle Current along Z-Axis
5. Energy-Momentum Tensor
5.1. Energy Density
5.2. Pressure
5.3. Energy Current
6. Zero Temperature Limit
7. Summary
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Landau Levels for a Single Right-Handed Fermion
- (1)
- When , i.e., , ..., the boundary condition requires that
- (2)
- When , i.e., , the boundary condition requires thatIn addition, the boundary condition requires thatThen one obtains
- When ,
- When ,
Appendix B. Confluent Hypergeometric Function and Laguerre Polynomial
References
- Elze, H.T.; Gyulassy, M.; Vasak, D. Transport Equations for the QCD Quark Wigner Operator. Nucl. Phys. B 1986, 276, 706–728. [Google Scholar] [CrossRef]
- Vasak, D.; Gyulassy, M.; Elze, H.T. Quantum Transport Theory for Abelian Plasmas. Ann. Phys. 1987, 173, 462–492. [Google Scholar] [CrossRef]
- Gao, J.H.; Liang, Z.T.; Pu, S.; Wang, Q.; Wang, X.N. Chiral Anomaly and Local Polarization Effect from Quantum Kinetic Approach. Phys. Rev. Lett. 2012, 109, 232301. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.Z.; Gao, J.H.; Liang, Z.T.; Wang, Q. Second-order charge currents and stress tensor in a chiral system. Phys. Rev. D 2020, 102, 116024. [Google Scholar] [CrossRef]
- Sheng, X.L.; Fang, R.H.; Wang, Q.; Rischke, D.H. Wigner function and pair production in parallel electric and magnetic fields. Phys. Rev. D 2019, 99, 056004. [Google Scholar] [CrossRef]
- Buzzegoli, M.; Grossi, E.; Becattini, F. General equilibrium second-order hydrodynamic coefficients for free quantum fields. J. High Energy Phys. 2017, 10, 91. [Google Scholar] [CrossRef]
- Buzzegoli, M.; Becattini, F. General thermodynamic equilibrium with axial chemical potential for the free Dirac field. J. High Energy Phys. 2018, 12, 2. [Google Scholar] [CrossRef]
- Palermo, A.; Buzzegoli, M.; Becattini, F. Exact equilibrium distributions in statistical quantum field theory with rotation and acceleration: Dirac field. J. High Energy Phys. 2021, 10, 77. [Google Scholar] [CrossRef]
- Ambruș, V.E.; Winstanley, E. Rotating quantum states. Phys. Lett. B 2014, 734, 296–301. [Google Scholar] [CrossRef]
- Cangemi, D.; Dunne, G.V. Temperature expansions for magnetic systems. Ann. Phys. 1996, 249, 582–602. [Google Scholar] [CrossRef][Green Version]
- Zhang, C.; Fang, R.H.; Gao, J.H.; Hou, D.F. Thermodynamics of chiral fermion system in a uniform magnetic field. Phys. Rev. D 2020, 102, 56004. [Google Scholar] [CrossRef]
- Fang, R.H.; Dong, R.D.; Hou, D.F.; Sun, B.D. Thermodynamics of the system of massive Dirac fermions in a uniform magnetic field. Chin. Phys. Lett. 2021, 38, 91201. [Google Scholar] [CrossRef]
- Chen, H.L.; Huang, X.G.; Liao, J. QCD phase structure under rotation. In Strongly Interacting Matter under Rotation; Lecture Notes in Physics; Springer: Cham, Switzerland, 2021; Volume 987, pp. 349–379. [Google Scholar] [CrossRef]
- Fujimoto, Y.; Fukushima, K.; Hidaka, Y. Deconfining Phase Boundary of Rapidly Rotating Hot and Dense Matter and Analysis of Moment of Inertia. Phys. Lett. B 2021, 816, 136184. [Google Scholar] [CrossRef]
- Becattini, F.; Liao, J.; Lisa, M. Strongly Interacting Matter under Rotation: An Introduction. In Strongly Interacting Matter under Rotation; Lecture Notes in Physics; Springer: Cham, Switzerland, 2021; Volume 987, pp. 1–14. [Google Scholar] [CrossRef]
- Chen, H.L.; Fukushima, K.; Huang, X.G.; Mameda, K. Analogy between rotation and density for Dirac fermions in a magnetic field. Phys. Rev. D 2016, 93, 104052. [Google Scholar] [CrossRef]
- Fukushima, K.; Shimazaki, T.; Wang, L. Mode decomposed chiral magnetic effect and rotating fermions. Phys. Rev. D 2020, 102, 14045. [Google Scholar] [CrossRef]
- Chernodub, M.N.; Gongyo, S. Interacting fermions in rotation: Chiral symmetry restoration, moment of inertia and thermodynamics. J. High Energy Phys. 2017, 1, 136. [Google Scholar] [CrossRef]
- Chernodub, M.N.; Gongyo, S. Edge states and thermodynamics of rotating relativistic fermions under magnetic field. Phys. Rev. D 2017, 96, 96014. [Google Scholar] [CrossRef]
- Chernodub, M.N.; Gongyo, S. Effects of rotation and boundaries on chiral symmetry breaking of relativistic fermions. Phys. Rev. D 2017, 95, 96006. [Google Scholar] [CrossRef]
- Zhang, Z.; Shi, C.; Luo, X.; Zong, H.S. Rotating fermions inside a spherical boundary. Phys. Rev. D 2020, 102, 65002. [Google Scholar] [CrossRef]
- Yang, S.Y.; Fang, R.H.; Hou, D.F.; Ren, H.C. Chiral Vortical Effect in a Sphere with MIT Boundary Condition. arXiv 2021, arXiv:2111.13053. [Google Scholar]
- Liu, Y.; Zahed, I. Rotating Dirac fermions in a magnetic field in 1+2 and 1+3 dimensions. Phys. Rev. D 2018, 98, 14017. [Google Scholar] [CrossRef]
- Mottola, E.; Sadofyev, A.V. Chiral Waves on the Fermi-Dirac Sea: Quantum Superfluidity and the Axial Anomaly. Nucl. Phys. B 2021, 966, 115385. [Google Scholar] [CrossRef]
- Vilenkin, A. Parity Violating Currents in Thermal Radiation. Phys. Lett. B 1978, 80, 150–152. [Google Scholar] [CrossRef]
- Vilenkin, A. Macroscopic Parity Violating Effects: Neutrino Fluxes from Rotating Black Holes and in Rotating Thermal Radiation. Phys. Rev. D 1979, 20, 1807–1812. [Google Scholar] [CrossRef]
- Vilenkin, A. Equilibrium Parity Violating Current in a Magnetic Field. Phys. Rev. D 1980, 22, 3080–3084. [Google Scholar] [CrossRef]
- Felipe, R.; Martinez, A.; Rojas, H.; Orsaria, M. Magnetized strange quark matter and magnetized strange quark stars. Phys. Rev. C 2008, 77, 15807. [Google Scholar] [CrossRef]
- Itokazu, K.; Yanase, K.; Yoshinaga, N. Quark Star in a Strong Magnetic Field. JPS Conf. Proc. 2018, 23, 13003. [Google Scholar] [CrossRef]
- Hiscock, W.A.; Lindblom, L. Stability and causality in dissipative relativistic fluids. Ann. Phys. 1983, 151, 466–496. [Google Scholar] [CrossRef]
- Hiscock, W.A.; Lindblom, L. Generic instabilities in first-order dissipative relativistic fluid theories. Phys. Rev. D 1985, 31, 725–733. [Google Scholar] [CrossRef]
- Hiscock, W.A.; Lindblom, L. Linear plane waves in dissipative relativistic fluids. Phys. Rev. D 1987, 35, 3723–3732. [Google Scholar] [CrossRef]
- Denicol, G.S.; Kodama, T.; Koide, T.; Mota, P. Stability and Causality in relativistic dissipative hydrodynamics. J. Phys. G 2008, 35, 115102. [Google Scholar] [CrossRef]
- Jimenez-Alba, A.; Yee, H.U. Second order transport coefficient from the chiral anomaly at weak coupling: Diagrammatic resummation. Phys. Rev. D 2015, 92, 14023. [Google Scholar] [CrossRef]
- Hattori, K.; Yin, Y. Charge redistribution from anomalous magnetovorticity coupling. Phys. Rev. Lett. 2016, 117, 152002. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.Z.; Gao, J.H.; Liang, Z.T. Constraining non-dissipative transport coefficients in global equilibrium. arXiv 2022, arXiv:2203.14023. [Google Scholar] [CrossRef]
- Peskin, M.E.; Schroeder, D.V. An Introduction to Quantum Field Theory; Westview Press: New York, NY, USA, 1995. [Google Scholar]
- Parker, L.E.; Toms, D.J. Quantum field theory in curved spacetime. Quantum Field Theory in Curved Spacetime; Cambridge Univercity Press: Cambridge, UK, 2009. [Google Scholar]
- Dong, R.D.; Fang, R.H.; Hou, D.F.; She, D. Chiral magnetic effect for chiral fermion system. Chin. Phys. C 2020, 44, 74106. [Google Scholar] [CrossRef]
- Kharzeev, D.E.; McLerran, L.D.; Warringa, H.J. The Effects of topological charge change in heavy ion collisions: ‘Event by event P and CP violation’. Nucl. Phys. A 2008, 803, 227–253. [Google Scholar] [CrossRef]
- Fukushima, K.; Kharzeev, D.E.; Warringa, H.J. The Chiral Magnetic Effect. Phys. Rev. D 2008, 78, 74033. [Google Scholar] [CrossRef]
- Son, D.T.; Surowka, P. Hydrodynamics with Triangle Anomalies. Phys. Rev. Lett. 2009, 103, 191601. [Google Scholar] [CrossRef]
- Kharzeev, D.E.; Son, D.T. Testing the chiral magnetic and chiral vortical effects in heavy ion collisions. Phys. Rev. Lett. 2011, 106, 62301. [Google Scholar] [CrossRef]
- Son, D.T.; Yamamoto, N. Berry Curvature, Triangle Anomalies, and the Chiral Magnetic Effect in Fermi Liquids. Phys. Rev. Lett. 2012, 109, 181602. [Google Scholar] [CrossRef]
- Landsteiner, K.; Megias, E.; Pena-Benitez, F. Gravitational Anomaly and Transport Phenomena. Phys. Rev. Lett. 2011, 107, 21601. [Google Scholar] [CrossRef]
- Golkar, S.; Son, D.T. (Non)-renormalization of the chiral vortical effect coefficient. J. High Energy Phys. 2015, 2, 169. [Google Scholar] [CrossRef]
- Hou, D.F.; Liu, H.; Ren, H.c. A Possible Higher Order Correction to the Vortical Conductivity in a Gauge Field Plasma. Phys. Rev. D 2012, 86, 121703. [Google Scholar] [CrossRef]
- Lin, S.; Yang, L. Mass correction to chiral vortical effect and chiral separation effect. Phys. Rev. D 2018, 98, 114022. [Google Scholar] [CrossRef]
- Gao, J.h.; Pang, J.Y.; Wang, Q. Chiral vortical effect in Wigner function approach. Phys. Rev. D 2019, 100, 16008. [Google Scholar] [CrossRef]
- Shitade, A.; Mameda, K.; Hayata, T. Chiral vortical effect in relativistic and nonrelativistic systems. Phys. Rev. B 2020, 102, 205201. [Google Scholar] [CrossRef]
- Sheng, X.L.; Rischke, D.H.; Vasak, D.; Wang, Q. Wigner functions for fermions in strong magnetic fields. Eur. Phys. J. A 2018, 54, 21. [Google Scholar] [CrossRef]
- Sheng, X.L. Wigner Function for Spin-1/2 Fermions in Electromagnetic Fields. Ph.D. Thesis, Frankfurt University, Frankfurt, Germany, 2019. [Google Scholar]
- Zeng, J.Y. Quantum Mechanics; Science Press: Beijing, China, 2007; Volume 1. [Google Scholar]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 8th ed.; Academic Press: Oxford, UK, 2014. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, R.-H. Thermodynamics for a Rotating Chiral Fermion System in the Uniform Magnetic Field. Symmetry 2022, 14, 1106. https://doi.org/10.3390/sym14061106
Fang R-H. Thermodynamics for a Rotating Chiral Fermion System in the Uniform Magnetic Field. Symmetry. 2022; 14(6):1106. https://doi.org/10.3390/sym14061106
Chicago/Turabian StyleFang, Ren-Hong. 2022. "Thermodynamics for a Rotating Chiral Fermion System in the Uniform Magnetic Field" Symmetry 14, no. 6: 1106. https://doi.org/10.3390/sym14061106
APA StyleFang, R.-H. (2022). Thermodynamics for a Rotating Chiral Fermion System in the Uniform Magnetic Field. Symmetry, 14(6), 1106. https://doi.org/10.3390/sym14061106