Cosmic Neutrinos as a Window to Departures from Special Relativity
Abstract
:1. Introduction
2. Beyond Special Relativity
2.1. Lorentz Invariance Violation
2.2. Doubly Special Relativity
3. Production of High-Energy Cosmic Neutrinos
4. Propagation of Cosmic Neutrinos
5. Detection of Cosmic Neutrinos
6. Discussion and Future Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Pauli, W. Dear radioactive ladies and gentlemen. Phys. Today 1978, 31N9, 27. [Google Scholar]
- Peccei, R.D.; Quinn, H.R. CP Conservation in the Presence of Instantons. Phys. Rev. Lett. 1977, 38, 1440–1443. [Google Scholar] [CrossRef] [Green Version]
- Peccei, R.D.; Quinn, H.R. Constraints Imposed by CP Conservation in the Presence of Instantons. Phys. Rev. D 1977, 16, 1791–1797. [Google Scholar] [CrossRef]
- Weinberg, S. A New Light Boson? Phys. Rev. Lett. 1978, 40, 223–226. [Google Scholar] [CrossRef]
- Wilczek, F. Problem of Strong P and T Invariance in the Presence of Instantons. Phys. Rev. Lett. 1978, 40, 279–282. [Google Scholar] [CrossRef]
- Kim, J.E. Weak Interaction Singlet and Strong CP Invariance. Phys. Rev. Lett. 1979, 43, 103. [Google Scholar] [CrossRef]
- Shifman, M.A.; Vainshtein, A.I.; Zakharov, V.I. Can Confinement Ensure Natural CP Invariance of Strong Interactions? Nucl. Phys. B 1980, 166, 493–506. [Google Scholar] [CrossRef]
- Dine, M.; Fischler, W.; Srednicki, M. A Simple Solution to the Strong CP Problem with a Harmless Axion. Phys. Lett. B 1981, 104, 199–202. [Google Scholar] [CrossRef]
- Preskill, J.; Wise, M.B.; Wilczek, F. Cosmology of the Invisible Axion. Phys. Lett. B 1983, 120, 127–132. [Google Scholar] [CrossRef] [Green Version]
- Abbott, L.F.; Sikivie, P. A Cosmological Bound on the Invisible Axion. Phys. Lett. B 1983, 120, 133–136. [Google Scholar] [CrossRef]
- Dine, M.; Fischler, W. The Not So Harmless Axion. Phys. Lett. B 1983, 120, 137–141. [Google Scholar] [CrossRef]
- Batell, B.; Pospelov, M.; Ritz, A. Exploring Portals to a Hidden Sector Through Fixed Targets. Phys. Rev. D 2009, 80, 095024. [Google Scholar] [CrossRef] [Green Version]
- Beacham, J.; Burrage, C.; Curtin, D.; De Roeck, A.; Evans, J.; Feng, J.L.; Gatto, C.; Gninencko, S.; Hartin, A.; Irastoza, I.; et al. Physics Beyond Colliders at CERN: Beyond the Standard Model Working Group Report. J. Phys. G 2020, 47, 010501. [Google Scholar] [CrossRef]
- Argüelles, C.A.; Aurisano, A.J.; Batell, B.; Berger, J.; Bishai, M.; Boschi, T.; Byrnes, N.; Chatterjee, A.; Chodos, A.; Coan, T.; et al. New opportunities at the next-generation neutrino experiments I: BSM neutrino physics and dark matter. Rep. Prog. Phys. 2020, 83, 124201. [Google Scholar] [CrossRef]
- Ellis, R.K.; Heinemann, B.; de Blas, J.; Cepeda, M.; Grojean, C.; Maltoni, F.; Nisati, A.; Petit, E.; Rattazzi, R.; Verkerke, W.; et al. Physics Briefing Book: Input for the European Strategy for Particle Physics Update 2020; CERN: Geneva, Switzerland, 2019. [Google Scholar]
- Lanfranchi, G.; Pospelov, M.; Schuster, P. The Search for Feebly Interacting Particles. Ann. Rev. Nucl. Part. Sci. 2021, 71, 279–313. [Google Scholar] [CrossRef]
- Fantini, G.; Gallo Rosso, A.; Vissani, F.; Zema, V. Introduction to the Formalism of Neutrino Oscillations. Adv. Ser. Direct. High Energy Phys. 2018, 28, 37–119. [Google Scholar]
- Bilenky, S.M. Neutrinos: Majorana or Dirac? Universe 2020, 6, 134. [Google Scholar] [CrossRef]
- Addazi, A.; Alvarez-Muniz, J.; Batista, R.A.; Amelino-Camelia, G.; Antonelli, V.; Arzano, M.; Asorey, M.; Atteia, J.-L.; Bahamonde, S.; Bajardi, F.; et al. Quantum gravity phenomenology at the dawn of the multi-messenger era—A review. Prog. Part. Nucl. Phys. 2022, 125, 103948. [Google Scholar] [CrossRef]
- Argüelles, C.A.; Katori, T. Lorentz Symmetry and High-Energy Neutrino Astronomy. Universe 2021, 7, 490. [Google Scholar] [CrossRef]
- Stecker, F.W. Testing Lorentz Invariance with Neutrinos. arXiv 2022, arXiv:2202.01183. [Google Scholar]
- Colladay, D.; Kostelecky, V.A. Lorentz violating extension of the standard model. Phys. Rev. 1998, D58, 116002. [Google Scholar] [CrossRef] [Green Version]
- Kostelecky, V.A.; Russell, N. Data Tables for Lorentz and CPT Violation. Rev. Mod. Phys. 2011, 83, 11–31. [Google Scholar] [CrossRef] [Green Version]
- Barenboim, G. Some Aspects About Pushing the CPT and Lorentz Invariance Frontier With Neutrinos. Front. Phys. 2022, 10, 813753. [Google Scholar] [CrossRef]
- Colladay, D.; Kostelecky, V.A. CPT violation and the standard model. Phys. Rev. D 1997, 55, 6760–6774. [Google Scholar] [CrossRef] [Green Version]
- Mattingly, D. Modern tests of Lorentz invariance. Living Rev.Rel. 2005, 8, 5. [Google Scholar] [CrossRef] [Green Version]
- Liberati, S. Tests of Lorentz invariance: A 2013 update. Class. Quant. Grav. 2013, 30, 133001. [Google Scholar] [CrossRef]
- Carmona, J.M.; Cortes, J.L.; Mazon, D. Uncertainties in Constraints from Pair Production on Superluminal Neutrinos. Phys. Rev. D 2012, 85, 113001. [Google Scholar] [CrossRef] [Green Version]
- Crivellin, A.; Kirk, F.; Schreck, M. Implications of SU(2)L gauge invariance for constraints on Lorentz violation. JHEP 2021, 4, 82. [Google Scholar] [CrossRef]
- Amelino-Camelia, G. Quantum-Spacetime Phenomenology. Living Rev. Rel. 2013, 16, 5. [Google Scholar] [CrossRef] [Green Version]
- Kowalski-Glikman, J. De sitter space as an arena for doubly special relativity. Phys. Lett. B 2002, 547, 291–296. [Google Scholar] [CrossRef] [Green Version]
- Amelino-Camelia, G. Testable scenario for relativity with minimum length. Phys. Lett. B 2001, 510, 255–263. [Google Scholar] [CrossRef] [Green Version]
- Amelino-Camelia, G. Relativity in space-times with short distance structure governed by an observer independent (Planckian) length scale. Int. J. Mod. Phys. D 2002, 11, 35–60. [Google Scholar] [CrossRef]
- Kato, M. Particle Theories With Minimum Observable Length and Open String Theory. Phys. Lett. 1990, B245, 43–47. [Google Scholar] [CrossRef]
- Susskind, L. String theory and the principles of black hole complementarity. Phys. Rev. Lett. 1993, 71, 2367–2368. [Google Scholar] [CrossRef] [Green Version]
- Garay, L.J. Quantum gravity and minimum length. Int. J. Mod. Phys. 1995, A10, 145–166. [Google Scholar] [CrossRef] [Green Version]
- Hossenfelder, S. Minimal Length Scale Scenarios for Quantum Gravity. Living Rev.Rel. 2013, 16, 2. [Google Scholar] [CrossRef] [Green Version]
- Majid, S. Foundations of Quantum Group Theory; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Majid, S.; Ruegg, H. Bicrossproduct structure of kappa Poincare group and noncommutative geometry. Phys. Lett. 1994, B334, 348–354. [Google Scholar] [CrossRef] [Green Version]
- Lukierski, J.; Nowicki, A.; Ruegg, H. New quantum Poincare algebra and k deformed field theory. Phys. Lett. 1992, B293, 344–352. [Google Scholar] [CrossRef] [Green Version]
- Carmona, J.M.; Cortés, J.L.; Relancio, J.J. Relativistic deformed kinematics from momentum space geometry. Phys. Rev. 2019, D100, 104031. [Google Scholar] [CrossRef] [Green Version]
- Lizzi, F.; Manfredonia, M.; Mercati, F. The momentum spaces of κ-Minkowski noncommutative spacetime. Nucl. Phys. B 2020, 958, 115117. [Google Scholar] [CrossRef]
- Carmona, J.M.; Cortés, J.L.; Relancio, J.J. Curved Momentum Space, Locality, and Generalized Space-Time. Universe 2021, 7, 99. [Google Scholar] [CrossRef]
- Relancio, J.J. Geometry of multiparticle systems with a relativistic deformed kinematics and the relative locality principle. Phys. Rev. D 2021, 104, 024017. [Google Scholar] [CrossRef]
- Carmona, J.M.; Cortes, J.L.; Romeo, B. Nonuniversal relativistic kinematics. Phys. Rev. D 2015, 91, 085036. [Google Scholar] [CrossRef] [Green Version]
- Albalate, G.; Carmona, J.M.; Cortés, J.L.; Relancio, J.J. Twin Peaks: A possible signal in the production of resonances beyond special relativity. Symmetry 2018, 10, 432. [Google Scholar] [CrossRef] [Green Version]
- Relancio, J.; Liberati, S. Constraints on the deformation scale of a geometry in the cotangent bundle. Phys. Rev. D 2020, 102, 104025. [Google Scholar] [CrossRef]
- Carmona, J.M.; Cortés, J.L.; Pereira, L.; Relancio, J.J. Bounds on Relativistic Deformed Kinematics from the Physics of the Universe Transparency. Symmetry 2020, 12, 1298. [Google Scholar] [CrossRef]
- Carmona, J.M.; Cortés, J.L.; Relancio, J.J.; Reyes, M.A.; Vincueria, A. Modification of the mean free path of very high energy photons due to a relativistic deformed kinematics. arXiv 2021, arXiv:2109.08402. [Google Scholar]
- Amelino-Camelia, G.; Freidel, L.; Kowalski-Glikman, J.; Smolin, L. The principle of relative locality. Phys. Rev. 2011, D84, 084010. [Google Scholar] [CrossRef] [Green Version]
- Amelino-Camelia, G.; Freidel, L.; Kowalski-Glikman, J.; Smolin, L. Relative locality: A deepening of the relativity principle. Gen. Rel. Grav. 2011, 43, 2547–2553. [Google Scholar] [CrossRef] [Green Version]
- Carmona, J.M.; Cortes, J.L.; Relancio, J.J. Spacetime and deformations of special relativistic kinematics. Symmetry 2019, 11, 1401. [Google Scholar] [CrossRef] [Green Version]
- Carmona, J.M.; Cortes, J.L.; Mazon, D.; Mercati, F. About Locality and the Relativity Principle Beyond Special Relativity. Phys. Rev. D 2011, 84, 085010. [Google Scholar] [CrossRef] [Green Version]
- Amelino-Camelia, G. On the fate of Lorentz symmetry in relative-locality momentum spaces. Phys. Rev. D 2012, 85, 084034. [Google Scholar] [CrossRef] [Green Version]
- Gubitosi, G.; Heefer, S. Relativistic compatibility of the interacting κ-Poincaré model and implications for the relative locality framework. Phys. Rev. D 2019, 99, 086019. [Google Scholar] [CrossRef] [Green Version]
- Hossenfelder, S. Multi-Particle States in Deformed Special Relativity. Phys.Rev. 2007, D75, 105005. [Google Scholar]
- Amelino-Camelia, G.; Freidel, L.; Kowalski-Glikman, J.; Smolin, L. Relative locality and the soccer ball problem. Phys. Rev. D 2011, 84, 087702. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Huerta, H.; Lang, R.G.; de Souza, V. Lorentz Invariance Violation Tests in Astroparticle Physics. Symmetry 2020, 12, 1232. [Google Scholar] [CrossRef]
- Carmona, J.M.; Cortes, J.L.; Mercati, F. Relativistic kinematics beyond Special Relativity. Phys. Rev. D 2012, 86, 084032. [Google Scholar] [CrossRef] [Green Version]
- Carmona, J.M.; Cortés, J.L.; Relancio, J.J.; Reyes, M.A. Modified Kinematics in the Collinear Approximation. On preparation.
- Carmona, J.M.; Cortes, J.L.; Relancio, J.J.; Reyes, M.A. Lorentz violation footprints in the spectrum of high-energy cosmic neutrinos: Deformation of the spectrum of superluminal neutrinos from electron-positron pair production in vacuum. Symmetry 2019, 11, 1419. [Google Scholar] [CrossRef] [Green Version]
- Mattingly, D.M.; Maccione, L.; Galaverni, M.; Liberati, S.; Sigl, G. Possible cosmogenic neutrino constraints on Planck-scale Lorentz violation. J. Cosmol. Astropart. Phys. 2010, 2, 7. [Google Scholar] [CrossRef]
- Stecker, F.W.; Scully, S.T.; Liberati, S.; Mattingly, D. Searching for Traces of Planck-Scale Physics with High Energy Neutrinos. Phys. Rev. 2015, D91, 045009. [Google Scholar] [CrossRef] [Green Version]
- Aartsen, M.G.; Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Altmann, D.; Auffenberg, J.; Bai, X.; et al. Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector. Science 2013, 342, 1242856. [Google Scholar]
- Aartsen, M.G.; Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Altmann, D.; Auffenberg, J.; IceCube Collaboration; et al. First observation of PeV-energy neutrinos with IceCube. Phys. Rev. Lett. 2013, 111, 021103. [Google Scholar] [CrossRef] [Green Version]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Arguelles, C.; IceCube Collaboration; et al. Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data. Phys. Rev. Lett. 2014, 113, 101101. [Google Scholar] [CrossRef] [Green Version]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; IceCube Collaboration; et al. Neutrino Interferometry for High-Precision Tests of Lorentz Symmetry with IceCube. Nat. Phys. 2018, 14, 961–966. [Google Scholar]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; et al. Astrophysical neutrinos and cosmic rays observed by IceCube. Adv. Space Res. 2018, 62, 2902–2930. [Google Scholar] [CrossRef] [Green Version]
- Ahlers, M.; Murase, K. Probing the Galactic Origin of the IceCube Excess with Gamma-Rays. Phys. Rev. D 2014, 90, 023010. [Google Scholar] [CrossRef] [Green Version]
- Aartsen, M.G.; Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alispach, C.; Amin, N.M.; IceCube Collaboratio; et al. Detection of a particle shower at the Glashow resonance with IceCube. Nature 2021, 591, 220–224. [Google Scholar]
- Glashow, S.L. Resonant Scattering of Antineutrinos. Phys. Rev. 1960, 118, 316–317. [Google Scholar] [CrossRef]
- Aker, M.; Beglarian, A.; Behrens, J.; Berlev, A.; Besserer, U.; Bieringer, B.; Block, F.; Bobien, S.; Boettcher, M.; The Katrin Collaboration; et al. Direct neutrino-mass measurement with sub-electronvolt sensitivity. Nat. Phys. 2022, 18, 160–166. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carmona, J.M.; Cortés, J.L.; Relancio, J.J.; Reyes, M.A. Cosmic Neutrinos as a Window to Departures from Special Relativity. Symmetry 2022, 14, 1326. https://doi.org/10.3390/sym14071326
Carmona JM, Cortés JL, Relancio JJ, Reyes MA. Cosmic Neutrinos as a Window to Departures from Special Relativity. Symmetry. 2022; 14(7):1326. https://doi.org/10.3390/sym14071326
Chicago/Turabian StyleCarmona, José Manuel, José Luis Cortés, José Javier Relancio, and Maykoll A. Reyes. 2022. "Cosmic Neutrinos as a Window to Departures from Special Relativity" Symmetry 14, no. 7: 1326. https://doi.org/10.3390/sym14071326
APA StyleCarmona, J. M., Cortés, J. L., Relancio, J. J., & Reyes, M. A. (2022). Cosmic Neutrinos as a Window to Departures from Special Relativity. Symmetry, 14(7), 1326. https://doi.org/10.3390/sym14071326