Finding Solutions to the Yang–Baxter-like Matrix Equation for Diagonalizable Coefficient Matrix
Abstract
:1. Introduction
2. All Solutions to the Equation for Any Diagonalizable Matrices
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adam, M.; Ding, J.; Huang, Q.; Zhu, L. Solving a class of quadratic matrix equations. Appl. Math. Lett. 2018, 82, 58–63. [Google Scholar] [CrossRef]
- Adam, M. All Solutions of the Yang-Baxter-like matrix equation when A3=A. J. Appl. Anal. Comput. 2019, 9, 1022–1031. [Google Scholar]
- Cibotarica, A. An Examination of the Yang-Baxter Equation. Master’s Thesis, The University of Southern Mississippi, Hattiesburg, MS, USA, 2011. [Google Scholar]
- Cibotarica, A.; Ding, J.; Kolibal, J.; Rhee, N. Solutions of the Yang-Baxter matrix equation for an idempotent. Numer. Algebra Control Optim. 2013, 3, 347–352. [Google Scholar] [CrossRef]
- Chen, D.; Chen, Z.; Yong, X. Explicit solutions of the Yang-Baxter-like matrix equation for a diagonalizable matrix with spectrum {1,α,0}. Appl. Math. Comput. 2019, 348, 523–530. [Google Scholar] [CrossRef]
- Ding, J.; Rhee, N. A nontrivial solution to a stochastic matrix equation. East Asian J. Appl. Math. 2012, 2, 277–284. [Google Scholar] [CrossRef]
- Ding, J.; Rhee, N. Spectral solutions of the Yang-Baxter matrix equation. J. Math. Anal. Appl. 2013, 402, 567–573. [Google Scholar] [CrossRef]
- Ding, J.; Rhee, N.; Zhang, C. Further solutions of a Yang-Baxter-like matrix equation. East Asian J. Appl. Math. 2013, 2, 352–362. [Google Scholar] [CrossRef]
- Ding, J.; Zhang, C. On the structure of the spectral solutions of the Yang-Baxter matrix equation. Appl. Math. Lett. 2014, 35, 86–89. [Google Scholar] [CrossRef]
- Ding, J.; Rhee, N.; Zhang, C. Commuting solutions of the Yang-Baxter matrix equation. Appl. Math. Lett. 2015, 44, 1–4. [Google Scholar] [CrossRef]
- Ding, J.; Tian, H. Solving the Yang-Baxter-like matrix equation for a class of elementary matrices. Comput. Math. Appl. 2016, 72, 1541–1548. [Google Scholar] [CrossRef]
- Dong, Q.; Ding, J. Complete commuting solutions of the Yang-Baxter-like matrix equation for diagonalizable matrices. Comput. Math. Appl. 2016, 72, 194–201. [Google Scholar] [CrossRef]
- Dong, Q.; Ding, J.; Huang, Q. Commuting solutions of a quadratic matrix equation for nilpotent matrices. Algebra. Colloq. 2018, 25, 31–44. [Google Scholar] [CrossRef]
- Kumar, A.; Cardoso, J. Iterative methods for finding commuting solutions of the Yang-Baxter-like matrix equation. Appl. Math. Comput. 2018, 333, 246–253. [Google Scholar] [CrossRef]
- Kumar, A.; Cardoso, J.; Singh, G. Explicit solutions of the singular Yang-Baxter-like matrix equation and their numerical computation. Mediterr. J. Math. 2022, 19, 85. [Google Scholar] [CrossRef]
- Mansour, S.; Ding, J.; Huang, Q. Explicit solutions of the Yang-Baxter-like matrix equation for an idempotent matrix. Appl. Math. Lett. 2017, 63, 71–76. [Google Scholar] [CrossRef]
- Ren, H.; Wang, X.; Wang, T. Commuting solutions of the Yang-Baxter-like matrix equation for a class of rank-two updated matrices. Comput. Math. Appl. 2018, 76, 1085–1098. [Google Scholar] [CrossRef]
- Shen, D.; Wei, M.; Jia, Z. On commuting solutions of the Yang-Baxter-like matrix equation. J. Math. Anal. Appl. 2018, 462, 665–696. [Google Scholar] [CrossRef]
- Shen, D.; Wei, M. All solutions of the Yang-Baxter-like matrix equation for diagonalizable coefficient matrix with two different eigenvalues. Appl. Math. Lett. 2020, 101, 106048. [Google Scholar] [CrossRef]
- Tian, H. All solutions of the Yang-Baxter-like matrix equation for rank-one matrices. Appl. Math. Lett. 2016, 51, 55–59. [Google Scholar] [CrossRef]
- Yang, C. Some exact results for the many-body problem in one dimension with repulsive delta-function interaction. Phys. Rev. Lett. 1967, 19, 1312–1315. [Google Scholar] [CrossRef]
- Zhou, D.; Chen, G.; Ding, J. Solving the Yang-Baxter-like matrix equation for rank-two matrices. J. Comput. Appl. Math. 2017, 313, 142–151. [Google Scholar] [CrossRef]
- Baxter, R. Partition function of the eight-vertex lattice model. Ann. Phys. 1972, 70, 193–228. [Google Scholar] [CrossRef]
- Horn, R.; Johnson, C. Matrix Analysis; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, D.; Yong, X. Finding Solutions to the Yang–Baxter-like Matrix Equation for Diagonalizable Coefficient Matrix. Symmetry 2022, 14, 1577. https://doi.org/10.3390/sym14081577
Chen D, Yong X. Finding Solutions to the Yang–Baxter-like Matrix Equation for Diagonalizable Coefficient Matrix. Symmetry. 2022; 14(8):1577. https://doi.org/10.3390/sym14081577
Chicago/Turabian StyleChen, Dongmei, and Xuerong Yong. 2022. "Finding Solutions to the Yang–Baxter-like Matrix Equation for Diagonalizable Coefficient Matrix" Symmetry 14, no. 8: 1577. https://doi.org/10.3390/sym14081577
APA StyleChen, D., & Yong, X. (2022). Finding Solutions to the Yang–Baxter-like Matrix Equation for Diagonalizable Coefficient Matrix. Symmetry, 14(8), 1577. https://doi.org/10.3390/sym14081577