Next Article in Journal
A Review of Three-Dimensional Facial Asymmetry Analysis Methods
Next Article in Special Issue
Application of a Multiplier Transformation to Libera Integral Operator Associated with Generalized Distribution
Previous Article in Journal
An Asymptotic Expansion for the Generalized Gamma Function
Previous Article in Special Issue
Properties of q-Starlike Functions Associated with the q-Cosine Function
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Symmetric Toeplitz Matrices for a New Family of Prestarlike Functions

by
Luminiţa-Ioana Cotîrlă
1,* and
Abbas Kareem Wanas
2
1
Department of Mathematics, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
2
Department of Mathematics, College of Science, University of Al-Qadisiyah, Al Diwaniyah, Al-Qadisiyah 077125, Iraq
*
Author to whom correspondence should be addressed.
Symmetry 2022, 14(7), 1413; https://doi.org/10.3390/sym14071413
Submission received: 16 June 2022 / Revised: 7 July 2022 / Accepted: 8 July 2022 / Published: 9 July 2022
(This article belongs to the Special Issue Symmetry in Pure Mathematics and Real and Complex Analysis)

Abstract

:
By making use of prestarlike functions, we introduce in this paper a certain family of normalized holomorphic functions defined in the open unit disk, and we establish coefficient estimates for the first four determinants of the symmetric Toeplitz matrices T 2 ( 2 ) , T 2 ( 3 ) , T 3 ( 2 ) and T 3 ( 1 ) for the functions belonging to this family. We also mention some known and new results that follow as special cases of our results.

1. Introduction

Let A stand for the family of functions f of the form:
f ( z ) = z + n = 2 a n z n ,
which are holomorphic in the open unit disk U = z C : z < 1 . Let S indicate the family of all functions in A that are univalent in U.
Ruscheweyh [1] studied and investigated the family of prestarlike functions of order γ , which is the set of functions f such that f I γ is a starlike function of order γ , where
I γ ( z ) = z 1 z 2 ( 1 γ ) ( 0 γ < 1 ; z U ) ,
and ∗ stands the “Hadamard product”. The function I γ can be written in the form:
I γ ( z ) = z + n = 2 φ n ( γ ) z n ,
where
φ n ( γ ) = i = 2 n i 2 γ ( n 1 ) ! , n 2 .
We note that φ n ( γ ) is a decreasing function in γ and satisfies
lim n φ n ( γ ) = , if γ < 1 2 1 , if γ = 1 2 0 , if γ > 1 2 .
The so-called class of prestarlike functions was further extended and studied by various authors (see [2,3,4,5]).
In univalent function theory, extensive focus has been given to estimate the bounds of Hankel matrices. Hankel matrices and determinants play an important role in several branches of mathematics and have many applications [6]. Toeplitz determinants are closely related to Hankel determinants. Hankel matrices have constant entries along the reverse diagonal, whereas Toeplitz matrices have constant entries along the diagonal.
Recently, Thomas and Halim [7] introduced the symmetric Toeplitz determinant T q ( n ) for f A , defined by
T q ( n ) = a n a n + 1 a n + q 1 a n + 1 a n a n + q 2 a n + q 1 a n + q 2 a n ,
where n 1 , q 1 and a 1 = 1 . In particular,
T 2 ( 2 ) = a 2 a 3 a 3 a 2 , T 2 ( 3 ) = a 3 a 4 a 4 a 3 ,
and
T 3 ( 1 ) = 1 a 2 a 3 a 2 1 a 2 a 3 a 2 1 , T 3 ( 2 ) = a 2 a 3 a 4 a 3 a 2 a 3 a 4 a 3 a 2 .
Very recently, several authors established estimates of the Toeplitz determinant T q ( n ) for functions belonging to various families of univalent functions (see, for example, [7,8,9,10,11,12,13]).
In recent years, studies estimating the coefficient bounds for the Toeplitz determinants for the class of univalent functions and its subclasses have been done by several researchers, such as Srivastava et al. (2019) [12], Ramachand and Kavita [11], Al-Khafaji et al. (2020) [14], Radnika et al. (2016, 2018) [9,10], Sivasupramanian et al. (2016) [15], Zhang et al. (2019) [16] and Ali et al. (2018) [17].
Recently, Aleman and Constantin [18] provided a nice connection between univalent function theory and fluid dynamics. They sought explicit solutions to the incompressible two-dimensional Euler equations by means of a univalent harmonic map. More precisely, the problem of finding all solutions describing the particle paths of the flow in Lagrangian variables was reduced to finding harmonic functions satisfying an explicit nonlinear differential system in C n with n = 3 or n = 4 (see also [19]).
We need the following results.
Lemma 1
([20]). If the function p P is given by the series p ( z ) = 1 + p 1 z + p 2 z 2 + p 3 z 3 + , then the sharp estimate p k 2 k = 1 , 2 , 3 , holds.
Lemma 2
([21]). If the function p P , then
2 p 2 = p 1 2 + 4 p 1 2 x
4 p 3 = p 1 3 + 2 p 1 4 p 1 2 x p 1 4 p 1 2 x 2 + 2 4 p 1 2 1 x 2 z ,
for some x , z with x 1 and z 1 .
In the next section, we define a new family of holomorphic and prestarlike functions. We denote this family by W ( λ , γ ) . For this family, we generate Taylor–Maclaurin coefficient estimates for the coefficients a 2 , a 3 , a 4 and for the first four determinants of the Toeplitz matrices T 2 ( 2 ) , T 2 ( 3 ) , T 3 ( 2 ) and T 3 ( 1 ) for the functions belonging to this newly introduced family.

2. Main Results

We define the family W ( λ , γ ) as follows:
Definition 1.
We say that the family W ( λ , γ ) 0 λ 1 , 0 γ < 1 contains all the functions f A if the condition is satisfied:
R e ( 1 λ ) z f I γ ( z ) f I γ ( z ) + λ 1 + z f I γ ( z ) f I γ ( z ) > 0 , ( z U ) .
Theorem 1.
Let function f W ( λ , γ ) be given by relation (1). Then
| a 2 | 1 ( 1 γ ) ( λ + 1 ) ,
| a 3 | 1 ( 1 γ ) ( 3 2 γ ) ( 1 + 2 λ ) + 2 1 γ 2 ( 1 + 3 λ ) γ + 1 3 ( 3 2 γ ) ( 1 + 2 λ ) 1 + λ 2
and
| a 4 | 1 ( γ + 2 ) ( 1 γ ) ( 3 2 γ ) ( 3 λ + 1 ) + 3 1 γ 2 ( 3 2 γ ) ( 5 λ + 1 ) γ + 1 3 ( γ + 2 ) 2 γ + 3 2 ( λ + 1 ) ( 2 λ + 1 ) ( 3 λ + 1 ) + 12 1 γ 4 ( 3 2 γ ) ( 5 λ + 1 ) ( 3 λ + 1 ) ( 1 γ ) ( 3 2 γ ) ( 2 λ + 1 ) 6 1 γ 5 ( 2 γ ) 3 2 γ 2 λ + 1 3 ( 2 λ + 1 ) ( 3 λ + 1 ) .
Proof. 
Let function f W ( λ , γ ) . Then there exists p P such that
( λ + 1 ) z f I γ ( z ) f I γ ( z ) + λ 1 + z f I γ ( z ) f I γ ( z ) = f ( z ) p ( z )
where
p ( z ) = 1 + p 1 z + p 2 z 2 + p 3 z 3 +
By equating the coefficients in (2), we have the relations
2 ( 1 γ ) ( λ + 1 ) a 2 = p 1 ,
2 ( 1 γ ) ( 3 2 γ ) ( 2 λ + 1 ) a 3 4 1 γ 2 ( 3 λ + 1 ) a 2 2 = p 2
and
2 ( 1 γ ) ( 2 γ ) ( 3 2 γ ) ( 3 λ + 1 ) a 4 6 1 γ 2 ( 3 2 γ ) ( 5 λ + 1 ) a 2 a 3 + 8 1 γ 3 ( 7 λ + 1 ) a 2 3 = p 3 .
From the relations (3), (4) and (5), we obtain
a 2 = 1 2 ( 1 γ ) ( λ + 1 ) p 1 ,
a 3 = 1 2 ( 1 γ ) ( 3 2 γ ) ( 2 λ + 1 ) p 2 + 1 γ 2 ( 3 λ + 1 ) 2 1 γ 3 ( 3 2 γ ) ( 2 λ + 1 ) λ + 1 2 p 1 2
and
a 4 = 1 2 ( 1 γ ) ( 2 γ ) ( 3 2 γ ) ( 3 λ + 1 ) p 3 + 3 1 γ 2 ( 3 2 γ ) ( 5 λ + 1 ) 4 1 γ 3 ( γ + 2 ) 2 γ + 3 2 ( 1 + λ ) ( 1 + 2 λ ) ( 1 + 3 λ ) p 1 p 2 + 12 1 γ 4 ( 3 2 γ ) ( 5 λ + 1 ) ( 3 λ + 1 ) ( 1 γ ) ( 3 2 γ ) ( 2 λ + 1 ) 48 1 γ 5 ( 2 γ ) 3 2 γ 2 λ + 1 3 ( 2 λ + 1 ) ( 3 λ + 1 ) p 1 3 ,
and by applying Lemma 1, we get
| a 2 | 1 ( 1 γ ) ( λ + 1 ) ,
| a 3 | 1 ( 1 γ ) ( 3 2 γ ) ( 1 + 2 λ ) + 2 1 γ 2 ( 1 + 3 λ ) 1 γ 3 ( 3 2 γ ) ( 1 + 2 λ ) 1 + λ 2
and
| a 4 | 1 ( γ + 1 ) ( γ + 2 ) ( 2 γ + 3 ) ( 3 λ + 1 ) + 3 γ + 1 2 ( 2 γ + 3 ) ( 5 λ + 1 ) 1 γ 3 ( γ + 2 ) 2 γ + 3 2 ( 3 λ + 1 ) ( 2 λ + 1 ) ( λ + 1 ) + 12 1 γ 4 ( 3 2 γ ) ( 5 λ + 1 ) ( 3 λ + 1 ) ( 1 γ ) ( 3 2 γ ) ( 2 λ + 1 ) 6 1 γ 5 ( 2 γ ) 3 2 γ 2 λ + 1 3 ( 2 λ + 1 ) ( 3 λ + 1 ) .
Theorem 2.
Let f W ( λ , γ ) be given by (1). Then
T 2 ( 2 ) 2 λ + 1 4 + 4 λ + 1 2 ( 3 λ + 1 ) + 4 3 λ + 1 2 1 γ 2 3 2 γ 2 1 + λ 4 2 λ + 1 2 1 λ + 1 2 1 γ 2 .
Proof. 
In view of (6) and (7), it easy to see that
T 2 ( 2 ) = a 3 2 a 2 2 = p 2 2 4 1 γ 2 3 2 γ 2 2 λ + 1 2 + 8 ( 3 λ + 1 ) p 1 2 p 2 16 1 γ 2 3 2 γ 2 2 λ + 1 2 λ + 1 2 3 λ + 1 2 p 1 4 4 1 γ 4 3 2 γ 2 2 λ + 1 2 λ + 1 4 p 1 2 4 1 γ 2 λ + 1 2 .
By applying Lemma 2 to express p 2 in terms p 1 , it follows that
a 3 2 a 2 2 = λ + 1 4 + 4 λ + 1 2 ( 3 λ + 1 ) + 4 3 λ + 1 2 p 1 4 8 1 γ 2 3 2 γ 2 λ + 1 4 2 λ + 1 2 p 1 2 4 1 γ 2 λ + 1 2 + ( λ + 1 2 + 2 ( 3 λ + 1 ) ) p 1 2 x ( 4 p 1 2 ) 8 1 γ 2 3 2 γ 2 λ + 1 2 2 λ + 1 2 + x 2 ( 4 p 1 2 ) 2 16 γ + 1 2 2 γ + 3 2 2 λ + 1 2 .
For convenience of notation, we choose p 1 = p , and since p is in the family P simultaneously, we can suppose without loss of generality that p [ 0 , 2 ] . Thus, by applying the triangle inequality with P = 4 p 2 , we deduce that
a 3 2 a 2 2 λ + 1 4 + 4 λ + 1 2 ( 3 λ + 1 ) + 4 3 λ + 1 2 p 4 8 3 2 γ 2 1 γ 2 1 + λ 4 2 λ + 1 2 p 2 4 1 γ 2 1 + λ 2 + ( λ + 1 2 + 2 ( 3 λ + 1 ) ) c 2 | x | P 8 γ + 1 2 3 2 γ 2 λ + 1 2 2 λ + 1 2 + | x | 2 P 2 16 1 γ 2 3 2 γ 2 2 λ + 1 2 = : F ( p , x ) .
It is obvious that F ( p , x ) > 0 on [ 0 , 1 ] , and thus F ( p , x ) F ( p , 1 ) . Trivially, when p = 2 , we note that the expression F ( x ) has a maximum value on [ 0 , 2 ] . Consequently
T 2 ( 2 ) = a 3 2 a 2 2 2 λ + 1 4 + 4 ( 3 λ + 1 ) λ + 1 2 + 4 1 + 3 λ 2 1 γ 2 2 γ + 3 2 1 + λ 4 2 λ + 1 2 1 1 γ 2 1 + λ 2 .
This concludes the proof. □
Remark 1.
Choosing γ = 1 2 and λ = 0 in Theorem 2 gives the result in Theorem 1, which was investigated by Thomas and Halim [7].
Theorem 3.
Let f W ( λ , γ ) be given by (1). Then
T 2 ( 3 ) = | a 4 2 a 3 2 | Y 1 1 γ 2 2 γ 2 3 2 γ 2 3 λ + 1 2 2 λ + 1 4 + 4 λ + 1 2 ( 3 λ + 1 ) + 4 3 λ + 1 2 1 γ 2 2 γ + 3 2 1 + λ 4 1 + 2 λ 2 ,
where
Y 1 = 1 + 6 ( 5 λ + 1 ) ( λ + 1 ) ( 2 λ + 1 ) + 12 1 γ 3 ( 5 λ + 1 ) ( 3 λ + 1 ) 2 λ 1 3 1 γ 3 λ + 1 3 ( 2 λ + 1 ) + 9 5 λ + 1 2 2 λ + 1 2 λ + 1 2 + 12 1 γ 3 ( 5 λ + 1 ) ( 3 λ + 1 ) 2 λ 1 2 36 1 γ 6 2 λ + 1 2 λ + 1 6 + ( 5 λ + 1 ) 12 1 γ 3 ( 5 λ + 1 ) ( 1 + 3 λ ) 1 2 λ 1 γ 3 2 λ + 1 2 λ + 1 4 .
Proof. 
Applying (7), (8) and using Lemma 2, we have
| a 4 2 a 3 2 | = | λ + 1 4 + 4 λ + 1 2 ( 3 λ + 1 ) + 4 3 λ + 1 2 p 1 4 8 1 γ 2 3 2 γ 2 λ + 1 4 2 λ + 1 2 + Y 1 p 1 6 64 1 γ 2 2 γ 2 3 2 γ 2 3 λ + 1 2 λ + 1 2 + 2 ( 3 λ + 1 ) p 1 2 x ( 4 p 1 2 ) 8 1 γ 2 3 2 γ 2 λ + 1 2 2 λ + 1 2 + Y 2 x p 1 4 ( 4 p 1 2 ) 16 γ + 1 2 2 γ 2 3 2 γ 2 3 λ + 1 2 6 1 γ 3 ( 2 λ + 1 ) λ + 1 3 + 6 1 γ 3 ( 5 λ + 1 ) 3 λ + 1 2 + 2 ( 3 λ + 1 ) 2 λ 1 p 1 4 ( 4 p 1 2 ) x 2 192 1 γ 5 2 γ 2 3 2 γ 2 3 λ + 1 2 ( 2 λ + 1 ) λ + 1 3 x 2 ( 4 p 1 2 ) 2 16 1 γ 2 3 2 γ 2 2 λ + 1 2 + 4 ( 2 λ + 1 ) ( λ + 1 ) 2 λ + 1 λ + 1 + 3 ( 5 λ + 1 ) + 9 5 λ + 1 2 p 1 2 ( 4 p 1 2 ) 2 x 2 64 1 γ 2 γ + 2 2 3 2 γ 2 3 λ + 1 2 2 λ + 1 2 λ + 1 2
2 ( 2 λ + 1 ) ( λ + 1 ) + 3 ( 5 λ + 1 ) p 1 2 ( 4 p 1 2 ) 2 x 3 32 1 γ 2 2 γ + 3 2 2 γ 2 3 λ + 1 2 ( 2 λ + 1 ) ( λ + 1 ) + p 1 2 ( 4 p 1 2 ) 2 x 4 64 1 γ 2 γ + 2 2 3 2 γ 2 3 λ + 1 2 + 6 1 γ 3 ( 2 λ + 1 ) λ + 1 3 + 6 1 γ 3 ( 5 λ + 1 ) 3 1 + λ 2 + 2 ( 1 + 3 λ ) 1 2 λ p 1 3 ( 4 p 1 2 ) ( 1 | x | 2 ) z 96 1 γ 5 2 γ 2 2 γ + 3 2 1 + 3 λ 2 ( 1 + 2 λ ) 1 + λ 3 + 2 ( 1 + 2 λ ) ( λ + 1 ) + 3 ( 5 λ + 1 ) p 1 ( 4 p 1 2 ) 2 ( 1 | x | 2 ) x z 16 1 γ 2 2 γ 2 3 2 γ 2 3 λ + 1 2 ( 2 λ + 1 ) ( λ + 1 ) p 1 ( 4 p 1 2 ) 2 ( 1 | x | 2 ) x 2 z 16 1 γ 2 γ + 2 2 3 2 γ 2 3 λ + 1 2 + ( 4 p 1 2 ) 2 ( 1 | x | 2 ) 2 z 2 16 1 γ 2 γ + 2 2 3 2 γ 2 3 λ + 1 2 | ,
where
Y 2 = 1 + 9 ( 5 λ + 1 ) 2 ( λ + 1 ) ( 2 λ + 1 ) + 12 1 γ 3 ( 5 λ + 1 ) ( 3 λ + 1 ) 2 λ 1 6 1 γ 3 λ + 1 3 ( 2 λ + 1 ) + 9 5 λ + 1 2 2 2 λ + 1 2 λ + 1 2 + ( 5 λ + 1 ) 12 1 γ 3 ( 1 + 5 λ ) ( 3 λ + 1 ) 2 λ 1 8 1 γ 3 1 + 2 λ 2 1 + λ 4 .
We select p 1 = p for ease of notation, and because the function p is in the family P at the same time, we may assume that p [ 0 , 2 ] without losing generality. As a result, using the triangle inequality with P = 4 p 2 and Z = ( 1 | x | 2 ) z , we may conclude
| a 4 2 a 3 2 | = Y 1 p 6 64 1 γ 2 2 γ 2 3 2 γ 2 3 λ + 1 2 λ + 1 4 + 4 λ + 1 2 ( 3 λ + 1 ) + 4 3 λ + 1 2 p 4 8 1 γ 2 3 2 γ 2 λ + 1 4 2 λ + 1 2 + λ + 1 2 + 2 ( 3 λ + 1 ) p 2 | x | P 8 1 γ 2 3 2 γ 2 λ + 1 2 2 λ + 1 2 + Y 2 p 4 P | x | 16 1 γ 2 2 γ 2 3 2 γ 2 3 λ + 1 2 + 6 1 γ 3 ( 2 λ + 1 ) λ + 1 3 + 6 1 γ 3 ( 5 λ + 1 ) 3 λ + 1 2 + 2 ( 3 λ + 1 ) 2 λ 1 p 4 P | x | 2 192 1 γ 5 2 γ 2 3 2 γ 2 3 λ + 1 2 ( 2 λ + 1 ) λ + 1 3 + | x | 2 P 2 16 1 γ 2 3 2 γ 2 2 λ + 1 2 + 4 ( λ + 1 ) ( 1 + 2 λ ) 2 λ + 1 λ + 1 + 3 ( 1 + 5 λ ) + 9 1 + 5 λ 2 p 2 P 2 | x | 2 64 1 γ 2 2 γ 2 2 γ + 3 2 1 + 3 λ 2 1 + 2 λ 2 1 + λ 2 + 2 ( 1 + λ ) ( 1 + 2 λ ) + 3 ( 5 λ + 1 ) p 2 P 2 | x | 3 32 1 γ 2 2 γ 2 3 2 γ 2 3 λ + 1 2 ( 2 λ + 1 ) ( λ + 1 ) + p 2 P 2 | x | 4 64 1 γ 2 2 γ 2 3 2 γ 2 3 λ + 1 2 + 6 1 γ 3 ( 2 λ + 1 ) λ + 1 3 + 6 1 γ 3 ( 5 λ + 1 ) 3 λ + 1 2 + 2 ( 3 λ + 1 ) 2 λ 1 p 3 P Z 96 1 γ 5 2 γ 2 3 2 γ 2 3 λ + 1 2 ( 2 λ + 1 ) λ + 1 3 + 2 ( 2 λ + 1 ) ( λ + 1 ) + 3 ( 5 λ + 1 ) p | x | P 2 Z 16 1 γ 2 2 γ 2 3 2 γ 2 3 λ + 1 2 ( 2 λ + 1 ) ( λ + 1 ) + p | x | 2 P 2 Z 16 1 γ 2 2 γ 2 3 2 γ 2 3 λ + 1 2 + P 2 Z 2 16 1 γ 2 2 γ 2 3 2 γ 2 3 λ + 1 2 = : F 1 ( p , x ) .
Using elementary calculus to differentiate F 1 ( p , x ) with respect to | x | , we have
F 1 ( p , x ) | x | = λ + 1 2 + 2 ( 3 λ + 1 ) p 2 ( 4 p 2 ) 8 1 γ 2 3 2 γ 2 λ + 1 2 2 λ + 1 2 + Y 2 ( 4 p 2 ) p 4 16 1 γ 2 γ + 2 2 3 2 γ 2 3 λ + 1 2 6 1 γ 3 ( 2 λ + 1 ) λ + 1 3 + 6 1 γ 3 ( 5 λ + 1 ) 3 λ + 1 2 + 2 ( 3 λ + 1 ) 2 λ 1 p 3 ( 4 p 2 ) | x | 48 1 γ 5 2 γ 2 3 2 γ 2 3 λ + 1 2 ( 2 λ + 1 ) λ + 1 3 + 6 1 γ 3 ( 2 λ + 1 ) λ + 1 3 + 6 1 γ 3 ( 5 λ + 1 ) 3 λ + 1 2 + 2 ( 1 + 3 λ ) 2 λ 1 p 4 ( 4 p 2 ) | x | 96 1 γ 5 2 γ 2 3 2 γ 2 3 λ + 1 2 ( 1 + 2 λ ) 1 + λ 3 + 4 ( 1 + 2 λ ) ( 1 + λ ) 1 + 2 λ 1 + λ + 3 ( 1 + 5 λ ) + 9 1 + 5 λ 2 p 2 ( 4 p 2 ) 2 | x | 32 1 γ 2 3 2 γ 2 γ + 2 2 3 λ + 1 2 2 λ + 1 2 λ + 1 2 p 2 ( 2 λ + 1 ) ( λ + 1 ) + 3 ( 5 λ + 1 ) ( 4 p 2 ) 2 | x | 2 8 1 γ 2 2 γ 2 3 2 γ 2 3 λ + 1 2 ( 2 λ + 1 ) ( λ + 1 ) + 3 2 ( 2 λ + 1 ) ( λ + 1 ) + 3 ( 5 λ + 1 ) p 2 ( 4 p 2 ) 2 | x | 2 32 1 γ 2 2 γ 2 3 2 γ 2 1 + 3 λ 2 ( 1 + 2 λ ) ( 1 + λ ) p ( 4 p 2 ) 2 | x | 3 4 1 γ 2 2 γ 2 3 2 γ 2 3 λ + 1 2 + p 2 ( 4 p 2 ) 2 | x | 3 16 1 γ 2 2 γ 2 3 2 γ 2 3 λ + 1 2 + 2 ( 2 λ + 1 ) ( λ + 1 ) + 3 ( 5 λ + 1 ) p ( 4 p 2 ) 2 ( 1 | x | 2 ) 16 1 γ 2 2 γ 2 3 2 γ 2 3 λ + 1 2 ( 2 λ + 1 ) ( λ + 1 ) | x | ( 4 p 2 ) 2 ( 1 | x | 2 ) 4 γ + 2 2 1 γ 2 3 2 γ 2 1 + 3 λ 2 + p | x | ( 4 p 2 ) 2 ( 1 | x | 2 ) 8 1 γ 2 2 γ 2 3 2 γ 2 3 λ + 1 2 .
It is shown that ( F 1 ( p , x ) / | x | ) 0 for | x | [ 0 , 1 ] and fixed p [ 0 , 2 ] . As a result, F 1 ( p , x ) is an increasing function of | x | . So, F 1 ( p , x ) F 1 ( p , 1 ) . Therefore,
| a 4 2 a 3 2 | Y 1 p 6 64 γ + 2 2 1 γ 2 3 2 γ 2 3 λ + 1 2 λ + 1 4 + 4 ( 3 λ + 1 ) λ + 1 2 + 4 1 + 3 λ 2 p 4 8 1 γ 2 3 2 γ 2 λ + 1 4 2 λ + 1 2 + λ + 1 2 + 2 ( 3 λ + 1 ) p 2 ( 4 p 2 ) 8 1 γ 2 3 2 γ 2 λ + 1 2 2 λ + 1 2 + ( 4 p 2 ) 2 16 1 γ 2 3 2 γ 2 2 λ + 1 2 + 12 Y 2 γ + 1 3 ( 2 λ + 1 ) λ + 1 3 + 6 1 γ 3 ( 2 λ + 1 ) λ + 1 3 + 6 1 γ 3 ( 1 + 5 λ ) 3 1 + λ 2 + 2 ( 3 λ + 1 ) 2 λ 1 192 1 γ 5 2 γ 2 3 2 γ 2 3 λ + 1 2 ( 1 + 2 λ ) 1 + λ 3 · · [ p 4 ( 4 p 2 ) ] + + [ 4 ( 1 + 2 λ ) ( 1 + λ ) 1 + 2 λ 1 + λ + 3 ( 5 λ + 1 ) ] [ p 2 ( 4 p 2 ) 2 ] 64 1 γ 2 2 γ 2 3 2 γ 2 3 λ + 1 2 2 λ + 1 2 λ + 1 2 + + [ 9 5 λ + 1 2 + 2 2 ( 2 λ + 1 ) ( λ + 1 ) + 3 ( 5 λ + 1 ) ( 2 λ + 1 ) ( λ + 1 ) + 2 λ + 1 2 λ + 1 2 ] [ p 2 ( 4 p 2 ) 2 ] 64 2 γ 2 γ + 1 2 3 2 γ 2 3 λ + 1 2 2 λ + 1 2 λ + 1 2 .
Now, on [ 0 , 2 ] at P = 2 , we have
| a 4 2 a 3 2 | Y 1 1 γ 2 2 γ 2 3 2 γ 2 3 λ + 1 2 2 λ + 1 4 + 4 λ + 1 2 ( 3 λ + 1 ) + 4 3 λ + 1 2 1 γ 2 2 γ + 3 2 1 + λ 4 1 + 2 λ 2 .
Remark 2.
Choosing γ = 1 2 and λ = 0 in Theorem 3 gives the result in Theorem 2, which was investigated by Thomas and Halim [7].
Theorem 4.
Let f W ( λ , γ ) be given by (1). Then
| T 3 ( 2 ) | = | ( a 2 a 4 ) ( a 2 2 2 a 3 2 + a 2 a 4 ) | [ 1 ( 1 γ ) ( λ + 1 ) 3 1 γ 2 λ + 1 2 ( 2 λ + 1 ) + 9 1 γ 2 ( λ + 1 ) ( 5 λ + 1 ) + 12 1 γ 3 ( 5 λ + 1 ) ( 3 λ + 1 ) 2 λ 1 p 3 3 1 γ 3 ( 2 γ ) 3 2 γ ( 3 λ + 1 ) ( 2 λ + 1 ) λ + 1 2 ] 1 1 γ 2 λ + 1 2 Y 3 1 γ 2 3 2 γ 2 2 λ + 1 2 ,
where
Y 3 = 2 + 8 ( 3 λ + 1 ) λ + 1 2 + 8 3 λ + 1 2 λ + 1 4 3 2 γ 2 λ + 1 2 ( 2 γ ) ( 3 λ + 1 ) ( λ + 1 ) 6 1 γ 3 2 γ 2 2 λ + 1 2 ( 5 λ + 1 ) ( γ + 2 ) ( 1 + 3 λ ) 1 + λ 2 ( 3 2 γ ) ( 2 λ + 1 ) 12 1 γ 3 ( 5 λ + 1 ) ( 1 + 3 λ ) 1 2 λ 6 1 γ 3 ( 2 γ ) ( 3 λ + 1 ) λ + 1 4
and
Y 4 = 4 ( 2 γ ) ( 3 2 γ ) ( 3 λ + 1 ) [ λ + 1 2 + 2 ( 3 λ + 1 ) ] 2 3 2 γ 2 ( λ + 1 ) 2 λ + 1 2 3 3 2 γ 2 ( 5 λ + 1 ) ( 2 λ + 1 ) .
Proof. 
From (6), (8) and applying Lemma 2, we have
| a 2 a 4 | = | p 1 2 ( 1 γ ) ( λ + 1 ) p 1 3 8 ( 1 γ ) ( 2 γ ) ( 3 2 γ ) ( 3 λ + 1 ) p 1 ( 4 p 1 2 ) x 4 ( 1 γ ) ( 2 γ ) ( 3 2 γ ) ( 3 λ + 1 ) + p 1 ( 4 p 1 2 ) x 2 8 ( 1 γ ) ( 2 γ ) ( 3 2 γ ) ( 3 λ + 1 ) ( 4 p 1 2 ) ( 1 | x | 2 ) z 4 ( 1 γ ) ( 2 γ ) ( 3 2 γ ) ( 3 λ + 1 ) 3 ( 5 λ + 1 ) p 1 3 8 ( 1 γ ) ( 2 γ ) ( 3 2 γ ) ( 3 λ + 1 ) ( 2 λ + 1 ) ( λ + 1 ) 3 ( 5 λ + 1 ) p 1 ( 4 p 1 2 ) x 8 ( 1 γ ) ( 2 γ ) ( 3 2 γ ) ( 3 λ + 1 ) ( 2 λ + 1 ) ( λ + 1 ) 12 1 γ 3 ( 5 λ + 1 ) ( 1 + 3 λ ) 2 λ 1 p 1 3 24 ( 1 γ ) 3 ( 2 γ ) ( 2 γ + 3 ) ( 3 λ + 1 ) ( 2 λ + 1 ) 1 + λ 2 | .
Applying triangle inequality and p 1 = p , we have
| a 2 a 4 | | p 2 ( 1 γ ) ( λ + 1 ) 3 1 γ 2 λ + 1 2 ( 2 λ + 1 ) + 9 1 γ 2 ( λ + 1 ) ( 5 λ + 1 ) + 12 1 γ 3 ( 5 λ + 1 ) ( 3 λ + 1 ) 2 λ 1 p 3 24 1 γ 3 ( 2 γ ) 3 2 γ ( 3 λ + 1 ) ( 2 λ + 1 ) λ + 1 2 | + p ( 2 ( 2 λ + 1 ) ( λ + 1 ) + 3 ( 5 λ + 1 ) ) | x | P 2 ( 2 λ + 1 ) ( λ + 1 ) + p | x | 2 P 8 ( 1 γ ) ( 2 γ ) ( 3 2 γ ) ( 3 λ + 1 ) + P Z 4 ( 1 + 3 λ ) ( 2 γ ) ( 1 γ ) ( 2 γ + 3 ) + 3 ( 5 λ + 1 ) p | x | P 8 ( γ + 2 ) ( 1 γ ) ( 3 2 γ ) ( 3 λ + 1 ) ( 2 λ + 1 ) ( λ + 1 ) .
Using the same methods as Theorems 2 and 3, we have
| a 2 a 4 | 1 ( 1 γ ) ( λ + 1 ) 3 1 γ 2 λ + 1 2 ( 2 λ + 1 ) + 9 1 γ 2 ( λ + 1 ) ( 5 λ + 1 ) + 12 1 γ 3 ( 5 λ + 1 ) ( 3 λ + 1 ) 2 λ 1 p 3 3 1 γ 3 ( 2 γ ) 3 2 γ ( 3 λ + 1 ) ( 2 λ + 1 ) λ + 1 2 .
Further, using (6), (7), (8) and applying Lemma 2 and taking p 1 = p [ 0 , 2 ] , we have
| a 2 2 2 a 3 2 + a 2 a 4 | p 2 4 1 γ 2 λ + 1 2 Y 3 p 4 16 1 γ 2 3 2 γ 2 2 λ + 1 2 + Y 4 p 2 ( 4 p 2 ) | x | 16 ( 1 γ ) ( 2 γ ) 3 2 γ 3 ( 1 + 3 λ ) 1 + 2 λ 2 1 + λ 2 + p 2 ( 4 p 2 ) | x | 2 16 γ + 1 2 ( 2 γ ) ( 3 2 γ ) ( 1 + 3 λ ) ( 1 + λ ) + ( 4 p 2 ) 2 | x | 2 8 1 γ 2 3 2 γ 2 2 λ + 1 2 + p ( 4 p 2 ) ( 1 | x | 2 ) 8 1 γ 2 ( 2 γ ) ( 3 2 γ ) ( 3 λ + 1 ) ( λ + 1 ) : = F 2 ( p , x ) .
On the closed area [ 0 , 2 ] × [ 0 , 1 ] , we need to find the maximum value of F 2 ( p , x ) . Assume that a maximum of [ 0 , 2 ] × [ 0 , 1 ] exists at an interior point ( p 0 , | x | ) . After that, by differentiating F 2 ( p , x ) with respect to | x | , we have
F 2 ( p , x ) | x | = Y 4 p 2 ( 4 p 2 ) 16 ( 1 γ ) ( 2 γ ) 3 2 γ 3 ( 3 λ + 1 ) 2 λ + 1 2 λ + 1 2 + p 2 ( 4 p 2 ) | x | 8 1 γ 2 ( 2 γ ) ( 3 2 γ ) ( 3 λ + 1 ) ( λ + 1 ) + ( 4 p 2 ) 2 | x | 4 1 γ 2 3 2 γ 2 2 λ + 1 2 p ( 4 p 2 ) | x | ) 4 1 γ 2 ( 2 γ ) ( 3 2 γ ) ( 3 λ + 1 ) ( λ + 1 ) .
If p = 0 ,
F 2 ( 0 , x ) = 2 1 γ 2 3 2 γ 2 2 λ + 1 2 | x | 2 2 1 γ 2 3 2 γ 2 2 λ + 1 2
If p = 2 ,
F 2 ( 2 , x ) = 1 1 γ 2 λ + 1 2 Y 3 1 γ 2 3 2 γ 2 2 λ + 1 2 .
If | x | = 0 ,
F 2 ( p , 0 ) = p 2 4 1 γ 2 λ + 1 2 Y 3 p 4 16 1 γ 2 3 2 γ 2 2 λ + 1 2 + p ( 4 p 2 ) 8 1 γ 2 ( 2 γ ) ( 3 2 γ ) ( 3 λ + 1 ) ( λ + 1 ) ,
which has the highest possible value
1 1 γ 2 λ + 1 2 Y 3 1 γ 2 3 2 γ 2 2 λ + 1 2
on [ 0 , 2 ] . Further, if | x | = 1 , we have
F 2 ( p , 1 ) = p 2 4 1 γ 2 λ + 1 2 Y 3 p 4 16 1 γ 2 3 2 γ 2 2 λ + 1 2 + Y 4 p 2 ( 4 p 2 ) 16 ( 1 γ ) ( 2 γ ) 3 2 γ 3 ( 3 λ + 1 ) 2 λ + 1 2 λ + 1 2 + p 2 ( 4 p 2 ) 16 1 γ 2 ( 2 γ ) ( 3 2 γ ) ( 3 λ + 1 ) ( λ + 1 ) + ( 4 p 2 ) 2 8 1 γ 2 3 2 γ 2 2 λ + 1 2 ,
which has the highest possible value
1 1 γ 2 λ + 1 2 Y 3 1 γ 2 3 2 γ 2 2 λ + 1 2
on [ 0 , 2 ] . So,
| T 3 ( 2 ) | = | ( a 2 a 4 ) ( a 2 2 2 a 3 2 + a 2 a 4 ) | [ 1 ( 1 γ ) ( λ + 1 ) 3 1 γ 2 λ + 1 2 ( 2 λ + 1 ) + 9 1 γ 2 ( λ + 1 ) ( 5 λ + 1 ) + 12 1 γ 3 ( 5 λ + 1 ) ( 3 λ + 1 ) 2 λ 1 p 3 3 1 γ 3 ( 2 γ ) 3 2 γ ( 3 λ + 1 ) ( 2 λ + 1 ) λ + 1 2 ] 1 1 γ 2 λ + 1 2 Y 3 1 γ 2 3 2 γ 2 2 λ + 1 2 .
Remark 3.
Choosing γ = 1 2 and λ = 0 in Theorem 4 gives the result in Theorem 3, which was investigated by Thomas and Halim [7].
Theorem 5.
Let f W ( λ , γ ) be given by (1). Then
| T 3 ( 1 ) | = | 1 + 2 a 2 2 ( a 3 1 ) a 3 2 | 1 + 4 1 γ 2 ( 3 2 γ ) ( 2 λ + 1 ) ( λ + 1 ) + 4 ( 3 λ + 1 ) 1 γ 3 ( 3 2 γ ) ( 2 λ + 1 ) λ + 1 4 1 1 γ 2 3 2 γ 2 2 λ + 1 2 4 ( 3 λ + 1 ) 1 γ 2 3 2 γ 2 2 λ + 1 2 λ + 1 2 4 3 λ + 1 2 1 γ 2 3 2 γ 2 2 λ + 1 2 λ + 1 4 2 1 γ 2 λ + 1 2 .
Proof. 
From (6), (7) and applying Lemma 2 and some calculations, we have
| T 3 ( 1 ) | = | 1 + p 1 4 4 1 γ 2 ( 3 2 γ ) ( 2 λ + 1 ) ( λ + 1 ) + p 1 2 x ( 4 p 1 2 ) 4 1 γ 2 ( 3 2 γ ) ( 2 λ + 1 ) ( λ + 1 ) + ( 3 λ + 1 ) p 1 4 16 1 γ 3 ( 3 2 γ ) ( 2 λ + 1 ) λ + 1 4 p 1 2 2 1 γ 2 λ + 1 2 λ + 1 4 + 4 3 λ + 1 λ + 1 2 + 4 3 λ + 1 2 p 1 4 16 1 γ 2 3 2 γ 2 2 λ + 1 2 λ + 1 4 λ + 1 2 + 2 ( 3 λ + 1 ) p 1 2 x ( 4 p 1 2 ) 8 1 γ 2 3 2 γ 2 2 λ + 1 2 λ + 1 2 x 2 ( 4 p 1 2 ) 2 16 1 γ 2 3 2 γ 2 2 λ + 1 2 | .
We select p 1 = p for ease of notation, and because the function p is in the family P at the same time, we may assume that p [ 0 , 2 ] without losing generality. As a result, using the triangle inequality with P = 4 r 2 , we have
| T 3 ( 1 ) | | 1 + [ 1 4 1 γ 2 ( 3 2 γ ) ( 2 λ + 1 ) ( λ + 1 ) + ( 3 λ + 1 ) 4 1 γ 3 ( 3 2 γ ) ( 2 λ + 1 ) λ + 1 4 1 16 1 γ 2 3 2 γ 2 2 λ + 1 2 ( 3 λ + 1 ) 4 1 γ 2 3 2 γ 2 2 λ + 1 2 λ + 1 2 3 λ + 1 2 4 1 γ 2 3 2 γ 2 2 λ + 1 2 λ + 1 4 ] p 4 2 p 2 4 1 γ 2 λ + 1 2 | + λ + 1 2 + 2 ( 3 λ + 1 ) p 2 ( 4 p 2 ) 8 1 γ 2 3 2 γ 2 2 λ + 1 2 λ + 1 2 + ( 4 p 2 ) 2 16 1 γ 2 3 2 γ 2 2 λ + 1 2 .
Hence, at p = 2 , we have
| T 3 ( 1 ) | 1 + 4 1 γ 2 ( 3 2 γ ) ( 2 λ + 1 ) ( λ + 1 ) + 4 ( 3 λ + 1 ) 1 γ 3 ( 3 2 γ ) ( 2 λ + 1 ) λ + 1 4 1 1 γ 2 3 2 γ 2 2 λ + 1 2 4 ( 3 λ + 1 ) 1 γ 2 3 2 γ 2 2 λ + 1 2 λ + 1 2 4 3 λ + 1 2 1 γ 2 3 2 γ 2 2 λ + 1 2 λ + 1 4 2 1 γ 2 λ + 1 2 .
Remark 4.
Choosing γ = 1 2 and λ = 0 in Theorem 5 gives the result in Theorem 4, which was investigated by Thomas and Halim [7].

3. Conclusions

The objective of this paper was to create a new family W ( λ , γ ) of holomorphic and prestarlike functions. We generate Taylor–Maclaurin coefficient estimates for the first four determinants of the Toeplitz matrices T 2 ( 2 ) , T 2 ( 3 ) , T 3 ( 2 ) and T 3 ( 1 ) for the functions belonging to this newly introduced family.

Author Contributions

Conceptualization, A.K.W. and L.-I.C.; methodology, A.K.W. and L.-I.C.; software, A.K.W. and L.-I.C.; validation, A.K.W. and L.-I.C.; formal analysis, A.K.W. and L.-I.C.; investigation, A.K.W. and L.-I.C.; resources, A.K.W. and L.-I.C.; data curation, A.K.W. and L.-I.C.; writing—original draft preparation, A.K.W. and L.-I.C.; writing—review and editing, A.K.W. and L.-I.C.; visualization, A.K.W. and L.-I.C.; supervision, A.K.W. and L.-I.C.; project administration, A.K.W. and L.-I.C.; funding acquisition, A.K.W. and L.-I.C. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors would like to thank the referees for their careful reading and helpful comments.

Conflicts of Interest

The authors declare no conflict of interest in this paper.

References

  1. Ruscheweyh, S. Linear operators between classes of prestarlike functions. Comment. Math. Helv. 1977, 52, 497–509. [Google Scholar] [CrossRef]
  2. Shenan, G.M.; Salim, T.O.; Marouf, M.S. A certain class of multivalent prestarlike functions involving the Srivastava-Saigo-Owa fractional integral operator. Kyungpook Math. J. 2004, 44, 353–362. [Google Scholar]
  3. Marouf, M.S.; Salim, T.O. On a subclass of p-valent prestarlike functions with negative coefficients. Aligarh Bull. Math. 2002, 21, 13–20. [Google Scholar]
  4. Silverman, H.; Silvia, E.M. Prestarlike functions with negative coefficients. Int. J. Math. Math. Sci. 1979, 2, 427–439. [Google Scholar] [CrossRef] [Green Version]
  5. Breaz, D.; Karthikeyan, K.R.; Senguttuvan, A. Multivalent Prestarlike Functions with Respect to Symmetric Points. Symmetry 2022, 14, 20. [Google Scholar] [CrossRef]
  6. Ye, K.; Lim, L.-H. Every matrix is a product of Toeplitz matrices. Found. Comput. Math. 2016, 16, 577–598. [Google Scholar] [CrossRef] [Green Version]
  7. Thomas, D.K.; Halim, S.A. Toeplitz matrices whose elements are the coefficients of starlike and close-to-convex functions. Bull. Malays. Math. Sci. Soc. 2017, 40, 1781–1790. [Google Scholar] [CrossRef]
  8. Ayinla, R.; Bello, R. Toeplitz determinants for a subclass of analytic functions. J. Progress. Res. Math. 2021, 18, 99–106. [Google Scholar]
  9. Radhika, V.; Sivasubramanian, S.; Murugusundaramoorthy, G.; Jahangiri, J.M. Toeplitz matrices whose elements are the coefficients of functions with bounded boundary rotation. J. Complex Anal. 2016, 2016, 4960704. [Google Scholar] [CrossRef] [Green Version]
  10. Radhika, V.; Sivasubramanian, S.; Murugusundaramoorthy, G.; Jahangiri, J.M. Toeplitz matrices whose elements are coefficients of Bazilevič functions. Open Math. 2018, 16, 1161–1169. [Google Scholar] [CrossRef]
  11. Ramachandran, C.; Kavitha, D. Toeplitz determinant for some subclasses of analytic functions. Glob. J. Pure Appl. Math. 2017, 13, 785–793. [Google Scholar]
  12. Srivastava, H.M.; Ahmad, Q.Z.; Khan, N.; Khan, N.; Khan, B. Hankel and Toeplitz Determinants for a Subclass of q-Starlike Functions Associated with a General Conic Domain. Mathematics 2019, 7, 181. [Google Scholar] [CrossRef] [Green Version]
  13. Tang, H.; Khan, S.; Hussain, S.; Khan, N. Hankel and Toeplitz determinant for a subclass of multivalent q-starlike functions of order α. AIMS Math. 2021, 6, 5421–5439. [Google Scholar] [CrossRef]
  14. Al-Khafaji, S.N.; Al-Fayadh, A.; Hussain, A.H.; Abbas, S.A. Toeplitz determinant whose its entries are the coefficients for class of Non-Bazilevič functions. J. Phys. Conf. Ser. 2020, 1660, 012091. [Google Scholar] [CrossRef]
  15. Sivasubramanian, S.; Govindaraj, M.; Murugusundaramoorthy, G. Toeplitz matrices whose elements are the coefficients of analytic functions belonging to certain conic domains. Int. J. Pure Appl. Math. 2016, 109, 39–49. [Google Scholar]
  16. Zhang, H.Y.; Srivastava, R.; Tang, H. Third-order Henkel and Toeplitz determinants for starlike functions connected with the sine functions. Mathematics 2019, 7, 404. [Google Scholar] [CrossRef] [Green Version]
  17. Ali, M.D.F.; Thomas, D.K.; Vasudevarao, A. Toeplitz determinants whose elements are the coefficients of analytic and univalent functions. Bull. Aust. Math. Soc. 2018, 97, 253–264. [Google Scholar] [CrossRef]
  18. Aleman, A.; Constantin, A. Harmonic maps and ideal fluid flows. Arch. Ration. Mech. Anal. 2012, 204, 479–513. [Google Scholar] [CrossRef]
  19. Constantin, O.; Martin, M.J. A harmonic maps approach to fluid flows. Math. Ann. 2017, 316, 1–16. [Google Scholar] [CrossRef] [Green Version]
  20. Pommerenke, C. Univalent Functions; Vandenhoeck and Rupercht: Göttingen, Germany, 1975. [Google Scholar]
  21. Grenander, U.; Szegö, G. Toeplitz Forms and Their Applications; California Monographs in Mathematical Sciences; University of California Press: Berkeley, CA, USA, 1958. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Cotîrlă, L.-I.; Wanas, A.K. Symmetric Toeplitz Matrices for a New Family of Prestarlike Functions. Symmetry 2022, 14, 1413. https://doi.org/10.3390/sym14071413

AMA Style

Cotîrlă L-I, Wanas AK. Symmetric Toeplitz Matrices for a New Family of Prestarlike Functions. Symmetry. 2022; 14(7):1413. https://doi.org/10.3390/sym14071413

Chicago/Turabian Style

Cotîrlă, Luminiţa-Ioana, and Abbas Kareem Wanas. 2022. "Symmetric Toeplitz Matrices for a New Family of Prestarlike Functions" Symmetry 14, no. 7: 1413. https://doi.org/10.3390/sym14071413

APA Style

Cotîrlă, L. -I., & Wanas, A. K. (2022). Symmetric Toeplitz Matrices for a New Family of Prestarlike Functions. Symmetry, 14(7), 1413. https://doi.org/10.3390/sym14071413

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop