An Efficient Method for Solving Second-Order Fuzzy Order Fuzzy Initial Value Problems
Abstract
:1. Introduction
2. Preliminaries
- μ is normal, i.e., for some ;
- μ is a fuzzy convex, i.e., for all ;
- μ is upper semi-continuous on ;
- is compact.
3. Second-Order Fuzzy Initial Value Problems
- (a)
- , ;
- (b)
- , , .
4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fullér, R.; Giove, S.; Masulli, S. Fuzzy Logic and Applications. In Proceedings of the 12th International Workshop, WILF 2018, Genoa, Italy, 6–7 September 2018; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- de Barros, L.C.; Santo Pedro, F. Fuzzy differential equations with interactive derivative. Fuzzy Sets Syst. 2017, 309, 64–80. [Google Scholar] [CrossRef]
- Baidosov, V.A. Fuzzy differential inclusions. J. Appl. Math. Mech. 1990, 54, 8–13. [Google Scholar] [CrossRef]
- Hüllermeier, E. Numerical methods for fuzzy initial value problems. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 1999, 7, 439–461. [Google Scholar] [CrossRef]
- Diamond, P. Stability and periodicity in fuzzy differential equations. IEEE Trans. Fuzzy Syst. 2000, 8, 583–590. [Google Scholar] [CrossRef]
- Lakshmikantham, V.; Mohapatra, R.N. Theory of Fuzzy Differential Equations and Inclusions; Taylor & Francis: Abingdon, UK, 2003. [Google Scholar]
- Sanchez, D.; de Barros, L.; Esmi, E. On interactive Fuzzy boundary value problems. Fuzzy Sets Syst. 2019, 358, 84–96. [Google Scholar] [CrossRef]
- Gong, Z. Fuzzy Laplace transform based on the Henstock integral and its applications in discontinuous fuzzy systems. Fuzzy Sets Syst. 2019, 358, 1–28. [Google Scholar] [CrossRef]
- Zhou, X.; Cao, B.; Nasseri, S. Optimality Conditions for Fuzzy Number Quadratic Programming with Fuzzy Coefficients. J. Appl. Math. 2014, 2014, 489893. [Google Scholar] [CrossRef]
- Tapaswini, S.; Chakraverty, S.; Nieto, J. Numerical solution of fuzzy boundary value problems using Galerkin method. Indian Acad. Sci. 2017, 42, 45–61. [Google Scholar] [CrossRef] [Green Version]
- Gumah, G.; Nasera, M.; Al-Smadi, M.; Al-Omari, S.; Baleanu, D. Numerical solutions of hybrid fuzzy differential equations in a Hilbert space. Appl. Numer. Math. 2020, 151, 402–412. [Google Scholar] [CrossRef]
- Patel, K.; Desai, N. Solution Of Fuzzy Initial Value Problems By Fuzzy Laplace Transform. Kalpa Publ. Comput. 2017, 2, 25–37. [Google Scholar]
- Diniz, M.; Gomes, L.; Bassanezi, R. Solution to Convex Variational Problems with Fuzzy Initial Condition Using Zadeh’s Extension. In Proceedings of the North American Fuzzy Information Processing Society Annual Conference, Fortaleza, Brazil, 4–6 July 2018; Springer: Berlin/Heidelberg, Germany, 2018; Volume 831, pp. 431–438. [Google Scholar]
- Wu, H.; Feng, S. Mixed Fuzzy Boundary Control Design for Nonlinear Coupled Systems of ODE and Boundary-Disturbed Uncertain Beam. IEEE Trans. Fuzzy Syst. 2018, 26, 3379–3390. [Google Scholar] [CrossRef]
- Suhhiem, M. New Numerical Approach for Solving Fuzzy Boundary Value Problems. Ann. Pure Appl. Math. 2019, 19, 147–159. [Google Scholar] [CrossRef]
- Niu, J.; Xu, M.; Lin, Y.; Xue, Q. Numerical solution of nonlinear singular boundary value problems. J. Comput. Appl. Math. 2018, 331, 42–51. [Google Scholar] [CrossRef]
- Shah, K.; Wang, J. A numerical scheme based on non-discretization of data for boundary value problems of fractional order differential equations. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. A Mat. 2019, 113, 2277–2294. [Google Scholar] [CrossRef]
- Roul, P. A fast and accurate computational technique for efficient numerical solution of nonlinear singular boundary value problems. Int. J. Comput. Math. 2019, 96, 51–72. [Google Scholar] [CrossRef]
- Wasques, V.; Esmi, E.; Barros, L.; Bede, B. Comparison Between Numerical Solutions of Fuzzy Initial-Value Problems via Interactive and Standard Arithmetics. Int. Fuzzy Syst. Assoc. World Congr. 2019, 1000, 704–715. [Google Scholar]
- Wasques, V.; Esmi, E.; Barros, L.; Sussner, P. Numerical Solution for Fuzzy Initial Value Problems via Interactive Arithmetic: Application to Chemical Reactions. Int. J. Comput. Intell. 2020, 13, 1517–1529. [Google Scholar] [CrossRef]
- Jeyaraj, T.; Rajan, D. Explicit Runge Kutta Method in Solving Fuzzy Intial Value Problem. Adv. Appl. Math. 2021, 20, 663–674. [Google Scholar]
- Al-Refai, S.; Syam, M.I.; Al-Refai, M. Optimization of One-Step Block Method for Solving SecondOrder Fuzzy Initial Value Problems. Complexity 2021, 2021, 6650413. [Google Scholar] [CrossRef]
- Kashkari, B.; Syam, M.I. Reproducing Kernel Method for Solving Nonlinear Fractional Fredholm integro-differential Equation. Complexity 2018, 2018, 2304858. [Google Scholar] [CrossRef]
- Du, H.; Zhao, G.; Zhao, C. Reproducing kernel method for solving Fredholm integro-differential equations with weakly singularity. J. Comput. Appl. Math. 2014, 255, 122–132. [Google Scholar] [CrossRef]
- Akgül, A. Reproducing Kernel Method for Fractional Derivative with Non-local and Non-singular Kernel. In Fractional Derivatives with Mittag-Leffler Kernel; Springer: Berlin/Heidelberg, Germany, 2019; Volume 194, pp. 1–12. [Google Scholar]
- Akgül, A. Reproducing kernel Hilbert space method based on reproducing kernel functions for investigating boundary layer flow of a Powell-Eyring non-Newtonian fluid. J. Taibah Univ. Sci. 2019, 13, 858–863. [Google Scholar] [CrossRef] [Green Version]
- Sadamoto, S.; Ozdemir, M.; Tanaka, S.; Taniguchi, K.; Yu, T.; Bui, T. An effective meshfree reproducing kernel method for buckling analysis of cylindrical shells with and without cutouts. Comput. Mech. 2017, 59, 919–932. [Google Scholar] [CrossRef]
- Gholami, N.; Allahviranloo, T.; Abbasbandy, S.; Karamikabir, N. Fuzzy reproducing kernel space method for solving fuzzy boundary value problems. Math. Sci. 2019, 13, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Mei, L.; Lin, Y. Simplified reproducing kernel method and convergence order for linear Volterra integral equations with variable coefficients. J. Comput. Appl. Math. 2019, 346, 390–398. [Google Scholar] [CrossRef]
- Geng, F.; Qian, S. Modified reproducing kernel method for singularly perturbed boundary value problems with a delay. Appl. Math. Model. 2015, 39, 5592–5597. [Google Scholar] [CrossRef]
- Li, X.; Wu, B. A new reproducing kernel method for variable order fractional boundary value problems for functional differential equations. J. Comput. Appl. Math. 2017, 311, 387–393. [Google Scholar] [CrossRef]
- Moradi, F.; Javadi, S. Reproducing Kernel Method for Solving Nonlinear Oscillators Under Damping Effect. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 763–772. [Google Scholar] [CrossRef]
- Alvandi, A.; Paripour, M. The combined reproducing kernel method and Taylor series for handling nonlinear Volterra integro-differential equations with derivative type kernel. Appl. Math. Comput. 2019, 355, 151–160. [Google Scholar] [CrossRef]
- Arquba, O.; Al-Smadi, M.; Shawagfeh, N. Solving Fredholm integro-differential equations using reproducing kernel Hilbert space method. Appl. Math. Comput. 2013, 219, 8938–8948. [Google Scholar] [CrossRef]
- Saadeh, R.; Smadi, M.; Gumah, G.; Khalil, H.; Khan, R. Numerical Investigation for Solving Two-Point Fuzzy Boundary Value Problems by Reproducing Kernel Approach. Appl. Math. Inf. Sci. 2016, 10, 1–13. [Google Scholar] [CrossRef]
- Qi, M.; Yang, Z.P.; Xu, T.Z. A reproducing kernel method for solving nonlocal fractional boundary value problems with uncertainty. Soft Comput. 2017, 21, 4019–4028. [Google Scholar] [CrossRef]
- Allahviranloo, T.; Noeiaghdam, Z.; Noeiaghdam, S.; Nieto, J. A fuzzy Method for solving fuzzy fractional differential equations based on the generalized fuzzy Taylor expansion. Mathematics 2020, 8, 2166. [Google Scholar] [CrossRef]
- Inc, M.; Akgül, A.; Geng, F. Reproducing Kernel Hilbert Space Method for Solving Bratu’s Problem. Bull. Malays. Math. Sci. Soc. 2015, 38, 271–287. [Google Scholar] [CrossRef]
- Arqub, O. Numerical solutions of systems of first-order, two-point BVPs based on the reproducing kernel algorithm. Calcolo 2018, 55, 31. [Google Scholar] [CrossRef]
0 | 0 | 0 |
× | ||
1 |
0 | 0 | 0 |
1 |
0 | 0 | 0 |
1 |
0 | 0 | 0 |
1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dallashi, Q.; Syam, M.I. An Efficient Method for Solving Second-Order Fuzzy Order Fuzzy Initial Value Problems. Symmetry 2022, 14, 1218. https://doi.org/10.3390/sym14061218
Dallashi Q, Syam MI. An Efficient Method for Solving Second-Order Fuzzy Order Fuzzy Initial Value Problems. Symmetry. 2022; 14(6):1218. https://doi.org/10.3390/sym14061218
Chicago/Turabian StyleDallashi, Qamar, and Muhammed I. Syam. 2022. "An Efficient Method for Solving Second-Order Fuzzy Order Fuzzy Initial Value Problems" Symmetry 14, no. 6: 1218. https://doi.org/10.3390/sym14061218
APA StyleDallashi, Q., & Syam, M. I. (2022). An Efficient Method for Solving Second-Order Fuzzy Order Fuzzy Initial Value Problems. Symmetry, 14(6), 1218. https://doi.org/10.3390/sym14061218