Analysis of the Fractional-Order Local Poisson Equation in Fractal Porous Media
Abstract
:1. Introduction
2. Basic Definitions
3. Fractional Local Sumudu Transformation
4. Fractional Local Homotopy Perturbation Transformation Method
5. Non-Differential Solutions for the Fractional Local Poisson Equation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Evants, L.C. Partial differential equations. In Graduate Studies in Mathematics; American Mathematical Society: Providence, RI, USA, 1998; Volume 19. [Google Scholar]
- Elman, H.C.; Silvester, D.J.; Wathen, A. Finite and First Iterative Solvers: With Applications in Incompressible Fluid Dynamics; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Derriennic, Y.; Lin, M. Fractional Poission equations and ergodic theorems for factional coboundaries, Israel. J. Math. 2001, 123, 93–130. [Google Scholar]
- Griffiths, D.J.; College, R. Introduction to Electrodynamics; Prentice Hall: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Kellogg, R.B. On the Poission equation with intersecting interfaces. Appl. Anal. 1974, 4, 101–129. [Google Scholar] [CrossRef]
- Jassim, H.K. Solving Poisson equation within local fractional derivative operators. Res. Appl. Math. 2017, 1, 101253. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Zhao, Y.; Jafari, H.; Tenreiro Machado, J.A.; Yang, X.J. Local fractional variational iteration method for local fractional Poisson equations in two independent variables. Abstr. Appl. Anal. 2014, 2014, 484323–484327. [Google Scholar] [CrossRef]
- El-Sayed, A.; Hamdallah, E.; Ba-Ali, M. Qualitative Study for a Delay Quadratic Functional Integro-Differential Equation of Arbitrary (Fractional) Orders. Symmetry 2022, 14, 784. [Google Scholar] [CrossRef]
- Betbeder-Matibet, O.; Nozieres, P. Transport equations in clean superconductors. Ann. Phys. 1969, 51, 392–417. [Google Scholar] [CrossRef]
- Schunk, R.W. Transport equations for aeronomy. Planet Space Sci. 1975, 23, 437–485. [Google Scholar] [CrossRef]
- Blotekjaer, K. Transport equations for electrons in two-valley semiconductors. IEEE Trans. Electron. Devices 1970, 17, 38–47. [Google Scholar] [CrossRef]
- Daly, B.J.; Harlow, F.H. Transport equations in turbulence. Phys. Fluids 1970, 13, 2634–2649. [Google Scholar] [CrossRef]
- Mikhailovskii, A.B.; Tsypin, V.S. Transport equations of plasma in a curvilinear magnetic field. Beitraege Aus. Der. Plasmaphys. 1984, 24, 335–354. [Google Scholar] [CrossRef]
- Tanenbaum, B.S. Transport equations for a gas mixture. Phys. Fluids 1965, 8, 683–686. [Google Scholar] [CrossRef]
- Perthame, B. Transport Equations in Biology; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Tarasov, V.E. Transport equations from Liouville equations for fractional systems. Int. J. Mod. Phys. B 2006, 20, 341–353. [Google Scholar] [CrossRef] [Green Version]
- Zaslavsky, G.M. Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 2002, 371, 461–580. [Google Scholar] [CrossRef]
- Uchaikin, V.V.; Sibatov, R.T. Fractional theory for transport in disordered semiconductors. Commun. Nonlinear Sci. Numer Simul. 2008, 13, 715–727. [Google Scholar] [CrossRef]
- Lutz, E. Fractional transport equations for Levy stable processes. Phys. Rev. Lett. 2001, 86, 2208–2211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadem, A.; Luchko, Y.; Baleanu, D. Spectral method for solution of the fractional transport equation. Rep. Math Phys. 2010, 66, 103–115. [Google Scholar] [CrossRef]
- Li, M.; Hui, X.F.; Cattani, C.; Yang, X.J.; Zhao, Y. Approximate solutions for local fractional linear transport equations arising in fractal porous media. Adv. Math Phys. 2014, 2014. [Google Scholar] [CrossRef]
- Saad, K.M. A different approach for the fractional chemical model. Rev. Mex. Fis. 2022, 68, 1–13. [Google Scholar] [CrossRef]
- Alqhtani, M.; Saad, K.M. Numerical solutions of space-fractional diffusion equations via the exponential decay kernel. AIMS Math. 2022, 7, 6535–6549. [Google Scholar] [CrossRef]
- Rayneau-Kirkhope, D.; Mao, Y.; Farr, R. Ultra light fractal structures from hollow tubes. Phys. Rev. Lett. 2012, 109, 204301–204304. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, D.; Baleanu, D.; Rathore, S. On the local fractional wave equation in fractal strings. Math Methods Appl. Sci. 2019, 42, 1588–1595. [Google Scholar] [CrossRef]
- Iqbal, N.; Akgul, A.; Shah, R.; Bariq, A.; Mossa Al-Sawalha, M.; Ali, A. On Solutions of Fractional-Order Gas Dynamics Equation by Effective Techniques. J. Funct. Spaces 2022, 2022, 1–14. [Google Scholar] [CrossRef]
- Povstenko, Y.Z. Fractional heat conduction equation and associated thermal stress. J. Therm. Stresses 2004, 28, 83–102. [Google Scholar] [CrossRef]
- Wang, Q.L.; He, J.H.; Li, Z.B. Fractional model for heat conduction in polar hairs. Thermal. Sci. 2012, 16, 339–342. [Google Scholar] [CrossRef]
- Shih, T.M. A literature survey on numerical heat transfer. Numer. Heat Transf. Fundam. 1982, 5, 369–420. [Google Scholar]
- Hristov, J. Heat-balance integral to fractional (half-time) heat diffusion sub-model. Thermal. Sci. 2010, 14, 291–316. [Google Scholar] [CrossRef]
- Yang, X.J.; Baleanu, D. Fractal heat conduction problem solved by local fractional variation iteration method. Thermal. Sci. 2013, 17, 625–628. [Google Scholar] [CrossRef]
- Shah, R.; Khan, H.; Kumam, P.; Arif, M. An analytical technique to solve the system of nonlinear fractional partial differential equations. Mathematics 2019, 7, 505. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Shah, R.; Khan, H.; Arif, M. Some analytical and numerical investigation of a family of fractional-order Helmholtz equations in two space dimensions. Math. Methods Appl. Sci. 2020, 43, 199–212. [Google Scholar] [CrossRef]
- Alaoui, M.K.; Fayyaz, R.; Khan, A.; Shah, R.; Abdo, M.S. Analytical investigation of Noyes-Field model for time-fractional Belousov-Zhabotinsky reaction. Complexity 2021, 2021. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Saad, K.M.; Hamanah, W.M. Certain New Models of the Multi-Space Fractal-Fractional Kuramoto-Sivashinsky and Korteweg-de Vries Equations. Mathematics 2022, 10, 1089. [Google Scholar] [CrossRef]
- Alqhtani, M.; Saad, K.M. Fractal-Fractional Michaelis-Menten Enzymatic Reaction Model via Different Kernels. Fractal Fract. 2021, 6, 13. [Google Scholar] [CrossRef]
- He, H.J. Homotopy perturbation method: A new nonlinear analytical technique. Appl. Math. Comput. 2003, 135, 73–79. [Google Scholar] [CrossRef]
- Elzaki, T.M. The new integral transform ‘Elzaki transform’. Glob. J. Pure Appl. 2011, 71, 57–64. [Google Scholar]
- Alshikh, A.A. Comparative Study Between Laplace Transform and Two New Integrals “ELzaki” Transform and “Aboodh” Transform. Pure Appl. Math. J. 2016, 5, 145. [Google Scholar] [CrossRef] [Green Version]
- Elzaki, T.; Alkhateeb, S. Modification of Sumudu transform “Elzaki transform” and adomian decomposition method. Appl. Math. Sci. 2015, 9, 603–611. [Google Scholar] [CrossRef]
- Jena, R.; Chakraverty, S. Solving time-fractional Navier-Stokes equations using homotopy perturbation Elzaki transform. SN Appl. Sci. 2018, 1, 16. [Google Scholar] [CrossRef] [Green Version]
- Mahgoub, M.; Sedeeg, A. A Comparative Study for Solving Nonlinear Fractional Heat-Like Equations via Elzaki Transform. Br. J. Math. Comput. Sci. 2016, 19, 1–12. [Google Scholar] [CrossRef]
- Das, S.; Gupta, P. An Approximate Analytical Solution of the Fractional Diffusion Equation with Absorbent Term and External Force by Homotopy Perturbation Method. Z. Fur Nat. 2010, 65, 182–190. [Google Scholar] [CrossRef]
- Singh, P.; Sharma, D. Comparative study of homotopy perturbation transformation with homotopy perturbation Elzaki transform method for solving nonlinear fractional PDE. Nonlinear Eng. 2019, 9, 60–71. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, D.; Nieto, J.J. A reliable algorithm for a local fractional tricomi equation arising in fractal transonic flow. Entropy 2016, 18, 206. [Google Scholar] [CrossRef] [Green Version]
- Watugala, G.K. Sumudu transform A new integral transform to solve differential equations and control engineering problems. Int. J. Math. Educ. Sci. Technol. 1993, 24, 35–43. [Google Scholar] [CrossRef]
- Belgacem, F.B.M.; Karaballi, A.A.; Kalla, S.L. Analytical investigations of the Sumudu transform and applications to integral production equations. Math. Probl. Eng. 2003, 3, 103–118. [Google Scholar] [CrossRef] [Green Version]
- Belgacem, F.B.M.; Karaballi, A.A. Sumudu Transform Fundamental Properties Investigations and Applications. J. Appl. Math. Stoch. Anal. 2006, 2006, 91083. [Google Scholar] [CrossRef]
- Katatbeh, Q.K.; Belgacem, F.B.M. Applications of the Sumudu transform to fractional differential equations. Nonlinear Stud. 2011, 18, 99–112. [Google Scholar]
- Gupta, V.G.; Sharma, B.; Belgacem, F.B.M. On the solutions of generalized fractional kinetic equations. Appl. Math. Sci. 2011, 5, 899–910. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.H.; Acan, O.; Kumar, S. Sumudu transform series expansion method for solving the local fractional Laplace equation in fractal thermal problems. Therm. Sci. 2016, 20, 739–742. [Google Scholar] [CrossRef]
- Aljahdaly, N.; Akgül, A.; Mahariq, I.; Kafle, J. A Comparative Analysis of the Fractional-Order Coupled Korteweg–De Vries Equations with the Mittag–Leffler Law. J. Math. 2022, 2022, 1–30. [Google Scholar] [CrossRef]
- Gao, F.; Srivastava, H.M.; Gao, Y.N.; Yang, X.J. A coupling method involving the Sumudu transform and the variational iteration method for a class of local fractional diffusion equations. J. Nonlinear Sci. Appl. 2016, 9, 5830–5835. [Google Scholar] [CrossRef]
- Areshi, M.; Khan, A.; Shah, R.; Nonlaopon, K. Analytical investigation of fractional-order Newell-Whitehead-Segel equations via a novel transform. AIMS Math. 2022, 7, 6936–6958. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Golmankhaneh, A.K.; Baleanu, D.; Yang, X.J. Local Fractional Sumudu Transform with Application to IVPs on Cantor Sets. Abstr. Appl. Anal. 2014, 2014, 620529. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.; Kumar, D.; Kumar, S. An efficient computational method for local fractional transport equation occurring in fractal porous media. Comput. Appl. Math. 2020, 39, 137. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqhtani, M.; Saad, K.M.; Shah, R.; Weera, W.; Hamanah, W.M. Analysis of the Fractional-Order Local Poisson Equation in Fractal Porous Media. Symmetry 2022, 14, 1323. https://doi.org/10.3390/sym14071323
Alqhtani M, Saad KM, Shah R, Weera W, Hamanah WM. Analysis of the Fractional-Order Local Poisson Equation in Fractal Porous Media. Symmetry. 2022; 14(7):1323. https://doi.org/10.3390/sym14071323
Chicago/Turabian StyleAlqhtani, Manal, Khaled M. Saad, Rasool Shah, Wajaree Weera, and Waleed M. Hamanah. 2022. "Analysis of the Fractional-Order Local Poisson Equation in Fractal Porous Media" Symmetry 14, no. 7: 1323. https://doi.org/10.3390/sym14071323
APA StyleAlqhtani, M., Saad, K. M., Shah, R., Weera, W., & Hamanah, W. M. (2022). Analysis of the Fractional-Order Local Poisson Equation in Fractal Porous Media. Symmetry, 14(7), 1323. https://doi.org/10.3390/sym14071323