Improved Likelihood Inference Procedures for the Logistic Distribution
Abstract
:1. Introduction
2. Likelihood Inference
3. Third-Order Likelihood Inference in the Logistic Distribution
3.1. Inference about the Scale Parameter
3.2. Inference about the Location Parameter
3.3. Inference about the Quantiles
3.4. Inference about the Reliability Function
4. Simulation Study
5. Results and Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Johnson, N.L.; Kotz, S.; Balakrishnan, N. Continuous Univariate Distributions, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1995; Volume 2. [Google Scholar]
- Balakrishnan, N. Handbook of the Logistic Distribution; Chapman and Hall: London, UK, 1992. [Google Scholar]
- Antle, C.; Klimko, L.; Harkness, W. Confidence intervals for the parameters of the logistic distribution. Biometrika 1970, 57, 397–402. [Google Scholar] [CrossRef]
- Asgharzadeh, A.; Valiollahi, R.; Mousa, A. Point and interval estimation for the logistic distribution based on record data. SORT-Stat. Oper. Res. Trans. 2016, 40, 89–112. [Google Scholar]
- He, X.; Chen, W.; Qian, W. Maximum likelihood estimators of the parameters of the log-logistic distribution. Stat. Pap. 2020, 61, 1875–1892. [Google Scholar] [CrossRef]
- Meeker, W.; Escobar, L. Statistical Methods for Reliability Data; Wiley Inter-Science: Hoboken, NJ, USA, 1998. [Google Scholar]
- Chen, W.X.; Long, C.X.; Yang, R.; Yao, D.S. Maximum likelihood estimator of the location parameter under moving extremes ranked set sampling design. Acta Math. Appl. Sin. (Engl. Ser.) 2021, 37, 101–108. [Google Scholar] [CrossRef]
- Fraser, D.A.S.; Reid, N.; Wu, J. A simple general formula for tail probabilities for frequentist and Bayesian inference. Biometrika 1999, 86, 249–264. [Google Scholar] [CrossRef]
- Barndorff-Nielsen, O.E.; Cox, D.R. Inference and Asymptotics; Chapman and Hall: London, UK, 1994. [Google Scholar]
- Severini, T. Likelihood Methods in Statistics; Oxford University Press: London, UK, 2000. [Google Scholar]
- Fraser, D.A.S.; Reid, N. Ancillaries and third-order significance. Utilitas Math. 1995, 7, 33–53. [Google Scholar]
- Rekkas, M.; Wong, A. Third-order inference for the Weibull distribution. Comput. Stat. Data Anal. 2005, 49, 499–525. [Google Scholar] [CrossRef]
- Tarng, C. Third-order likelihood-based inference for the log-normal regression model. J. Appl. Stat. 2014, 41, 1976–1988. [Google Scholar] [CrossRef]
- Skovgaard, I.M. Successive improvements of the order of ancillarity. Biometrika 1986, 73, 516–519. [Google Scholar] [CrossRef]
- Lugannani, R.; Rice, S. Saddlepoint approximation for the distribution function of the sum of independent variables. Adv. Appl. Probab. 1980, 12, 475–490. [Google Scholar] [CrossRef]
- Barndorff-Nielsen, O.E. Modified signed log likelihood ratio. Biometrika 1991, 78, 557–563. [Google Scholar] [CrossRef]
Wald | LR | BN | LGR | Wald | LR | BN | LGR | Wald | LR | BN | LGR | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
10 | 0.031 | 0.016 | 0.011 | 0.012 | 0.090 | 0.066 | 0.050 | 0.051 | 0.147 | 0.125 | 0.104 | 0.104 |
20 | 0.018 | 0.012 | 0.010 | 0.011 | 0.069 | 0.057 | 0.049 | 0.049 | 0.118 | 0.107 | 0.096 | 0.096 |
30 | 0.016 | 0.012 | 0.010 | 0.010 | 0.061 | 0.055 | 0.051 | 0.051 | 0.113 | 0.106 | 0.100 | 0.100 |
40 | 0.014 | 0.011 | 0.010 | 0.011 | 0.061 | 0.056 | 0.053 | 0.053 | 0.112 | 0.107 | 0.102 | 0.102 |
50 | 0.013 | 0.010 | 0.010 | 0.010 | 0.058 | 0.055 | 0.052 | 0.052 | 0.110 | 0.105 | 0.100 | 0.100 |
70 | 0.010 | 0.009 | 0.009 | 0.009 | 0.053 | 0.049 | 0.048 | 0.048 | 0.102 | 0.099 | 0.096 | 0.096 |
100 | 0.011 | 0.011 | 0.011 | 0.012 | 0.053 | 0.051 | 0.051 | 0.051 | 0.111 | 0.109 | 0.107 | 0.107 |
Wald | LR | BN | LGR | Wald | LR | BN | LGR | Wald | LR | BN | LGR | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
10 | 0.079 | 0.017 | 0.011 | 0.011 | 0.138 | 0.071 | 0.054 | 0.054 | 0.183 | 0.129 | 0.105 | 0.105 |
20 | 0.042 | 0.014 | 0.013 | 0.013 | 0.086 | 0.058 | 0.051 | 0.051 | 0.134 | 0.108 | 0.101 | 0.101 |
30 | 0.030 | 0.012 | 0.013 | 0.013 | 0.078 | 0.056 | 0.054 | 0.053 | 0.129 | 0.108 | 0.101 | 0.102 |
40 | 0.026 | 0.012 | 0.011 | 0.011 | 0.065 | 0.052 | 0.049 | 0.050 | 0.113 | 0.102 | 0.097 | 0.097 |
50 | 0.026 | 0.012 | 0.011 | 0.011 | 0.072 | 0.057 | 0.053 | 0.053 | 0.115 | 0.107 | 0.104 | 0.104 |
70 | 0.020 | 0.010 | 0.010 | 0.010 | 0.064 | 0.054 | 0.055 | 0.056 | 0.119 | 0.107 | 0.107 | 0.108 |
100 | 0.017 | 0.011 | 0.011 | 0.011 | 0.060 | 0.053 | 0.052 | 0.053 | 0.112 | 0.106 | 0.103 | 0.103 |
Wald | LR | BN | LGR | Wald | LR | BN | LGR | Wald | LR | BN | LGR | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.25 | 10 | 0.042 | 0.015 | 0.011 | 0.011 | 0.095 | 0.065 | 0.049 | 0.049 | 0.144 | 0.119 | 0.098 | 0.098 |
0.25 | 20 | 0.027 | 0.014 | 0.010 | 0.010 | 0.072 | 0.058 | 0.052 | 0.052 | 0.123 | 0.109 | 0.100 | 0.100 |
0.25 | 30 | 0.020 | 0.013 | 0.011 | 0.012 | 0.066 | 0.056 | 0.051 | 0.051 | 0.117 | 0.106 | 0.099 | 0.099 |
0.25 | 40 | 0.018 | 0.011 | 0.011 | 0.012 | 0.060 | 0.054 | 0.051 | 0.051 | 0.111 | 0.104 | 0.101 | 0.101 |
0.25 | 50 | 0.015 | 0.010 | 0.010 | 0.010 | 0.059 | 0.054 | 0.051 | 0.052 | 0.108 | 0.103 | 0.100 | 0.100 |
0.25 | 70 | 0.014 | 0.010 | 0.010 | 0.011 | 0.057 | 0.052 | 0.050 | 0.050 | 0.109 | 0.105 | 0.101 | 0.102 |
0.25 | 100 | 0.013 | 0.010 | 0.011 | 0.011 | 0.051 | 0.048 | 0.048 | 0.048 | 0.099 | 0.098 | 0.098 | 0.099 |
0.5 | 10 | 0.029 | 0.014 | 0.009 | 0.009 | 0.082 | 0.062 | 0.048 | 0.048 | 0.139 | 0.117 | 0.095 | 0.095 |
0.5 | 20 | 0.019 | 0.011 | 0.009 | 0.009 | 0.066 | 0.056 | 0.049 | 0.049 | 0.122 | 0.111 | 0.099 | 0.100 |
0.5 | 30 | 0.017 | 0.012 | 0.011 | 0.011 | 0.064 | 0.058 | 0.053 | 0.053 | 0.116 | 0.108 | 0.102 | 0.102 |
0.5 | 40 | 0.014 | 0.012 | 0.011 | 0.011 | 0.059 | 0.052 | 0.050 | 0.050 | 0.116 | 0.109 | 0.104 | 0.104 |
0.5 | 50 | 0.013 | 0.011 | 0.012 | 0.012 | 0.057 | 0.053 | 0.052 | 0.052 | 0.103 | 0.099 | 0.097 | 0.097 |
0.5 | 70 | 0.013 | 0.011 | 0.010 | 0.011 | 0.055 | 0.052 | 0.050 | 0.051 | 0.108 | 0.105 | 0.104 | 0.104 |
0.5 | 100 | 0.010 | 0.009 | 0.010 | 0.011 | 0.050 | 0.049 | 0.049 | 0.050 | 0.099 | 0.097 | 0.096 | 0.097 |
0.75 | 10 | 0.041 | 0.015 | 0.011 | 0.012 | 0.090 | 0.062 | 0.048 | 0.048 | 0.139 | 0.116 | 0.097 | 0.097 |
0.75 | 20 | 0.023 | 0.011 | 0.010 | 0.010 | 0.075 | 0.057 | 0.051 | 0.051 | 0.129 | 0.111 | 0.102 | 0.103 |
0.75 | 30 | 0.021 | 0.012 | 0.011 | 0.011 | 0.070 | 0.058 | 0.054 | 0.055 | 0.124 | 0.113 | 0.104 | 0.104 |
0.75 | 40 | 0.019 | 0.013 | 0.012 | 0.012 | 0.064 | 0.057 | 0.054 | 0.054 | 0.112 | 0.104 | 0.101 | 0.101 |
0.75 | 50 | 0.018 | 0.012 | 0.011 | 0.012 | 0.058 | 0.052 | 0.051 | 0.052 | 0.110 | 0.103 | 0.100 | 0.101 |
0.75 | 70 | 0.016 | 0.012 | 0.013 | 0.013 | 0.058 | 0.053 | 0.052 | 0.052 | 0.106 | 0.100 | 0.099 | 0.099 |
0.75 | 100 | 0.012 | 0.010 | 0.012 | 0.012 | 0.053 | 0.051 | 0.051 | 0.051 | 0.101 | 0.101 | 0.101 | 0.101 |
Wald | LR | BN | LGR | Wald | LR | BN | LGR | Wald | LR | BN | LGR | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
−1.1 | 10 | 0.007 | 0.015 | 0.010 | 0.010 | 0.051 | 0.068 | 0.051 | 0.052 | 0.106 | 0.126 | 0.102 | 0.103 |
−1.1 | 20 | 0.009 | 0.012 | 0.011 | 0.011 | 0.048 | 0.055 | 0.048 | 0.049 | 0.100 | 0.107 | 0.098 | 0.098 |
−1.1 | 30 | 0.008 | 0.010 | 0.009 | 0.009 | 0.049 | 0.052 | 0.049 | 0.049 | 0.099 | 0.104 | 0.097 | 0.097 |
−1.1 | 40 | 0.010 | 0.012 | 0.011 | 0.011 | 0.051 | 0.055 | 0.051 | 0.051 | 0.104 | 0.107 | 0.104 | 0.105 |
−1.1 | 50 | 0.012 | 0.013 | 0.013 | 0.014 | 0.055 | 0.057 | 0.056 | 0.056 | 0.105 | 0.108 | 0.105 | 0.105 |
−1.1 | 70 | 0.010 | 0.011 | 0.010 | 0.011 | 0.048 | 0.051 | 0.049 | 0.049 | 0.097 | 0.099 | 0.097 | 0.098 |
−1.1 | 100 | 0.009 | 0.010 | 0.010 | 0.011 | 0.052 | 0.053 | 0.053 | 0.053 | 0.102 | 0.104 | 0.103 | 0.103 |
0 | 10 | 0.006 | 0.014 | 0.010 | 0.010 | 0.052 | 0.067 | 0.051 | 0.051 | 0.110 | 0.127 | 0.103 | 0.104 |
0 | 20 | 0.010 | 0.013 | 0.012 | 0.012 | 0.051 | 0.058 | 0.051 | 0.051 | 0.104 | 0.110 | 0.099 | 0.099 |
0 | 30 | 0.009 | 0.011 | 0.010 | 0.010 | 0.052 | 0.055 | 0.052 | 0.052 | 0.103 | 0.108 | 0.102 | 0.102 |
0 | 40 | 0.011 | 0.012 | 0.011 | 0.012 | 0.049 | 0.052 | 0.049 | 0.049 | 0.098 | 0.101 | 0.097 | 0.098 |
0 | 50 | 0.010 | 0.012 | 0.011 | 0.011 | 0.053 | 0.055 | 0.053 | 0.053 | 0.103 | 0.106 | 0.102 | 0.102 |
0 | 70 | 0.009 | 0.010 | 0.010 | 0.010 | 0.049 | 0.051 | 0.050 | 0.050 | 0.099 | 0.101 | 0.098 | 0.098 |
0 | 100 | 0.010 | 0.010 | 0.011 | 0.011 | 0.048 | 0.049 | 0.049 | 0.049 | 0.098 | 0.099 | 0.098 | 0.098 |
1.1 | 10 | 0.006 | 0.013 | 0.009 | 0.009 | 0.049 | 0.067 | 0.051 | 0.051 | 0.108 | 0.127 | 0.104 | 0.104 |
1.1 | 20 | 0.008 | 0.012 | 0.010 | 0.010 | 0.049 | 0.056 | 0.050 | 0.051 | 0.104 | 0.113 | 0.103 | 0.103 |
1.1 | 30 | 0.008 | 0.010 | 0.009 | 0.010 | 0.047 | 0.052 | 0.048 | 0.049 | 0.096 | 0.101 | 0.096 | 0.097 |
1.1 | 40 | 0.011 | 0.012 | 0.012 | 0.013 | 0.051 | 0.054 | 0.053 | 0.053 | 0.102 | 0.105 | 0.102 | 0.103 |
1.1 | 50 | 0.008 | 0.009 | 0.009 | 0.010 | 0.051 | 0.055 | 0.052 | 0.052 | 0.100 | 0.104 | 0.101 | 0.101 |
1.1 | 70 | 0.010 | 0.012 | 0.011 | 0.012 | 0.048 | 0.050 | 0.048 | 0.049 | 0.099 | 0.102 | 0.098 | 0.099 |
1.1 | 100 | 0.011 | 0.010 | 0.011 | 0.012 | 0.049 | 0.050 | 0.050 | 0.050 | 0.102 | 0.105 | 0.101 | 0.101 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baklizi, A. Improved Likelihood Inference Procedures for the Logistic Distribution. Symmetry 2022, 14, 1767. https://doi.org/10.3390/sym14091767
Baklizi A. Improved Likelihood Inference Procedures for the Logistic Distribution. Symmetry. 2022; 14(9):1767. https://doi.org/10.3390/sym14091767
Chicago/Turabian StyleBaklizi, Ayman. 2022. "Improved Likelihood Inference Procedures for the Logistic Distribution" Symmetry 14, no. 9: 1767. https://doi.org/10.3390/sym14091767
APA StyleBaklizi, A. (2022). Improved Likelihood Inference Procedures for the Logistic Distribution. Symmetry, 14(9), 1767. https://doi.org/10.3390/sym14091767