Next Article in Journal
Proof-of-Useful-Work: BlockChain Mining by Solving Real-Life Optimization Problems
Previous Article in Journal
Cartan F(R) Gravity and Equivalent Scalar–Tensor Theory
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Some New Quantum Numerical Techniques for Solving Nonlinear Equations

1
Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
2
Department of Mathematics, Government College University, Faisalabad 54000, Pakistan
3
Section of Mathematics, International Telematic University Uninettuno, CorsoVittorio Emanuele II, 39, 00186 Roma, Italy
*
Author to whom correspondence should be addressed.
Symmetry 2022, 14(9), 1829; https://doi.org/10.3390/sym14091829
Submission received: 23 July 2022 / Revised: 18 August 2022 / Accepted: 22 August 2022 / Published: 3 September 2022

Abstract

:
In this paper, we introduce some new quantum numerical techniques of midpoint and trapezoidal type essentially by using the decomposition technique. We also check the order of convergence of our suggested iterative methods. Numerical examples demonstrate that the new q -iterative methods can generate solutions to the nonlinear equations with acceptable accuracy.

1. Introduction

In most scientific and engineering applications, the problem of finding the solution to nonlinear equations has become an active area of research. Many researchers have explored various order iterative methods to find solutions to the nonlinear equations using various techniques such as variational iterative methods and decomposition techniques; for details, see [1,2,3,4,5,6,7,8,9,10,11,12]. Symmetry analysis is a significant tool in various areas of mathematics and physics. There are several problems in engineering and mathematical sciences that possess symmetry, which can be transformed into the nonlinear systems Ξ 1 ˜ = 0 . For details, see [13].
In the Adomian decomposition method, the solution is considered in terms of an infinite series, which converges towards an exact solution. Chun [2] and Abbasbandy [14] constructed and investigated different higher-order iterative methods by applying the decomposition technique of Adomian [15]. Darvishi and Barati [16] also applied the Adomian decomposition technique to develop Newton-type methods that are cubically convergent for the solution of the system of a nonlinear equation. Daftardar-Gejji and Jafari [17] have used different modifications of the Adomian decomposition method [15] and suggested a simple technique that does not need the derivative evaluation of the Adomian polynomial, which is the major advantage of using this technique over Adomian decomposition method.
Jackson [18] introduced the q -Taylor’s formula. Then, Jing and Fan [19] derived q -Taylor’s formula with its q -remainder by using the q-differentiation approach and established results on the q -remainder in the q-Taylor’s formula. Ernest presented the four different q -Taylor’s formulas along with q integral remainder; see [20,21,22].
In this paper, we consider the well-known fixed point iterative method in which we rewrite the nonlinear equation Ξ 1 ( ˜ ) = 0 as ˜ = Ξ 2 ( ˜ ) . We determine the convergence of our proposed methods. In order to illustrate the efficiency of these new methods, we present several numerical examples. We hope that the ideas and techniques of this paper will inspire interested readers working in this field.

2. Construction of q-Iterative Methods

In this section, some new different order multi-step q -iterative methods are constructed by considering the mid point and Trapezoidal rule in the setting of q -calculus and using the technique of decomposition [17].

2.1. Mid Point Rule

Consider the nonlinear equation
Ξ 1 ˜ = 0 ,
which is equivalent to
˜ = Ξ 2 ˜ .
Assume that η is the simple root of nonlinear Equation (1) and ¯ is the initial guess sufficiently close to the root. Using the fundamental theorem of calculus and mid-point quadrature formula in the q -calculus, we have
˜ = Ξ 2 ¯ + ˜ ¯ D q Ξ 2 ˜ + ¯ 2 .
Now, using the technique of He [23], the nonlinear Equation (1) can be written as an equivalent coupled system of equations
˜ = Ξ 2 ¯ + ˜ ¯ D q Ξ 2 ˜ + ¯ 2 + H ˜ ,
where
H ˜ = Ξ 2 ˜ Ξ 2 ¯ ˜ ¯ D q Ξ 2 ˜ + ¯ 2 = ˜ 1 D q Ξ 2 ˜ + ¯ 2 Ξ 2 ¯ + ¯ D q Ξ 2 ˜ + ¯ 2 ,
from which it follows that
˜ = H ˜ 1 D q Ξ 2 ˜ + ¯ 2 + Ξ 2 ¯ ¯ D q Ξ 2 ˜ + ¯ 2 1 D q Ξ 2 ˜ + ¯ 2 = θ + M q ˜ ,
where
θ = ¯ ,
and
M q ˜ = H ˜ 1 D q Ξ 2 ˜ + ¯ 2 + Ξ 2 ¯ ¯ 1 D q Ξ 2 ˜ + ¯ 2 .
It is clear that M q ˜ is a nonlinear operator. Now, we establish a sequence of higher-order iterative methods implementing the decomposition technique presented by Daftardar-Gejji and Jafari [17]. In this technique, the solution of (1) can be represented as in terms of infinite series.
˜ = i = 0 ˜ i .
Here, the operator M q ˜ can be decomposed as:
M q ˜ = M q ˜ + i = 1 M q j = 0 i ˜ j M q j = 0 i 1 ˜ j .
Thus from Equations (5), (8) and (9), we have
i = 1 ˜ i = θ + M q ˜ + i = 1 M q j = 0 i ˜ j M q j = 0 i 1 ˜ j ,
which generates the following iterative scheme
˜ 0 = θ , ˜ 1 = M q ˜ , ˜ 2 = M q ˜ + ˜ 1 M q ˜ , ˜ n + 1 = M q j = 0 i ˜ j M q j = 0 i 1 ˜ j , n = 1 , 2 , .
Consequently, it follows that
˜ 1 + ˜ 2 + + ˜ n + 1 = M q ˜ + ˜ 1 + ˜ 2 + + ˜ n
and
˜ = θ + i = 1 ˜ i .
It is noted that ˜ is approximated by
U n = ˜ + ˜ 1 + ˜ 2 + ˜ n
and
lim n U n = ˜ .
For n = 0 ,
˜ U 0 = ˜ 0 = θ = ¯ .
From (4), it can easily be computed
H ˜ 0 = 0 .
Using (7), we obtain
˜ 1 = M q ˜ 0 = H ˜ 0 1 D q Ξ 2 ˜ 0 + ¯ 2 + Ξ 2 ¯ ¯ 1 D q Ξ 2 ˜ 0 + ¯ 2 = Ξ 2 ¯ ¯ 1 D q Ξ 2 ˜ 0 + ¯ 2 .
For n = 1 ,
˜ U 1 = ˜ 0 + ˜ 1 = ˜ 0 + M q ˜ 0 = ¯ + Ξ 2 ¯ ¯ 1 D q Ξ 2 ˜ 0 + ¯ 2 .
Using (12), we have
˜ = Ξ 2 ¯ ¯ D q Ξ 2 ¯ 1 D q Ξ 2 ¯ .
This fixed-point formulation is used to suggest the following Algorithms 1–4.
Algorithm 1 A new q-iterative scheme of second order convergence
For a given ˜ 0 (initial guess), an approximate solution ˜ n + 1 is computed by the following iterative scheme
˜ n + 1 = Ξ 2 ˜ n ˜ n D q Ξ 2 ˜ n 1 D q Ξ 2 ˜ n ,
where n = 0 , 1 , 2 , .
From (4) and (7), we have
H ˜ 0 + ˜ 1 = Ξ 2 ˜ 0 + ˜ 1 Ξ 2 ¯ ˜ 0 + ˜ 1 ¯ D q Ξ 2 ˜ 0 + ˜ 1 + ¯ 2 .
Thus,
˜ 1 + ˜ 2 = M q ˜ 0 + ˜ 1 = H ˜ 0 + ˜ 1 1 D q Ξ 2 ˜ 0 + ˜ 1 + ¯ 2 + Ξ 2 ¯ ¯ 1 D q Ξ 2 ˜ 0 + ˜ 1 + ¯ 2 = Ξ 2 ˜ 0 + ˜ 1 Ξ 2 ¯ ˜ 0 + ˜ 1 ¯ D q Ξ 2 ˜ 0 + ˜ 1 + ¯ 2 + Ξ 2 ¯ ¯ 1 D q Ξ 2 ˜ 0 + ˜ 1 + ¯ 2 = Ξ 2 ˜ 0 + ˜ 1 ˜ 0 + ˜ 1 ¯ D q Ξ 2 ˜ 0 + ˜ 1 + ¯ 2 ¯ 1 D q Ξ 2 ˜ 0 + ˜ 1 + ¯ 2 .
For n = 2 ,
˜ U 2 = ˜ 0 + ˜ 1 + ˜ 2 = θ + M q ˜ 0 + ˜ 1 = ¯ + Ξ 2 ˜ 0 + ˜ 1 ˜ 0 + ˜ 1 ¯ D q Ξ 2 ˜ 0 + ˜ 1 + ¯ 2 ¯ 1 D q Ξ 2 ˜ 0 + ˜ 1 + ¯ 2 = Ξ 2 ˜ 0 + ˜ 1 ˜ 0 + ˜ 1 D q Ξ 2 ˜ 0 + ˜ 1 + ¯ 2 1 D q Ξ 2 ˜ 0 + ˜ 1 + ¯ 2 .
Take,
˜ 0 + ˜ 1 = v = Ξ 2 ¯ ¯ D q Ξ 2 ¯ 1 D q Ξ 2 ¯ = Ξ 2 v 1 D q Ξ 2 v + ¯ 2 v D q Ξ 2 v + ¯ 2 1 D q Ξ 2 v + ¯ 2 .
This relation yields the following two-step method for solving nonlinear Equation (1).
Algorithm 2 A new q-iterative scheme of third order convergence
For a given initial guess ˜ 0 , the approximated solution ˜ n + 1 can be computed by the following iterative schemes.
v n = Ξ 2 ˜ n ˜ n D q Ξ 2 ˜ n 1 D q Ξ 2 ˜ n
and
˜ n + 1 = Ξ 2 v n 1 D q Ξ 2 v n + ˜ n 2 v n D q Ξ 2 v n + ˜ n 2 1 D q Ξ 2 v n + ˜ n 2 ,
where n = 0 , 1 , 2 , .
It is noted that
˜ 0 + ˜ 1 + ˜ 2 = w = Ξ 2 ˜ 0 + ˜ 1 1 D q Ξ 2 ˜ 0 + ˜ 1 + ¯ 2 ˜ 0 + ˜ 1 D q Ξ 2 ˜ 0 + ˜ 1 + ¯ 2 1 D q Ξ 2 ˜ 0 + ˜ 1 + ¯ 2 .
From (4) and (7), we can write
H ˜ 0 + ˜ 1 + ˜ 2 = Ξ 2 ˜ 0 + ˜ 1 + ˜ 2 Ξ 2 ¯ ˜ 0 + ˜ 1 + ˜ 2 ¯ D q Ξ 2 ˜ 0 + ˜ 1 + ˜ 2 + ¯ 2
and
˜ 1 + ˜ 2 + ˜ 3 = M q ˜ 0 + ˜ 1 + ˜ 2 = H ˜ 0 + ˜ 1 + ˜ 2 1 D q Ξ 2 ˜ 0 + ˜ 1 + ˜ 2 + ¯ 2 + Ξ 2 ¯ ¯ 1 D q Ξ 2 ˜ 0 + ˜ 1 + ˜ 2 + ¯ 2 = Ξ 2 ˜ 0 + ˜ 1 + ˜ 2 Ξ 2 ¯ ˜ 0 + ˜ 1 + ˜ 2 ¯ D q Ξ 2 ˜ 0 + ˜ 1 + ˜ 2 + ¯ 2 1 D q Ξ 2 ˜ 0 + ˜ 1 + ˜ 2 + ¯ 2 + Ξ 2 ¯ ¯ 1 D q Ξ 2 ˜ 0 + ˜ 1 + ˜ 2 + ¯ 2 = Ξ 2 ˜ 0 + ˜ 1 + ˜ 2 1 D q Ξ 2 ˜ 0 + ˜ 1 + ˜ 2 + ¯ 2 ˜ 0 + ˜ 1 + ˜ 2 ¯ D q Ξ 2 ˜ 0 + ˜ 1 + ˜ 2 + ¯ 2 1 D q Ξ 2 ˜ 0 + ˜ 1 + ˜ 2 + ¯ 2 ¯ 1 D q Ξ 2 ˜ 0 + ˜ 1 + ˜ 2 + ¯ 2 .
For n = 3 ,
˜ U 3 = ˜ 0 + ˜ 1 + ˜ 2 + ˜ 3 = ˜ 0 + M q ˜ 0 + ˜ 1 + ˜ 2 . = ¯ Ξ 2 ˜ 0 + ˜ 1 + ˜ 2 1 D q Ξ 2 ˜ 0 + ˜ 1 + ˜ 2 + ¯ 2 ˜ 0 + ˜ 1 + ˜ 2 ¯ D q Ξ 2 ˜ 0 + ˜ 1 + ˜ 2 + ¯ 2 1 D q Ξ 2 ˜ 0 + ˜ 1 + ˜ 2 + ¯ 2 ¯ 1 D q Ξ 2 ˜ 0 + ˜ 1 + ˜ 2 + ¯ 2 .
Using (17), we have
U 3 = ¯ Ξ 2 w 1 D q Ξ 2 w + ¯ 2 w ¯ D q Ξ 2 w + ¯ 2 1 D q Ξ 2 w + ¯ 2 ¯ 1 D q Ξ 2 w + ¯ 2 = Ξ 2 w 1 D q Ξ 2 w + ¯ 2 w D q Ξ 2 w + ¯ 2 1 D q Ξ 2 w + ¯ 2 .
Using this relation, we have the following three-step method for solving nonlinear Equation (1).
Algorithm 3 A new q-iterative scheme of fourth order convergence
For a given initial guess ˜ 0 , compute the approximate solution ˜ n + 1 by the following iterative scheme
v n = Ξ 2 ˜ n ˜ n D q Ξ 2 ˜ n 1 D q Ξ 2 ˜ n ,
w n = Ξ 2 v n 1 D q Ξ 2 v n + ˜ n 2 v n D q Ξ 2 v n + ˜ n 2 1 D q Ξ 2 v n + ˜ n 2
and
˜ n + 1 = Ξ 2 w n 1 D q Ξ 2 w n + ˜ n 2 w n D q Ξ 2 w n + ˜ n 2 1 D q Ξ 2 w n + ˜ n 2 .
where n = 0 , 1 , 2 , .

2.2. Trapezoidal Rule

Again using the technique of He [23] and fundamental law of calculus along with Trapezoidal rule in the q -calculus, we can obtain
˜ = Ξ 2 ¯ + ˜ ¯ D q Ξ 2 ˜ + D q Ξ 2 ¯ 2 + H ˜
and
H ˜ = Ξ 2 ˜ Ξ 2 ¯ ˜ ¯ D q Ξ 2 ˜ + D q Ξ 2 ¯ 2 = ˜ 1 D q Ξ 2 ˜ + D q Ξ 2 ¯ 2 Ξ 2 ¯ + ¯ D q Ξ 2 ˜ + D q Ξ 2 ¯ 2 ,
from which it follows that
˜ = H ˜ 1 D q Ξ 2 ˜ + D q Ξ 2 ¯ 2 + Ξ 2 ¯ ¯ D q Ξ 2 ˜ + D q Ξ 2 ¯ 2 1 D q Ξ 2 ˜ + D q Ξ 2 ¯ 2 = θ + M q ˜ ,
where
θ = ¯
and
M q ˜ = H ˜ 1 D q Ξ 2 ˜ + D q Ξ 2 ¯ 2 + Ξ 2 ¯ ¯ 1 D q Ξ 2 ˜ + D q Ξ 2 ¯ 2 .
Now, applying the decomposition technique of Daftardar-Gejji and Jafari [17], we have
For n = 0 ,
˜ U 0 = ˜ 0 = θ = ¯ .
From (20), it can easily be computed as
H ˜ 0 = 0 .
Using (23), we obtain
˜ 1 = M q ˜ 0 = H ˜ 0 1 D q Ξ 2 ˜ 0 + D q Ξ 2 ¯ 2 + Ξ 2 ¯ ¯ 1 D q Ξ 2 ˜ 0 + D q Ξ 2 ¯ 2 = Ξ 2 ¯ ¯ 1 D q Ξ 2 ˜ 0 + D q Ξ 2 ¯ 2 .
For n = 1 ,
˜ U 1 = ˜ 0 + ˜ 1 = ˜ 0 + M q ˜ 0 = ¯ + Ξ 2 ¯ ¯ 1 D q Ξ 2 ˜ 0 + D q Ξ 2 ¯ 2 .
Using (25), we have
˜ = Ξ 2 ¯ ¯ D q Ξ 2 ¯ 1 D q Ξ 2 ¯ .
This formulation determines the Algorithm 1.
From (20) and (23), we have
H ˜ 0 + ˜ 1 = Ξ 2 ˜ 0 + ˜ 1 Ξ 2 ¯ ˜ 0 + ˜ 1 ¯ D q Ξ 2 ˜ 0 + ˜ 1 + D q Ξ 2 ¯ 2
and
˜ 1 + ˜ 2 = M q ˜ 0 + ˜ 1 = H ˜ 0 + ˜ 1 1 D q Ξ 2 ˜ 0 + ˜ 1 + D q Ξ 2 ¯ 2 + Ξ 2 ¯ ¯ 1 D q Ξ 2 ˜ 0 + ˜ 1 + D q Ξ 2 ¯ 2 = Ξ 2 ˜ 0 + ˜ 1 Ξ 2 ¯ ˜ 0 + ˜ 1 ¯ D q Ξ 2 ˜ 0 + ˜ 1 + D q Ξ 2 ¯ 2 1 D q Ξ 2 ˜ 0 + ˜ 1 + D q Ξ 2 ¯ 2 + Ξ 2 ¯ ¯ 1 D q Ξ 2 ˜ 0 + ˜ 1 + D q Ξ 2 ¯ 2 = Ξ 2 ˜ 0 + ˜ 1 1 D q Ξ 2 ˜ 0 + ˜ 1 + D q Ξ 2 ¯ 2 ˜ 0 + ˜ 1 ¯ D q Ξ 2 ˜ 0 + ˜ 1 + D q Ξ 2 ¯ 2 1 D q Ξ 2 ˜ 0 + ˜ 1 + D q Ξ 2 ¯ 2 ¯ 1 D q Ξ 2 ˜ 0 + ˜ 1 + D q Ξ 2 ¯ 2 .
For n = 2 ,
˜ U 2 = ˜ 0 + ˜ 1 + ˜ 2 = ˜ 0 + M q ˜ 0 + ˜ 1 = ¯ + Ξ 2 ˜ 0 + ˜ 1 1 D q Ξ 2 ˜ 0 + ˜ 1 + D q Ξ 2 ¯ 2 ˜ 0 + ˜ 1 ¯ D q Ξ 2 ˜ 0 + ˜ 1 + D q Ξ 2 ¯ 2 1 D q Ξ 2 ˜ 0 + ˜ 1 + D q Ξ 2 ¯ 2 ¯ 1 D q Ξ 2 ˜ 0 + ˜ 1 + D q Ξ 2 ¯ 2 .
Take
˜ 0 + ˜ 1 = v = Ξ 2 ¯ ¯ D q Ξ 2 ¯ 1 D q Ξ 2 ¯ = ¯ + Ξ 2 v 1 D q Ξ 2 v + D q Ξ 2 ¯ 2 v ¯ D q Ξ 2 v + D q Ξ 2 ¯ 2 1 D q Ξ 2 v + D q Ξ 2 ¯ 2 ¯ 1 D q Ξ 2 v + D q Ξ 2 ¯ 2 = Ξ 2 v 1 D q Ξ 2 v + D q Ξ 2 ¯ 2 v D q Ξ 2 v + D q Ξ 2 ¯ 2 1 D q Ξ 2 v + D q Ξ 2 ¯ 2 .
This relation yields the following two-step method for solving nonlinear Equation (1).
Algorithm 4 A new q-iterative scheme of third order convergence
For a given initial guess ˜ 0 , the approximate solution ˜ n + 1 can be computed by the following iterative scheme
v n = Ξ 2 ˜ n ˜ n D q Ξ 2 ˜ n 1 D q Ξ 2 ˜ n
and
˜ n + 1 = Ξ 2 v n 1 D q Ξ 2 v n + D q Ξ 2 ˜ n 2 v n D q Ξ 2 v n + D q Ξ 2 ˜ n 2 1 D q Ξ 2 v n + D q Ξ 2 ˜ n 2 . n = 0 , 1 , 2 , .
It is noted that
˜ 0 + ˜ 1 + ˜ 2 = w = Ξ 2 ˜ 0 + ˜ 1 1 D q Ξ 2 ˜ 0 + ˜ 1 + D q Ξ 2 ¯ 2 v D q Ξ 2 ˜ 0 + ˜ 1 + D q Ξ 2 ¯ 2 1 D q Ξ 2 ˜ 0 + ˜ 1 + D q Ξ 2 ¯ 2 .
From (20) and (23), we can write
H ˜ 0 + ˜ 1 + ˜ 2 = Ξ 2 ˜ 0 + ˜ 1 + ˜ 2 Ξ 2 ¯ ˜ 0 + ˜ 1 + ˜ 2 ¯ D q Ξ 2 ˜ 0 + ˜ 1 + ˜ 2 + D q Ξ 2 ¯ 2
and
˜ 1 + ˜ 2 + ˜ 3 = M q ˜ 0 + ˜ 1 + ˜ 2 = H ˜ 0 + ˜ 1 + ˜ 2 1 D q Ξ 2 ˜ 0 + ˜ 1 + ˜ 2 + D q Ξ 2 ¯ 2 + Ξ 2 ¯ ¯ 1 D q Ξ 2 ˜ 0 + ˜ 1 + ˜ 2 + D q Ξ 2 ¯ 2 = Ξ 2 ˜ 0 + ˜ 1 + ˜ 2 Ξ 2 ¯ ˜ 0 + ˜ 1 + ˜ 2 ¯ D q Ξ 2 ˜ 0 + ˜ 1 + ˜ 2 + D q Ξ 2 ¯ 2 1 D q Ξ 2 ˜ 0 + ˜ 1 + ˜ 2 + D q Ξ 2 ¯ 2 + Ξ 2 ¯ ¯ 1 D q Ξ 2 ˜ 0 + ˜ 1 + ˜ 2 + D q Ξ 2 ¯ 2 = Ξ 2 ˜ 0 + ˜ 1 + ˜ 2 1 D q Ξ 2 ˜ 0 + ˜ 1 + ˜ 2 + D q Ξ 2 ¯ 2 ˜ 0 + ˜ 1 + ˜ 2 ¯ D q Ξ 2 ˜ 0 + ˜ 1 + ˜ 2 + D q Ξ 2 ¯ 2 1 D q Ξ 2 ˜ 0 + ˜ 1 + ˜ 2 + D q Ξ 2 ¯ 2 ¯ 1 D q Ξ 2 ˜ 0 + ˜ 1 + ˜ 2 + D q Ξ 2 ¯ 2 .
For n = 3 ,
˜ U 3 = ˜ 0 + ˜ 1 + ˜ 2 + ˜ 3 = ˜ 0 + M q ˜ 0 + ˜ 1 + ˜ 2 = ¯ + Ξ 2 ˜ 0 + ˜ 1 + ˜ 2 1 D q Ξ 2 ˜ 0 + ˜ 1 + ˜ 2 + D q Ξ 2 ¯ 2 ˜ 0 + ˜ 1 + ˜ 2 ¯ D q Ξ 2 ˜ 0 + ˜ 1 + ˜ 2 + D q Ξ 2 ¯ 2 1 D q Ξ 2 ˜ 0 + ˜ 1 + ˜ 2 + D q Ξ 2 ¯ 2 ¯ 1 D q Ξ 2 ˜ 0 + ˜ 1 + ˜ 2 + D q Ξ 2 ¯ 2 .
Using (28), we have
U 3 = ¯ + Ξ 2 w 1 D q Ξ 2 w + D q Ξ 2 ¯ 2 w ¯ D q Ξ 2 w + D q Ξ 2 ¯ 2 1 D q Ξ 2 w + D q Ξ 2 ¯ 2 ¯ 1 D q Ξ 2 w + D q Ξ 2 ¯ 2 = Ξ 2 w 1 D q Ξ 2 w + D q Ξ 2 ¯ 2 w D q Ξ 2 w + D q Ξ 2 ¯ 2 1 D q Ξ 2 w + D q Ξ 2 ¯ 2 .
This formulation yields the following three-step method for solving nonlinear Equation (1).

3. Order of Convergence

This section comprises the convergence analysis of the q -iterative methods determined by Algorithms 1–5 in the previous section.
In the following theorem, we have found the order of convergence of the Algorithm 1, and it is a quadratic order of convergence.
Theorem 1.
Let I R be an open interval, and Ξ 1 : I R is differential function. If β I be a simple root of Ξ 1 ˜ = 0 and ˜ 0 is sufficiently close to β, then multi-step method defined by Algorithm 1 has quadratic convergence.
Proof. 
Let β be the root of nonlinear equation Ξ 1 ˜ = 0 , or equivalently ˜ = Ξ 2 ˜ . Let e n and e n + 1 be the errors at n t h and n + 1 iterations, respectively.
Algorithm 5 A new q-iterative scheme of fourth order convergence
For a given initial guess ˜ 0 , the approximated solution ˜ n + 1 is computed by the following iterative schemes.
v n = Ξ 2 ˜ n ˜ n D q Ξ 2 ˜ n 1 D q Ξ 2 ˜ n ,
w n = Ξ 2 v n 1 D q Ξ 2 v n + D q Ξ 2 ˜ n 2 v n D q Ξ 2 v n + D q Ξ 2 ˜ n 2 1 D q Ξ 2 v n + D q Ξ 2 ˜ n 2 ,
and
˜ n + 1 = Ξ 2 w n 1 D q Ξ 2 w n + D q Ξ 2 ˜ n 2 w n D q Ξ 2 w n + D q Ξ 2 ˜ n 2 1 D q Ξ 2 w n + D q Ξ 2 ˜ n 2 . n = 0 , 1 , 2 , .
Now, expanding Ξ 2 ( ˜ n ) and D q Ξ 2 ( ˜ n ) in terms of q -Taylor’s series about β , to obtain
Ξ 2 ( ˜ n ) = D q 0 Ξ 2 ( β ) + D q Ξ 2 β e n + 1 2 ! D q 2 Ξ 2 β e n 2 + 1 3 ! D q 3 Ξ 2 β e n 3 + 1 4 ! D q 4 Ξ 2 β e n 4 + O e n 5 = β + θ 1 e n + θ 2 e n 2 + θ 3 e n 3 + θ 4 e n 4 + O e n 5 .
and
D q Ξ 2 ˜ n = D q Ξ 2 ( β ) + D q 2 Ξ 2 β e n + 1 2 ! D q 3 Ξ 2 β e n 2 + 1 3 ! D q 4 Ξ 2 β e n 3 + 1 4 ! D q 5 Ξ 2 β e n 4 + O e n 5 = θ 1 + 2 θ 2 e n + 3 θ 3 e n 2 + 4 θ 4 e n 3 + 5 θ 5 e n 4 + O e n 5 ,
where
θ m = D q m Ξ 2 β m ! for m = 1 , 2 , 3 ,
and
e n = ˜ n β
˜ n D q Ξ 2 ˜ n = β θ 1 + 2 β θ 2 e n + 3 β θ 3 e n 2 + 4 β θ 4 e n 3 + 5 β θ 5 e n 4 + θ 1 e n + 2 θ 2 e n 2 + 3 θ 3 e n 3 + 4 θ 4 e n 4 + O e n 5 .
Subtracting (32) from (34), we have
Ξ 2 ( ˜ n ) ˜ n D q Ξ 2 ˜ n = β β θ 1 2 β θ 2 e n 3 β θ 3 e n 2 4 β θ 4 e n 3 5 β θ 5 e n 4 θ 2 e n 2 2 θ 3 e n 3 3 θ 4 e n 4 + O e n 5 .
and
1 D q Ξ 2 ˜ n = 1 θ 1 2 θ 2 e n 3 θ 3 e n 2 4 θ 4 e n 3 5 θ 5 e n 4 + O e n 5 .
Dividing (35) and (36), we have
Ξ 2 ( ˜ n ) ˜ n D q Ξ 2 ˜ n 1 D q Ξ 2 ˜ n = β β θ 1 2 β θ 2 e n 3 β θ 3 e n 2 4 β θ 4 e n 3 5 β θ 5 e n 4 θ 2 e n 2 2 θ 3 e n 3 3 θ 4 e n 4 + O e n 5 1 θ 1 + 2 θ 2 e n + 3 θ 3 e n 2 + 4 θ 4 e n 3 + O e n 4 1 .
Using (14), we have
˜ n + 1 = β β θ 1 2 β θ 2 e n 3 β θ 3 e n 2 4 β θ 4 e n 3 5 β θ 5 e n 4 θ 2 e n 2 2 θ 3 e n 3 3 θ 4 e n 4 + O e n 5 1 1 θ 1 + 1 1 θ 1 2 2 θ 2 e n + 1 1 θ 1 3 3 θ 3 3 θ 1 θ 3 + 4 θ 2 2 e n 2 + O e n 3 = β + 1 1 + θ 1 θ 2 e n 2 + 1 1 + θ 1 2 2 θ 1 θ 3 2 θ 3 2 θ 2 2 e n 3 + 1 1 + θ 1 3 3 θ 4 + 4 θ 2 3 6 θ 1 θ 4 + 3 θ 1 2 θ 4 + 7 θ 2 θ 3 7 θ 1 θ 2 θ 3 e n 4 + O e n 5 .
Hence
e n + 1 = 1 1 + θ 1 θ 2 e n 2 + O e n 3 .
In the following theorem, we have found the order of convergence of the Algorithm 2, and it is the third order of convergence.
Theorem 2.
Let I R be an open interval, and Ξ 1 : I R is differential function. If β I be a simple root of Ξ 1 ˜ = 0 and ˜ 0 is sufficiently close to β, then multi-step method defined by Algorithm 2 has a third order of convergence.
Proof. 
From (37), we obtain
˜ n + 1 = β + 1 1 + θ 1 θ 2 e n 2 + 1 1 + θ 1 2 2 θ 1 θ 3 2 θ 3 2 θ 2 2 e n 3 + 1 1 + θ 1 3 3 θ 4 + 4 θ 2 3 6 θ 1 θ 4 + 3 θ 1 2 θ 4 + 7 θ 2 θ 3 7 θ 1 θ 2 θ 3 e n 4 + O e n 5 .
Using (15), we have
v n = β + 1 1 + θ 1 θ 2 e n 2 + 1 1 + θ 1 2 2 θ 1 θ 3 2 θ 3 2 θ 2 2 e n 3 + 1 1 + θ 1 3 3 θ 4 + 4 θ 2 3 6 θ 1 θ 4 + 3 θ 1 2 θ 4 + 7 θ 2 θ 3 7 θ 1 θ 2 θ 3 e n 4 + O e n 5 .
Expanding Ξ 2 v n in terms of q -Taylor’s series about β , we obtain
Ξ 2 v n = β + 1 1 + θ 1 θ 1 θ 2 e n 2 + 1 1 + θ 1 2 θ 1 2 θ 1 θ 3 2 θ 3 2 θ 2 2 e n 3 + 1 1 + θ 1 3 θ 1 3 θ 4 + 4 θ 2 3 6 θ 1 θ 4 + 3 θ 1 2 θ 4 + 7 θ 2 θ 3 7 θ 1 θ 2 θ 3 e n 4 + O e n 5 .
Expanding D q Ξ 2 v n + ˜ n 2 in terms of q -Taylor’s series about β , we obtain
D q Ξ 2 v n + ˜ n 2 = θ 1 + θ 2 e n + 1 1 + θ 1 2 θ 2 2 e n 2 + 1 1 + θ 1 2 2 θ 2 2 θ 1 θ 3 2 θ 3 2 θ 2 2 e n 3 + 1 1 + θ 1 3 2 θ 2 3 θ 4 + 4 θ 2 3 6 θ 1 θ 4 + 3 θ 1 2 θ 4 + 7 θ 2 θ 3 7 θ 1 θ 2 θ 3 e n 4 + O e n 5 .
and
v n D q Ξ 2 v n + ˜ n 2 = β θ 1 + β θ 2 e n + 1 1 + θ 1 2 β θ 2 2 e n 2 + 1 1 + θ 1 2 2 β θ 2 2 θ 1 θ 3 2 θ 3 2 θ 2 2 e n 3 + 1 1 + θ 1 3 2 β θ 2 3 θ 4 + 4 θ 2 3 6 θ 1 θ 4 + 3 θ 1 2 θ 4 + 7 θ 2 θ 3 7 θ 1 θ 2 θ 3 e n 4 + 1 1 + θ 1 θ 1 θ 2 e n 2 + 1 1 + θ 1 2 θ 1 2 θ 1 θ 3 2 θ 3 2 θ 2 2 e n 3 + 1 1 + θ 1 3 θ 1 3 θ 4 + 4 θ 2 3 6 θ 1 θ 4 + 3 θ 1 2 θ 4 + 7 θ 2 θ 3 7 θ 1 θ 2 θ 3 e n 4 + 1 1 + θ 1 θ 2 2 e n 3 + 1 1 + θ 1 2 θ 2 2 θ 1 θ 3 2 θ 3 2 θ 2 2 e n 4 + 1 1 + θ 1 2 2 θ 2 3 e n 4 + O e n 5 .
Subtracting (39) from (41), we have
Ξ 2 v n v n D q Ξ 2 v n + ˜ n 2 = β 1 + θ 1 β θ 2 e n + 1 1 + θ 1 2 β θ 2 2 e n 2 1 1 + θ 1 2 2 β θ 2 2 θ 1 θ 3 2 θ 3 2 θ 2 2 e n 3 1 1 + θ 1 3 2 β θ 2 3 θ 4 + 4 θ 2 3 6 θ 1 θ 4 + 3 θ 1 2 θ 4 + 7 θ 2 θ 3 7 θ 1 θ 2 θ 3 e n 4 1 1 + θ 1 θ 2 2 e n 3 1 1 + θ 1 2 θ 2 2 θ 1 θ 3 2 θ 3 2 θ 2 2 e n 4
1 1 + θ 1 2 2 θ 2 3 e n 4 + O e n 5 .
Now,
1 D q Ξ 2 v n + ˜ n 2 = 1 θ 1 θ 2 e n 1 1 + θ 1 2 θ 2 2 e n 2 1 1 + θ 1 2 2 θ 2 2 θ 1 θ 3 2 θ 3 2 θ 2 2 e n 3 1 1 + θ 1 3 2 θ 2 3 θ 4 + 4 θ 2 3 6 θ 1 θ 4 + 3 θ 1 2 θ 4 + 7 θ 2 θ 3 7 θ 1 θ 2 θ 3 e n 4 + O e n 5 .
Dividing (43) and (44), we obtain
Ξ 2 v n v n D q Ξ 2 v n + ˜ n 2 1 D q Ξ 2 v n + ˜ n 2 = β + 1 1 + θ 1 2 θ 2 2 e n 3 1 1 + θ 1 3 θ 2 3 e n 4 + 1 1 + θ 1 3 θ 2 2 θ 1 θ 3 2 θ 3 2 θ 2 2 e n 4 + 1 1 + θ 1 3 2 θ 2 3 e n 4 + O e n 5 .
From (16), we obtain
˜ n + 1 = β + 1 1 + θ 1 2 θ 2 2 e n 3 1 1 + θ 1 3 θ 2 3 e n 4 + 1 1 + θ 1 3 θ 2 2 θ 1 θ 3 2 θ 3 2 θ 2 2 e n 4 + 1 1 + θ 1 3 2 θ 2 3 e n 4 + O e n 5 .
Therefore,
e n + 1 = 1 1 + θ 1 2 θ 2 2 e n 3 + O e n 4 .
In the following theorem, we have found the order of convergence of the Algorithm 3, and it is the fourth order of convergence.
Theorem 3.
Let I R be an open interval, and Ξ 1 : I R is differential function. If β I be a simple root of Ξ 1 ˜ = 0 and ˜ 0 is sufficiently close to β, then the multi-step method defined by Algorithm 3 has the fourth order of convergence.
Proof. 
From (38), we obtain
v n = β + 1 1 + θ 1 θ 2 e n 2 + 1 1 + θ 1 2 2 θ 1 θ 3 2 θ 3 2 θ 2 2 e n 3 + 1 1 + θ 1 3 3 θ 4 + 4 θ 2 3 6 θ 1 θ 4 + 3 θ 1 2 θ 4 + 7 θ 2 θ 3 7 θ 1 θ 2 θ 3 e n 4 + O e n 5 .
From (45), we obtain
w n = β + 1 1 + θ 1 2 θ 2 2 e n 3 1 1 + θ 1 3 θ 2 3 e n 4 + 1 1 + θ 1 3 θ 2 2 θ 1 θ 3 2 θ 3 2 θ 2 2 e n 4 + 1 1 + θ 1 3 2 θ 2 3 e n 4 + O e n 5 = β + 1 1 + θ 1 2 θ 2 2 e n 3 + 1 1 + θ 1 3 2 θ 1 θ 2 θ 3 2 θ 2 θ 3 θ 2 3 e n 4 + O e n 5 .
Expanding Ξ 2 w n in terms of q -Taylor’s series about β , we have
Ξ 2 w n = β + 1 1 + θ 1 2 θ 1 θ 2 2 e n 3 + 1 1 + θ 1 3 θ 1 2 θ 1 θ 2 θ 3 2 θ 2 θ 3 θ 2 3 e n 4 + O e n 5 .
Expanding D q Ξ 2 w n + ˜ n 2 in terms of q -Taylor’s series about β , we have
D q Ξ 2 w n + ˜ n 2 = θ 1 + θ 2 e n + 1 1 + θ 1 2 2 θ 2 3 e n 3 + 1 1 + θ 1 3 2 θ 2 2 θ 1 θ 2 θ 3 2 θ 2 θ 3 θ 2 3 e n 4 + O e n 5 .
Now,
w n D q Ξ 2 w n + ˜ n 2 = β θ 1 + β θ 2 e n + 1 1 + θ 1 2 2 β θ 2 3 e n 3 + 1 1 + θ 1 3 2 β θ 2 2 θ 1 θ 2 θ 3 2 θ 2 θ 3 θ 2 3 e n 4 + 1 1 + θ 1 2 θ 1 θ 2 2 e n 3 + 1 1 + θ 1 3 θ 1 2 θ 1 θ 2 θ 3 2 θ 2 θ 3 θ 2 3 e n 4 + 1 1 + θ 1 2 θ 2 3 e n 4 + O e n 5 .
Subtracting (46) and (48), we obtain
Ξ 2 w n w n D q Ξ 2 w n + ˜ n 2 = β 1 + θ 1 β θ 2 e n 1 1 + θ 1 2 2 β θ 2 3 e n 3 1 1 + θ 1 3 2 β θ 2 2 θ 1 θ 2 θ 3 2 θ 2 θ 3 θ 2 3 e n 4 1 1 + θ 1 2 θ 2 3 e n 4 + O e n 5 .
Now,
1 D q Ξ 2 w n + ˜ n 2 = 1 θ 1 θ 2 e n 1 1 + θ 1 2 2 θ 2 3 e n 3 1 1 + θ 1 3 2 θ 2 2 θ 1 θ 2 θ 3 2 θ 2 θ 3 θ 2 3 e n 4 + O e n 5 .
Dividing (49) and (50), we obtain
Ξ 2 w n w n D q Ξ 2 w n + ˜ n 2 1 D q Ξ 2 w n + ˜ n 2 = β + 1 1 + θ 1 3 θ 2 3 e n 4 + O e n 5 .
Using (19), we obtain
˜ n + 1 = β + 1 1 + θ 1 3 θ 2 3 e n 4 + O e n 5 .
Therefore,
e n + 1 = 1 1 + θ 1 3 θ 2 3 e n 4 + O e n 5 .
In the following theorem, we have found the order of convergence of the Algorithm 4 and it is third order of convergence.
Theorem 4.
Let I R be an open interval, and Ξ 1 : I R is differential function. If β I be a simple root of Ξ 1 ˜ = 0 and ˜ 0 is sufficiently close to β, then multi-step method defined by Algorithm 4 has the third order of convergence.
Proof. 
From (38), we obtain
v n = β + 1 1 + θ 1 θ 2 e n 2 + 1 1 + θ 1 2 2 θ 1 θ 3 2 θ 3 2 θ 2 2 e n 3 + 1 1 + θ 1 3 3 θ 4 + 4 θ 2 3 6 θ 1 θ 4 + 3 θ 1 2 θ 4 + 7 θ 2 θ 3 7 θ 1 θ 2 θ 3 e n 4 + O e n 5 .
Expanding D q Ξ 2 v n , in terms of q -Taylor’s series, we obtain
D q Ξ 2 v n = θ 1 + 1 1 + θ 1 2 θ 2 2 e n 2 + 1 1 + θ 1 2 2 θ 2 2 θ 1 θ 3 2 θ 3 2 θ 2 2 e n 3 + 1 1 + θ 1 3 2 θ 2 3 θ 4 + 4 θ 2 3 6 θ 1 θ 4 + 3 θ 1 2 θ 4 + 7 θ 2 θ 3 7 θ 1 θ 2 θ 3 e n 4 + O e n 5 .
Using (33) and (51), we obtain
D q Ξ 2 v n + D q Ξ 2 ˜ n 2 = θ 1 + θ 2 e n + 3 2 θ 3 e n 2 + 1 1 + θ 1 θ 2 2 e n 2 + 2 θ 4 e n 3 + 1 1 + θ 1 2 θ 2 2 θ 1 θ 3 2 θ 3 2 θ 2 2 e n 3 + 5 2 θ 5 e n 4 + 1 1 + θ 1 3 θ 2 3 θ 4 + 4 θ 2 3 6 θ 1 θ 4 + 3 θ 1 2 θ 4 + 7 θ 2 θ 3 7 θ 1 θ 2 θ 3 e n 4 + O e n 5 .
Now,
v n D q Ξ 2 v n + D q Ξ 2 ˜ n 2 = β θ 1 + β θ 2 e n + 3 2 β θ 3 e n 2 + 1 1 + θ 1 β θ 2 2 e n 2 + 2 β θ 4 e n 3 + 1 1 + θ 1 2 β θ 2 2 θ 1 θ 3 2 θ 3 2 θ 2 2 e n 3 + 5 2 β θ 5 e n 4 + 1 1 + θ 1 3 β θ 2 3 θ 4 + 4 θ 2 3 6 θ 1 θ 4 + 3 θ 1 2 θ 4 + 7 θ 2 θ 3 7 θ 1 θ 2 θ 3 e n 4 + 1 1 + θ 1 θ 1 θ 2 e n 2 + 1 1 + θ 1 θ 2 2 e n 3 + 1 1 + θ 1 3 θ 2 θ 3 e n 4 + 1 1 + θ 1 2 θ 2 3 e n 4 + 1 1 + θ 1 2 θ 1 2 θ 1 θ 3 2 θ 3 2 θ 2 2 e n 4 + 1 1 + θ 1 2 θ 2 2 θ 1 θ 3 2 θ 3 2 θ 2 2 e n 4 + 1 1 + θ 1 3 θ 1 3 θ 4 + 4 θ 2 3 6 θ 1 θ 4 + 3 θ 1 2 θ 4 + 7 θ 2 θ 3 7 θ 1 θ 2 θ 3 e n 4 + O e n 5 .
Subtracting (39), from (53), we have
Ξ 2 v n v n D q Ξ 2 v n + D q Ξ 2 ˜ n 2 = β 1 + θ 1 β θ 2 e n 3 2 β θ 3 e n 2 1 1 + θ 1 β θ 2 2 e n 2 2 β θ 4 e n 3 1 1 + θ 1 2 β θ 2 2 θ 1 θ 3 2 θ 3 2 θ 2 2 e n 3 5 2 β θ 5 e n 4 1 1 + θ 1 3 β θ 2 3 θ 4 + 4 θ 2 3 6 θ 1 θ 4 + 3 θ 1 2 θ 4 + 7 θ 2 θ 3 7 θ 1 θ 2 θ 3 e n 4 1 1 + θ 1 θ 2 2 e n 3 1 1 + θ 1 3 θ 2 θ 3 e n 4 1 1 + θ 1 2 θ 2 3 e n 4 1 1 + θ 1 2 θ 2 2 θ 1 θ 3 2 θ 3 2 θ 2 2 e n 4 + O e n 5 .
Now,
1 D q Ξ 2 v n + D q Ξ 2 ˜ n 2 = 1 θ 1 θ 2 e n 3 2 θ 3 e n 2 1 1 + θ 1 θ 2 2 e n 2 2 θ 4 e n 3 1 1 + θ 1 2 θ 2 2 θ 1 θ 3 2 θ 3 2 θ 2 2 e n 3 5 2 θ 5 e n 4 1 1 + θ 1 3 θ 2 3 θ 4 + 4 θ 2 3 6 θ 1 θ 4 + 3 θ 1 2 θ 4 + 7 θ 2 θ 3 7 θ 1 θ 2 θ 3 e n 4 + O e n 5 .
Dividing (54) and (55), we obtain
Ξ 2 v n v n D q Ξ 2 v n + D q Ξ 2 ˜ n 2 1 D q Ξ 2 v n + D q Ξ 2 ˜ n 2 = β + 1 1 + θ 1 2 θ 2 2 e n 3 + 1 2 1 + θ 1 2 4 θ 1 θ 2 θ 3 θ 2 θ 3 4 θ 2 3 e n 4 + O e n 5 .
Using (28), we have
˜ n + 1 = β + 1 1 + θ 1 2 θ 2 2 e n 3 + 1 2 1 + θ 1 2 4 θ 1 θ 2 θ 3 θ 2 θ 3 4 θ 2 3 e n 4 + O e n 5 .
Therefore,
e n + 1 = 1 1 + θ 1 2 θ 2 2 e n 3 + 1 2 1 + θ 1 2 4 θ 1 θ 2 θ 3 θ 2 θ 3 4 θ 2 3 e n 4 + O e n 5 .
In the following theorem we have found the order of convergence of the Algorithm 5, and it is the fourth order of convergence.
Theorem 5.
Let I R be an open interval, and Ξ 1 : I R be a differential function. If β I be a simple root of Ξ 1 ˜ = 0 and ˜ 0 is sufficiently close to β, then the multi-step method defined by Algorithm 5 has the fourth order of convergence.
Proof. 
From (38), we obtain
v n = β + 1 1 + θ 1 θ 2 e n 2 + 1 1 + θ 1 2 2 θ 1 θ 3 2 θ 3 2 θ 2 2 e n 3 + 1 1 + θ 1 3 3 θ 4 + 4 θ 2 3 6 θ 1 θ 4 + 3 θ 1 2 θ 4 + 7 θ 2 θ 3 7 θ 1 θ 2 θ 3 e n 4 + O e n 5 .
From (56), we have
w n = β + 1 1 + θ 1 2 θ 2 2 e n 3 + 1 2 1 + θ 1 2 4 θ 1 θ 2 θ 3 θ 2 θ 3 4 θ 2 3 e n 4 + O e n 5 .
Expanding Ξ 2 w n in terms of q -Taylor’s series, we have
Ξ 2 w n = β + 1 1 + θ 1 2 θ 1 θ 2 2 e n 3 + 1 2 1 + θ 1 2 θ 1 4 θ 1 θ 2 θ 3 θ 2 θ 3 4 θ 2 3 e n 4 + O e n 5 .
Expanding D q Ξ 2 w n in terms of q -Taylor’s series, we have
D q Ξ 2 w n = θ 1 + 1 1 + θ 1 2 2 θ 2 3 e n 3 + 1 2 1 + θ 1 2 θ 2 4 θ 1 θ 2 θ 3 θ 2 θ 3 4 θ 2 3 e n 4 + O e n 5 .
Using (33) and (58), we have
D q Ξ 2 w n + D q Ξ 2 ˜ n 2 = θ 1 + θ 2 e n + 3 2 θ 3 e n 2 + 1 1 + θ 1 2 θ 2 3 e n 3 + 2 θ 4 e n 3 + 1 1 + θ 1 2 θ 2 2 θ 1 θ 3 2 θ 3 2 θ 2 2 e n 4 + 5 2 θ 5 e n 4 + O e n 5 .
and
w n D q Ξ 2 w n + D q Ξ 2 ˜ n 2 = β θ 1 + β θ 2 e n + 3 2 β θ 3 e n 2 + 1 1 + θ 1 2 β θ 2 3 e n 3 + 2 β θ 4 e n 3 + 1 1 + θ 1 2 β θ 2 2 θ 1 θ 3 2 θ 3 2 θ 2 2 e n 4 + 5 2 β θ 5 e n 4 + 1 1 + θ 1 2 θ 1 θ 2 2 e n 3 + 1 1 + θ 1 2 θ 2 3 e n 4 + 1 2 1 + θ 1 2 θ 1 4 θ 1 θ 2 θ 3 θ 2 θ 3 4 θ 2 3 e n 4 + O e n 5 .
Subtracting (57) from (59), we have
Ξ 2 w n w n D q Ξ 2 w n + D q Ξ 2 ˜ n 2 = β 1 + θ 1 β θ 2 e n 3 2 β θ 3 e n 2 1 1 + θ 1 2 β θ 2 3 e n 3 + 2 β θ 4 e n 3 1 1 + θ 1 2 β θ 2 2 θ 1 θ 3 2 θ 3 2 θ 2 2 e n 4 5 2 β θ 5 e n 4 1 1 + θ 1 2 θ 2 3 e n 4 + O e n 5 .
Now,
1 D q Ξ 2 w n + D q Ξ 2 ˜ n 2 = 1 θ 1 θ 2 e n 3 2 θ 3 e n 2 1 1 + θ 1 2 θ 2 3 e n 3 2 θ 4 e n 3 1 1 + θ 1 2 θ 2 2 θ 1 θ 3 2 θ 3 2 θ 2 2 e n 4 5 2 θ 5 e n 4 + O e n 5 .
Dividing (60) and (61), we have
Ξ 2 w n w n D q Ξ 2 w n + D q Ξ 2 ˜ n 2 1 D q Ξ 2 w n + D q Ξ 2 ˜ n 2 = β + 1 1 + θ 1 3 θ 2 3 e n 4 + O e n 5 .
Using (31), we have
˜ n + 1 = β + 1 1 + θ 1 3 θ 2 3 e n 4 + O e n 5 .
Therefore,
e n + 1 = 1 1 + θ 1 3 θ 2 3 e n 4 + O e n 5 .

4. Numerical Examples and Comparison Results

This section elaborates on the efficacy of algorithms introduced in this chapter with the support of examples. All the numerical experiments are performed with Intel (R) core [TM] 2 × 2.1 GHz, 12 GB of RAM, and all the codes are written in maple. We use ε = 10 5 and obtain an approximated simple root rather than the exact based on the exactness ε of the computer.
The abbreviation CAG is used for the classical iterative method and QAG for the q -analogue of the classical iterative method.
Recall the classical algorithm 2 A in [8] C A G 1 , defined by
˜ n + 1 = Ξ 2 ˜ n ˜ n Ξ 2 ˜ n 1 Ξ 2 ˜ n
and classical algorithm 2 B in [8] C A G 2 , defined by
v n = Ξ 2 ˜ n ˜ n Ξ 2 ˜ n 1 Ξ 2 ˜ n ˜ n + 1 = Ξ 2 v n v n Ξ 2 ˜ n + v n 2 1 Ξ 2 ˜ n + v n 2 , n = 0 , 1 , 2 ,
and classical algorithm 2 C in [8] C A G 3 , defined by
v n = Ξ 2 ˜ n ˜ n Ξ 2 ˜ n 1 Ξ 2 ˜ n w n = Ξ 2 v n v n Ξ 2 ˜ n + v n 2 1 Ξ 2 ˜ n + v n 2 ˜ n + 1 = Ξ 2 w n w n Ξ 2 w n + v n 2 1 Ξ 2 w n + v n 2 , n = 0 , 1 , 2 ,
and classical algorithm 2 D in [8] C A G 4 , defined by
v n = Ξ 2 ˜ n ˜ n Ξ 2 ˜ n 1 Ξ 2 ˜ n ˜ n + 1 = Ξ 2 v n v n Ξ 2 Ξ 2 v n + Ξ 2 ˜ n 2 1 Ξ 2 Ξ 2 v n + Ξ 2 ˜ n 2 , n = 0 , 1 , 2 ,
and classical algorithm 2 E in [8] C A G 5 , defined by
v n = Ξ 2 ˜ n ˜ n Ξ 2 ˜ n 1 Ξ 2 ˜ n w n + 1 = Ξ 2 v n v n Ξ 2 Ξ 2 v n + Ξ 2 ˜ n 2 1 Ξ 2 Ξ 2 v n + Ξ 2 ˜ n 2 ˜ n + 1 = Ξ 2 w n w n Ξ 2 Ξ 2 w n + Ξ 2 ˜ n 2 1 Ξ 2 Ξ 2 w n + Ξ 2 ˜ n 2 , n = 0 , 1 , 2 , .
For simplicity, we denote the Algorithms 1–5 by QAG1, QAG2, QAG3, QAG4 and QAG5, respectively. The computational results are presented in tables to elaborate on the performance and efficacy of our q -iterative methods, which is the main motivation for transforming the classical methods toward the q -iterative methods.
The first two examples are concerned with the performance of q -iterative methods with the classical methods for different values of q up to three iterations. Similarly, we can check the performance of the q -iterative methods for different values of q for the rest of the iterations until we achieve the desired accuracy.
Example 1.
For Ξ 1 ˜ = ˜ 3 10 , Ξ 2 ˜ = 10 ˜ and ˜ 0 = 1.5 .
Table 1 shows the computation of ˜ i and Ξ 1 ˜ i for i = 1 , 2 , 3 and different values of q by using QAG1.
We can observe from Table 1 that we can obtain more accurate values of ˜ 1 ,   ˜ 2 ,   ˜ 3 when q 1 and for which Ξ 1 ˜ 1 ,   Ξ 1 ˜ 2 ,   Ξ 1 ˜ 3 tend towards zero. The values of Ξ 1 ˜ 1 = 0.9853779 , Ξ 1 ˜ 2 = 0.89285 × 10 2 , X i 1 ˜ 3 = 0.26 × 10 5 calculated by QAG1 at q = 0.9999 are closer to zero as compared to the values Ξ 1 ˜ 1 = 0.9815116 , Ξ 1 ˜ 2 = 0.89397 × 10 2 , Ξ 1 ˜ 3 = 0.13 × 10 5 calculated by CAG1.
Table 2 shows the computation of ˜ i and Ξ 1 ˜ i for i = 1 , 2 , 3 and different values of q by using QAG2.
We can observe from Table 2 that we can obtain more accurate values of ˜ 1 , ˜ 2 , ˜ 3 when q 1 and for which Ξ 1 ˜ 1 , Ξ 1 ˜ 2 , Ξ 1 ˜ 3 tend towards zero. The values of Ξ 1 ˜ 1 = 0.898325 × 10 1 , Ξ 1 ˜ 2 = 0.2 × 10 5 , Ξ 1 ˜ 3 = 0.2 × 10 5 calculated by QAG2 at q = 0.9999 are closer to zero as compared to the values Ξ 1 ˜ 1 = 0.895114 × 10 1 , Ξ 1 ˜ 2 = 0.0 × 10 5 , Ξ 1 ˜ 3 = 0 calculated by CAG2.
Table 3 shows the computation of ˜ i and Ξ 1 ˜ i for i = 1 , 2 , 3 and different values of q by using QAG3.
We can observe from Table 4 that we can obtain more accurate values of ˜ 1 , ˜ 2 , ˜ 3 when q 1 and for which Ξ 1 ˜ 1 , Ξ 1 ˜ 2 , Ξ 1 ˜ 3 tend towards zero. The values of Ξ 1 ˜ 1 = 1.8947724 , Ξ 1 ˜ 2 = 0.797291 × 10 1 , Ξ 1 ˜ 3 = 0.1154 × 10 3 calculated by QAG4 at q = 0.9999 are closer to zero as compared to the values Ξ 1 ˜ 1 = 0.1078526 , Ξ 1 ˜ 2 = 0 , Ξ 1 ˜ 3 = 0 calculated by CAG4.
Table 5 shows the computation of ˜ i and Ξ 1 ˜ i for i = 1 , 2 , 3 and different values of q by using QAG5.
We can observe from Table 3 that we can obtain more accurate values of ˜ 1 , ˜ 2 , ˜ 3 when q 1 and for which Ξ 1 ˜ 1 , Ξ 1 ˜ 2 , Ξ 1 ˜ 3 tend towards zero. The values of Ξ 1 ˜ 1 = 0.77553 × 10 2 , Ξ 1 ˜ 2 = 0.2 × 10 5 , Ξ 1 ˜ 3 = 0.13 × 10 5 calculated by QAG3 at q = 0.9999 are closer to zero as compared to the values Ξ 1 ˜ 1 = 0.76913 × 10 2 , Ξ 1 ˜ 2 = 0.2 × 10 5 , Ξ 1 ˜ 3 = 0 calculated by CAG3.
Table 4 shows the computation of ˜ i and Ξ 1 ˜ i for i = 1 , 2 , 3 and different values of q by using QAG4.
We can observe from Table 5 that we can obtain more accurate values of ˜ 1 , ˜ 2 , ˜ 3 when q 1 and for which Ξ 1 ˜ 1 , Ξ 1 ˜ 2 , Ξ 1 ˜ 3 tend towards zero. The values of Ξ 1 ˜ 1 = 3.7595029 , Ξ 1 ˜ 2 = 0.8045897 , Ξ 1 ˜ 3 = 0.285824 × 10 1 calculated by QAG5 at q = 0.9999 are closer to zero as compared to the values Ξ 1 ˜ 1 = 0.116031 × 10 1 , Ξ 1 ˜ 2 = 0 , Ξ 1 ˜ 3 = 0 calculated by CAG5.
Example 2.
For Ξ 1 ˜ = cos ˜ ˜ , Ξ 2 ˜ = cos ˜ and ˜ 0 = 1.5 .
Table 6 shows the computation of ˜ i and Ξ 1 ˜ i for i = 1 , 2 , 3 and different values of q by using QAG1.
We can observe from Table 6 that we can obtain more accurate values of ˜ 1 , ˜ 2 , ˜ 3 when q 1 and for which Ξ 1 ˜ 1 , Ξ 1 ˜ 2 , Ξ 1 ˜ 3 tend towards zero. The values of Ξ 1 ˜ 1 = 0.720 × 10 1 , Ξ 1 ˜ 2 = 0.64017 × 10 3 , Ξ 1 ˜ 3 = 1.0 × 10 8 calculated by QAG1 at q = 0.9999 are closer to zero as compared to the values Ξ 1 ˜ 1 = 0.7206977 × 10 1 , Ξ 1 ˜ 2 = 0.64310 × 10 3 , Ξ 1 ˜ 3 = 4.0 × 10 8 calculated by CAG1.
Table 7 shows the computation of ˜ i and Ξ 1 ˜ i for i = 1 , 2 , 3 and different values of q by using QAG2.
We can observe from Table 7 that we can obtain more accurate values of ˜ 1 , ˜ 2 , ˜ 3 when q 1 and for which Ξ 1 ˜ 1 , Ξ 1 ˜ 2 , Ξ 1 ˜ 3 tend towards zero. The values of Ξ 1 ˜ 1 = 0.943748 × 10 2 , Ξ 1 ˜ 2 = 4.0 × 10 8 , Ξ 1 ˜ 3 = 4.0 × 10 8 calculated by QAG2 at q = 0.9999 are closer to zero as compared to the values Ξ 1 ˜ 1 = 0.943785 × 10 2 , Ξ 1 ˜ 2 = 1.0 × 10 8 , Ξ 1 ˜ 3 = 4.0 × 10 8 calculated by CAG2.
Table 8 shows the computation of ˜ i and Ξ 1 ˜ i for i = 1 , 2 , 3 and different values of q by using QAG3.
We can observe from Table 8 that we can obtain more accurate values of ˜ 1 , ˜ 2 , ˜ 3 when q 1 and for which Ξ 1 ˜ 1 , Ξ 1 ˜ 2 , Ξ 1 ˜ 3 tend towards zero. The values of Ξ 1 ˜ 1 = 0.128293 × 10 2 , Ξ 1 ˜ 2 = 1.0 × 10 8 , Ξ 1 ˜ 3 = 4.0 × 10 8 calculated by QAG3 at q = 0.9999 are closer to zero as compared to the values Ξ 1 ˜ 1 = 0.128409 × 10 2 , Ξ 1 ˜ 2 = 3.0 × 10 8 , Ξ 1 ˜ 3 = 4.0 × 10 8 calculated by CAG3.
Table 9 shows the computation of ˜ i and Ξ 1 ˜ i for i = 1 , 2 , 3 and different values of q by using QAG4.
We can observe from Table 9 that we can obtain more accurate values of ˜ 1 , ˜ 2 , ˜ 3 when q 1 and for which Ξ 1 ˜ 1 , Ξ 1 ˜ 2 , Ξ 1 ˜ 3 tend towards zero. The values of Ξ 1 ˜ 1 = 0.1964098 × 10 1 , Ξ 1 ˜ 2 = 0.476 × 10 5 , Ξ 1 ˜ 3 = 8.0 × 10 8 calculated by QAG4 at q = 0.9999 are closer to zero as compared to the values Ξ 1 ˜ 1 = 0.128409 × 10 2 , Ξ 1 ˜ 2 = 3.0 × 10 8 , Ξ 1 ˜ 3 = 4.0 × 10 8 calculated by CAG4.
Table 10 shows the computation of ˜ i and Ξ 1 ˜ i for i = 1 , 2 , 3 and different values of q by using QAG5.
We can observe from Table 10 that we can obtain more accurate values of ˜ 1 , ˜ 2 , ˜ 3 when q 1 and for which Ξ 1 ˜ 1 , Ξ 1 ˜ 2 , Ξ 1 ˜ 3 tend towards zero. The values of Ξ 1 ˜ 1 = 0.565214 × 10 2 , Ξ 1 ˜ 2 = 1.0 × 10 8 , Ξ 1 ˜ 3 = 6.0 × 10 8 calculated by QAG5 at q = 0.9999 are closer to zero as compared to the values Ξ 1 ˜ 1 = 0.614538 × 10 2 , Ξ 1 ˜ 2 = 1.0 × 10 8 , Ξ 1 ˜ 3 = 4.0 × 10 8 calculated by CAG5.

Comparison of the Classical and q -Analogue of Iterative Methods

Here, we check the efficiency of our new iterative methods by considering some of the nonlinear equations. Furthermore, we compare the standard Newton’s method (NM), Halley method (HM), Algorithm 2B [8] and Algorithm 2C [8] with our new iterative Algorithms 1–5. In the tables, we display the number of iterations (IT), the approximate root x n , the value Ξ 1 x n and δ be the distance between two successive estimations. It is important to mention that in order to obtain better computational results of the q -iterative methods, we take the value of q = 0.9999 .
Example 3.
For Ξ 1 ˜ = ˜ 3 10 , Ξ 2 ˜ = 10 ˜ and ˜ 0 = 1.5 .
MethodsIT ˜ n Ξ 1 ˜ n δ = ˜ n ˜ n 1 CUP-Time
NM [8]5 2.1544346900319185890 4.85518 × 10 13 2.740789522304 × 10 7 1.203
HM [8]5 2.1544346900319185890 4.85518 × 10 13 2.740789522304 × 10 7 1.171
Algorithm 2B [8]3 2.1544346900318837218 1.0 × 10 13 3.6257326037 × 10 9 1.156
Algorithm 2C [8]3 2.1544346900318837217 8.0 × 10 19 1.457 × 10 16 0.828
QAG14 2.1544346900302749510 2.24017572 × 10 11 6.43262623793 × 10 8 0.140
QAG23 2.1544346900318837193 3.42 × 10 17 3.8786590757 × 10 9    0.156
QAG33 2.1544346900318837217 8.0 × 10 19 3.926 × 10 16 0.140
QAG44 2.1544346895391400096 6.8613411350 × 10 9 0.85676129438478 × 10 5 0.109
QAG55 2.1544346897346676286 4.1386646970 × 10 9 0.24019786061687 × 10 5 0.171
Example 4.
For Ξ 1 ˜ = cos ˜ ˜ , Ξ 2 ˜ = cos ˜ and ˜ 0 = 1.7 .
MethodsIT ˜ n Ξ 1 ˜ n δ = ˜ n ˜ n 1 CUP-Time
HM [8]4 0.73908513321516087614 3.9244 × 10 16 3.258805388731 × 10 8 1.062
Algorithm 2B [8]3 0.73908513321516064166 1.0 × 10 20 8.63747112426 × 10 9 1.406
Algorithm 2C [8]3 0.73908513321516064166 1.0 × 10 20 3.72234 × 10 15 1.109
QAG14 0.73908513321473278667 7.1606325 × 10 13 2.622628874279 × 10 8 0.390
QAG23 0.73908513321516064390 3.76 × 10 18 8.41276738939 × 10 9 0.375
QAG33 0.73908513321516064390 3.0 × 10 20 2.74617 × 10 15 0.390
QAG43 0.73908513321054913628 7.71787087 × 10 12 0.288824123785448 × 10 5 0.390
QAG53 0.73908513321515746853 5.31058 × 10 15 2.193899796764 × 10 8 0.390
Example 5.
For Ξ 1 ˜ = sin 2 ˜ ˜ 2 + 1 , Ξ 2 ˜ = sin ˜ + 1 sin ˜ + ˜ and ˜ 0 = 1 .
MethodsIT ˜ n Ξ 1 ˜ n δ = ˜ n ˜ n 1 CUP-Time
NM [8]5 1.4044916482156470349 7.591622 × 10 13 6.247205954873 × 10 7 1.421
HM [8]5 1.4044916482156470349 7.591622 × 10 13 6.247205954873 × 10 7 1.406
Algorithm 2B [8]3 1.4044916482153412261 2.0 × 10 19 4.830530998 × 10 10 1.640
Algorithm 2C [8]3 1.4044916482153412261 2.0 × 10 19 3.27 × 10 17 1.328
QAG14 1.4044916482154012263 1.489491 × 10 13 1.4431460426 × 10 9 0.609
QAG23 1.4044916482153412250 2.58 × 10 18 5.627896370 × 10 10 0.625
QAG33 1.4044916482153412260 1.0 × 10 19 6.0 × 10 19 0.593
QAG44 1.4044916482140525197 3.19917839 × 10 12 2.37987556765 × 10 8 0.203
QAG54 1.4044916482133742657 4.88292555 × 10 12 2.79102149666 × 10 8 0.250
Example 6.
For Ξ 1 ˜ = × 10 ˜ 3 ˜ 2 , Ξ 2 ˜ = × 10 ˜ 3 and ˜ 0 = 0.8 .
MethodsIT ˜ n Ξ 1 ˜ n δ = ˜ n ˜ n 1 CUP-Time
NM [8]4 0.91000757248870906142 2.3 × 10 18 1.13400774851 × 10 9 0.390
HM [8]4 0.91000757248870906142 2.3 × 10 18 1.13400774848 × 10 9 0.281
Algorithm 2B [8]3 0.91000757248870906069 1.0 × 10 19 5.97372 × 10 15 0.203
Algorithm 2C [8]2 0.91000757248870906058 2.0 × 10 19 0.114201199652787 × 10 5 0.218
QAG13 0.91000757246605133264 6.74226939 × 10 11 0.117769471538602 × 10 5 0.187
QAG23 0.91000757248870906066 1.0 × 10 19 4.576774 × 10 14 0.171
QAG32 0.91000757248870906062 1.0 × 10 19 0.114452189637435 × 10 5 0.156
QAG43 0.91000757248830221190 1.2106615 × 10 12 5.910997202999 × 10 8 0.187
QAG53 0.91000757248870097044 2.40741 × 10 14 3.24759020938 × 10 9 0.171
Tables compare the solutions obtained by using the classical and our q -iterative methods. The results show that our q -analogue iterative methods QAG1, QAG2, QAG3, QAG4 and QAG5 give the same results as the classical methods NM, HM, Algorithm 2B [8] and Algorithm 2C [8].
Remark 1.
The efficiency index is considered as E = p 1 m , where p represents the order of the method and m is the total number of function evaluations per iteration necessary by the method.
MethodsEfficiency IndexMethodsEfficiency Index
Algoritm 2A [8] 1.414213 Algorithm 1 1.414213
Algoritm 2B [8] 1.316074 Algorithm 2 1.316074
Algoritm 2C [8] 1.259921 Algorithm 3 1.259921
Algoritm 2D [8] 1.316074 Algorithm 4 1.316074
Algoritm 2E [8] 1.259921 Algorithm 5 1.259921
We conclude that the efficiency indexes calculated by Algoritms 1, Algoritm 2, Algoritm 3, Algoritm 4 and Algoritm 5 are the same as those calculated by Algoritm 2A [8], Algoritm 2B [8], Algoritm 2C [8], Algoritm 2D [8] and Algoritm 2E [8], respectively.

5. Conclusions

In this paper, we have introduced some new multi-step algorithms using the Daftardar–Jafari decomposition technique. The comparison of these newly established algorithms with the classical methods reflects that the proposed q -iterative methods are reliable and the best alternatives to the already known algorithms. The computational results conclude that the q -analogue of the iterative methods for solving the nonlinear equations generates the same results as the classical methods, but the convergence rate towards approaching the root is higher than the convergence rate suggested by the classical methods. It is worth mentioning here that one can extend the results obtained in this paper by using the post quantum calculus techniques. This will be an interesting problem for future research.

Author Contributions

Conceptualization, K.N., A.G.K., F.A., M.U.A. and C.C.; Data curation, K.N., A.G.K., F.A., M.U.A. and C.C.; Formal analysis, K.N., A.G.K., F.A., M.U.A. and C.C.; Investigation, K.N., A.G.K., F.A., M.U.A. and C.C.; Methodology, K.N., A.G.K., F.A., M.U.A. and C.C. All authors have read and agreed to the published version of the manuscript.

Funding

This research was supported by the Department of Mathematics, Faculty of Science, Khon Kaen University, Fiscal Year 2022.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors are grateful to the editor and the anonymous reviewers for their valuable comments and suggestions.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Alqudah, M.A.; Mohammed, P.O.; Abdeljawad, T. Solution of singular integral equations via Riemann–Liouville fractional integrals. Math. Probl. Eng. 2020, 2020, 1250970. [Google Scholar] [CrossRef]
  2. Chun, C. Iterative methods improving Newton’s method by the decomposition method. Comput. Math. Appl. 2005, 50, 1559–1568. [Google Scholar] [CrossRef]
  3. Hamasalh, F.K.; Muhammad, P.O. Generalized quartic fractional spline interpolation with applications. Int. J. Open Probl. Comput. Sci. Math. 2015, 8, 67–80. [Google Scholar] [CrossRef]
  4. Kurt, A.; Şenol, M.; Tasbozan, O.; Chand, M. Two reliable methods for the solution of fractional coupled Burgers’ equation arising as a model of polydispersive sedimentation. Appl. Math. Nonlinear Sci. 2019, 4, 523–534. [Google Scholar] [CrossRef]
  5. Mohammed, P.O.; Alqudah, M.A.; Hamed, Y.S.; Kashuri, A.; Abualnaja, K.M. Solving the modified Regularized long wave equations via higher degree B-spline algorithm. J. Funct. Spaces 2021, 2021, 5580687. [Google Scholar] [CrossRef]
  6. Mohammed, P.O.; Machado, J.A.T.; Guirao, J.L.; Agarwal, R.P. Adomian decomposition and fractional power series solution of a class of nonlinear fractional differential equations. Mathematics 2021, 9, 1070. [Google Scholar] [CrossRef]
  7. Noor, M.A.; Waseem, M.; Noor, K.I.; Ali, M.A. New iterative technique for solving nonlinear equations. Appl. Math. Comput. 2015, 265, 1115–1125. [Google Scholar] [CrossRef]
  8. Sana, G.; Noor, M.A.; Noor, K.I. Some Multistep Iterative Methods for Nonlinear Equation Using Quadrature Rule. Int. J. Anal. Appl. 2020, 18, 920–938. [Google Scholar]
  9. Solaiman, O.S.; Hashim, I. Two new efficient sixth order iterative methods for solving nonlinear equations. J. King Saud-Univ. Sci. 2019, 31, 701–705. [Google Scholar] [CrossRef]
  10. Touchent, K.A.; Hammouch, Z.; Mekkaoui, T. A modified invariant subspace method for solving partial differential equations with non-singular kernel fractional derivatives. Appl. Math. Nonlinear Sci. 2020, 5, 35–48. [Google Scholar] [CrossRef]
  11. Ullah, M.Z.; Ahmad, F.; Jabbar, M.A. A correction note on three-step iterative methods for nonlinear equations and generalization of method. J. Mod. Methods Numer. 2014, 5, 10–17. [Google Scholar] [CrossRef] [Green Version]
  12. Wu, J.; Yuan, J.; Gao, W. Analysis of fractional factor system for data transmission in SDN. Appl. Math. Nonlinear Sci. 2019, 4, 191–196. [Google Scholar] [CrossRef]
  13. Wang, X.-F. Fixed–point iterative method with eighth–order constructed by undetermined parameter technique for solving nonlinear systems. Symmetry 2021, 13, 863. [Google Scholar] [CrossRef]
  14. Abbasbandy, S. Improving Newton-Raphson method for nonlinear equations by modified Adomian decomposition method. Appl. Math. Comput. 2003, 145, 887–893. [Google Scholar] [CrossRef]
  15. Adomian, G. Nonlinear Stochastic Systems Theory and Applications to Physics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1988; Volume 46. [Google Scholar]
  16. Darvishi, M.T.; Barati, A. A third-order Newton-type method to solve systems of nonlinear equations. Appl. Math. Comput. 2007, 187, 630–635. [Google Scholar] [CrossRef]
  17. Daftardar-Gejji, V.; Jafari, H. An iterative method for solving nonlinear functional equations. J. Math. Anal. Appl. 2006, 316, 753–763. [Google Scholar] [CrossRef]
  18. Jackson, F.H. A q-form of Taylor’s formula. Messenger Math. 1909, 38, 62–64. [Google Scholar]
  19. Jing, S.C.; Fan, H.Y. q-Taylor’s formula with its q-remainder. Commun. Theor. Phys. 1995, 23, 117. [Google Scholar] [CrossRef]
  20. Ernst, T. A method for q-calculus. J. Nonlinear Math. Phys. 2003, 10, 487–525. [Google Scholar] [CrossRef]
  21. Ernst, T. A New Notation for q-Calculus a New q-Taylor’s Formula; Department of Mathematics, Uppsala University: Uppsala, Sweden, 1999; pp. 1–28. [Google Scholar]
  22. Erzan, A. Finite q-differences and the discrete renormalization group. Phys. Lett. A 1997, 225, 235–238. [Google Scholar] [CrossRef]
  23. He, J.H. A new iteration method for solving algebraic equations. Appl. Math. Comput. 2003, 135, 81–84. [Google Scholar] [CrossRef]
Table 1. Calculation of ˜ i and Ξ 1 ˜ i for i = 1 , 2 , 3 and different values of q by using QAG1.
Table 1. Calculation of ˜ i and Ξ 1 ˜ i for i = 1 , 2 , 3 and different values of q by using QAG1.
q ˜ 1 Ξ 1 ˜ 1 ˜ 2 Ξ 1 ˜ 2 ˜ 3 Ξ 1 ˜ 3
1.02 2.0855038 0.9294639 2.1542111 0.31131 × 10 2 2.1544357 0.14 × 10 4
1.01 2.0835147 0.9553929 2.1540089 0.59279 × 10 2 2.1544358 0.15 × 10 4
0.9999 2.0812097 0.9853779 2.1537933 0.89285 × 10 2 2.1544345 0.26 × 10 5
0.98 2.0774328 1.0343671 2.1533170 0.155555 × 10 2 2.1544288 0.820 × 10 4
0.97 2.0753646 1.0611178 2.1530570 0.191717 × 10 2 2.1544241 0.1475 × 10 3
0.99 2.0794806 1.0078277 2.1535621 0.121457 × 10 2 2.1544325 0.305 × 10 4
0.96 2.0732769 1.0880667 2.1527815 0.230026 × 10 2 2.1544175 0.2394 × 10 3
0.95 2.0711676 1.1152394 2.1524896 0.270605 × 10 2 2.1544091 0.3563 × 10 3
0.9 2.0602939 1.2544419 2.1507718 0.509182 × 10 2 2.1543358 0.13770 × 10 2
0.8 2.0367340 1.5510461 2.1457907 0.1198833 2.1539345 0.69634 × 10 2
0.7 2.0103303 1.8753950 2.1380819 0.2259848 2.1529026 0.213188 × 10 1
0.6 1.9804056 2.2328367 2.1265044 0.3839025 2.1506354 0.528110 × 10 1
0.5 1.9459983 2.6306808 2.1092951 0.6154807 2.1459875 0.1171646
0.4 1.9056623 3.0794944 2.0835889 0.9544265 2.1366846 0.2451351
Table 2. Calculation of ˜ i and Ξ 1 ˜ i for i = 1 , 2 , 3 and different values of q by using QAG2.
Table 2. Calculation of ˜ i and Ξ 1 ˜ i for i = 1 , 2 , 3 and different values of q by using QAG2.
q ˜ 1 Ξ 1 ˜ 1 ˜ 2 Ξ 1 ˜ 2 ˜ 3 Ξ 1 ˜ 3
1.02 2.1487224 0.793316 × 10 1 2.1544346 0.13 × 10 5 2.1544348 0.2 × 10 5
1.01 2.1483621 0.843213 × 10 1 2.1544347 0.0 × 10 20 2.1544348 0.2 × 10 5
0.9999 2.1479640 0.898325 × 10 1 2.1544348 0.2 × 10 5 2.1544348 0.2 × 10 5
0.98 2.1471908 0.1005307 2.1544345 0.26 × 10 5 2.1544348 0.2 × 10 5
0.97 2.1467681 0.1063760 2.1544342 0.68 × 10 5 2.1544348 0.2 × 10 5
0.99 2.1475969 0.949128 × 10 1 2.1544346 0.13 × 10 5 2.1544345 0.26 × 10 5
0.96 2.1463291 0.1124443 2.1544337 0.138 × 10 5 2.1544347 0
0.95 2.1458727 0.1187505 2.1544331 0.221 × 10 4 2.1544346 0.13 × 10 5
0.9 2.1433145 0.1540482 2.1544260 0.1210 × 10 3 2.1544346 0.13 × 10 5
0.8 2.1365749 0.2466375 2.1543726 0.8646 × 10 3 2.1544344 0.40 × 10 5
0.7 2.1270331 0.3767284 2.1541870 0.34486 × 10 2 2.1544328 0.263 × 10 4
0.6 2.1136122 0.5577407 2.1536621 0.107543 × 10 1 2.1544211 0.1892 × 10 3
0.5 2.0946713 0.8093200 2.1523059 0.296136 × 10 1 2.1543658 0.9592 × 10 3
0.4 2.0675721 1.1614303 2.1489197 0.765985 × 10 1 2.1541200 0.43813 × 10 2
Table 3. Calculation of ˜ i and Ξ 1 ˜ i for i = 1 , 2 , 3 and different values of q by using QAG3.
Table 3. Calculation of ˜ i and Ξ 1 ˜ i for i = 1 , 2 , 3 and different values of q by using QAG3.
q ˜ 1 Ξ 1 ˜ 1 ˜ 2 Ξ 1 ˜ 2 ˜ 3 Ξ 1 ˜ 3
1.02 2.1539757 0.63900 × 10 2 2.1544347 0 2.1544346 0.13 × 10 5
1.01 2.1539305 0.70191 × 10 2 2.1544346 0.13 × 10 5 2.1544347 0
0.9999 2.1538776 0.77553 × 10 2 2.1544348 0.2 × 10 5 2.1544346 0.13 × 10 5
0.98 2.1537743 0.91930 × 10 2 2.1544347 0 2.1544348 0.2 × 10 5
0.97 2.1537146 0.100237 × 10 1 2.1544347 0 2.1544347 0
0.99 2.1538300 0.84178 × 10 1 2.1544345 0.26 × 10 5 2.1544347 0
0.96 2.1536507 0.109129 × 10 1 2.1544347 0 2.1544346 0.13 × 10 5
0.95 2.1535820 0.118688 × 10 1 2.1544347 0 2.1544345 0.26 × 10 5
0.9 2.1531639 0.176850 × 10 1 2.1544347 0 2.1544347 0
0.8 2.1518179 0.363940 × 10 1 2.1544342 0.68 × 10 5 2.1544348 0.2 × 10 5
0.7 2.1494112 0.697879 × 10 1 2.1544308 0.542 × 10 4 2.1544346 0.13 × 10 5
0.6 2.1452102 0.1278997 2.1544128 0.3048 × 10 3 2.1544346 0.13 × 10 5
0.5 2.1379260 0.2281227 2.1543352 0.13853 × 10 2 2.1544342 0.68 × 10 5
0.4 2.1251725 0.4019598 2.1540180 0.58012 × 10 2 2.1544291 0.778 × 10 4
Table 4. Calculation of ˜ i and Ξ 1 ˜ i for i = 1 , 2 , 3 and different values of q by using QAG4.
Table 4. Calculation of ˜ i and Ξ 1 ˜ i for i = 1 , 2 , 3 and different values of q by using QAG4.
q ˜ 1 Ξ 1 ˜ 1 ˜ 2 Ξ 1 ˜ 2 ˜ 3 Ξ 1 ˜ 3
1.02 2.0155906 1.8114506 2.1507447 0.512943 × 10 1 2.1544725 0.000526
1.01 2.0124687 1.8494409 2.1497784 0.646977 × 10 1 2.1544547 0.000279
0.9999 2.0087308 1.8947724 2.1486937 0.797291 × 10 1 2.1544264 0.1154 × 10 3
0.98 2.0031070 1.9626580 2.1466791 0.1076065 2.1543339 0.14034 × 10 2
0.97 1.9999832 2.0002016 2.1455786 0.1228128 2.1542693 0.23028 × 10 2
0.99 2.0062296 1.9250117 2.1477472 0.928330 × 10 1 2.1543865 0.6710 × 10 3
0.96 1.9968590 2.0376328 2.1444435 0.1384808 2.1541914 0.33874 × 10 2
0.95 1.9937319 2.0749817 2.1432740 0.1546063 2.1541000 0.46598 × 10 2
0.9 1.9780388 2.2606512 2.1368988 0.2422011 2.1534184 0.141449 × 10 1
0.8 1.9461316 2.6291663 2.1213124 0.4541657 2.1506768 0.522365 × 10 1
0.7 1.9130363 2.9988460 2.1013440 0.7212075 2.1454002 0.1252764
0.6 1.8780908 3.3755511 2.0758939 1.0542768 2.1363381 0.2498801
0.5 1.8404890 3.7655280 2.0432788 1.4693350 2.1214338 0.4525267
0.4 1.7991591 4.1761697 2.0009064 1.9891183 2.0971373 0.7768219
Table 5. Calculation of ˜ i and Ξ 1 ˜ i for i = 1 , 2 , 3 and different values of q by using QAG5.
Table 5. Calculation of ˜ i and Ξ 1 ˜ i for i = 1 , 2 , 3 and different values of q by using QAG5.
q ˜ 1 Ξ 1 ˜ 1 ˜ 2 Ξ 1 ˜ 2 ˜ 3 Ξ 1 ˜ 3
1.02 1.8525042 3.6426283 2.1056498 0.6640519 2.1542450 0.26412 × 10 2
1.01 1.8475243 3.6937602 2.1008763 0.7274017 2.1534289 0.139989 × 10 1
0.9999 1.8410817 3.7595029 2.0950306 0.8045897 2.1523801 0.285824 × 10 1
0.98 1.8330136 3.8411864 2.0863755 0.9180852 2.1502738 0.578276 × 10 1
0.97 1.8283072 3.8885043 2.0814894 0.9817429 2.1489927 0.755872 × 10 1
0.99 1.8377864 3.7929521 2.0912292 0.8545537 2.1514391 0.416549 × 10 1
0.96 1.8236674 3.9349148 2.0765881 1.0452991 2.1476055 0.947938 × 10 1
0.95 1.8190888 3.9804822 2.0716658 1.1088264 2.1461121 0.1154430
0.9 1.7970567 4.1965621 2.0467795 1.4254137 2.1371176 0.2392034
0.8 1.7566430 4.5793605 1.9958259 2.0499847 2.1120648 0.5784639
0.7 1.7199113 4.9123392 1.9432472 2.6618911 2.0779929 1.0271134
0.6 1.6856517 5.2103528 1.8884984 3.2648098 2.0342962 1.5813479
0.5 1.6528545 5.4845205 1.8306772 3.8647069 1.9792413 2.2465278
0.4 1.6206639 5.7432428 1.7686734 4.4672260 1.9100080 3.0320414
Table 6. Calculation of ˜ i and Ξ 1 ˜ i for i = 1 , 2 , 3 and different values of q by using QAG1.
Table 6. Calculation of ˜ i and Ξ 1 ˜ i for i = 1 , 2 , 3 and different values of q by using QAG1.
q ˜ 1 Ξ 1 ˜ 1 ˜ 2 Ξ 1 ˜ 2 ˜ 3 Ξ 1 ˜ 3
1.02 0.78065181 0.7019683 × 10 1 0.73958325 0.83375 × 10 3 0.73908681 0.281 × 10 5
1.01 0.78122381 0.7117148 × 10 1 0.73952786 0.74103 × 10 3 0.73908586 0.122 × 10 5
0.9999 0.78174266 0.720 × 10 1 0.73946761 0.64017 × 10 3 0.73908513 1.0 × 10 8
0.98 0.78267158 0.7363944 × 10 1 0.73934401 0.43328 × 10 3 0.73908429 0.141 × 10 5
0.97 0.78306522 0.7431072 × 10 1 0.73927746 0.32189 × 10 3 0.73908415 0.165 × 10 5
0.99 0.78223329 0.7289215 × 10 1 0.73940801 0.54041 × 10 3 0.73908461 8.8 × 10 7
0.96 0.78341443 0.7490633 × 10 1 0.73920858 0.20661 × 10 3 0.73908431 0.138 × 10 5
0.95 0.78371939 0.7542653 × 10 1 0.73913744 0.8754 × 10 4 0.73908469 7.4 × 10 7
0.9 0.78458021 0.7689529 × 10 1 0.73875617 0.00055052 0.73909074 0.938 × 10 5
0.8 0.78299283 0.7418727 × 10 1 0.73795273 0.00189473 0.73912535 0.6731 × 10 4
0.7 0.77698500 0.6395431 × 10 1 0.73731293 0.00296482 0.73918318 0.16410 × 10 3
0.6 0.76650309 0.4616249 × 10 1 0.73716075 0.00321930 0.73923216 0.24607 × 10 3
0.5 0.75144522 0.2074223 × 10 1 0.73789775 0.00198670 0.73920251 0.19645 × 10 3
0.4 0.73166283 0.01240165 0.74000770 0.154433 × 10 2 0.73897200 0.18934 × 10 3
Table 7. Calculation of ˜ i and Ξ 1 ˜ i for i = 1 , 2 , 3 and different values of q by using QAG2.
Table 7. Calculation of ˜ i and Ξ 1 ˜ i for i = 1 , 2 , 3 and different values of q by using QAG2.
q ˜ 1 Ξ 1 ˜ 1 ˜ 2 Ξ 1 ˜ 2 ˜ 3 Ξ 1 ˜ 3
1.02 0.74465007 0.932497 × 10 2 0.73908526 2.1 × 10 7 0.73908513 1.0 × 10 8
1.01 0.74468755 0.938785 × 10 2 0.73908516 4.0 × 10 8 0.73908512 2.0 × 10 8
0.9999 0.74471713 0.943748 × 10 2 0.73908516 4.0 × 10 8 0.73908511 4.0 × 10 8
0.98 0.74475421 0.949969 × 10 2 0.73908514 1.0 × 10 8 0.73908514 1.0 × 10 8
0.97 0.74476156 0.951202 × 10 2 0.73908520 1.1 × 10 7 0.73908513 1.0 × 10 8
0.99 0.74473951 0.947503 × 10 2 0.73908515 3.0 × 10 8 0.73908514 1.0 × 10 8
0.96 0.74476156 0.951202 × 10 2 0.73908533 3.3 × 10 7 0.73908516 4.0 × 10 8
0.95 0.74475442 0.950004 × 10 2 0.73908540 4.5 × 10 7 0.73908514 1.0 × 10 8
0.9 0.74461545 0.926689 × 10 2 0.73908654 0.235 × 10 5 0.73908513 1.0 × 10 8
0.8 0.74387765 0.802929 × 10 2 0.73909070 0.932 × 10 5 0.73908511 4.0 × 10 8
0.7 0.74267074 0.600566 × 10 2 0.73909560 0.1752 × 10 4 0.73908516 4.0 × 10 8
0.6 0.74121862 0.357231 × 10 2 0.73909734 0.2043 × 10 4 0.73908517 6.0 × 10 8
0.5 0.73981044 0.121408 × 10 2 0.73909217 0.1178 × 10 4 0.73908522 1.5 × 10 7
0.4 0.73880901 0.46209 × 10 3 0.73908096 0.698 × 10 5 0.73908509 7.0 × 10 8
Table 8. Calculation of ˜ i and Ξ 1 ˜ i for i = 1 , 2 , 3 and different values of q by using QAG3.
Table 8. Calculation of ˜ i and Ξ 1 ˜ i for i = 1 , 2 , 3 and different values of q by using QAG3.
q ˜ 1 Ξ 1 ˜ 1 ˜ 2 Ξ 1 ˜ 2 ˜ 3 Ξ 1 ˜ 3
1.02 0.73985322 0.128570 × 10 2 0.73908511 4.0 × 10 8 0.73908518 8.0 × 10 8
1.01 0.73985332 0.128586 × 10 2 0.73908513 1.0 × 10 8 0.73908518 8.0 × 10 8
0.9999 0.73985157 0.128293 × 10 2 0.73908514 1.0 × 10 8 0.73908511 4.0 × 10 8
0.98 0.73984646 0.127438 × 10 2 0.73908513 1.0 × 10 8 0.73908514 1.0 × 10 8
0.97 0.73984183 0.126663 × 10 2 0.73908511 4.0 × 10 8 0.73908509 7.0 × 10 8
0.99 0.73984995 0.128022 × 10 2 0.73908512 2.0 × 10 8 0.73908511 4.0 × 10 8
0.96 0.73983612 0.125707 × 10 2 0.73908516 4.0 × 10 8 0.73908513 1.0 × 10 8
0.95 0.73982930 0.124565 × 10 2 0.73908511 4.0 × 10 8 0.73908511 4.0 × 10 8
0.9 0.73978066 0.116422 × 10 2 0.73908512 2.0 × 10 8 0.73908509 7.0 × 10 8
0.8 0.73962677 0.90660 × 10 3 0.73908508 9.0 × 10 8 0.73908510 6.0 × 10 8
0.7 0.73943607 0.58738 × 10 3 0.73908510 6.0 × 10 8 0.73908511 4.0 × 10 8
0.6 0.73925621 0.28633 × 10 3 0.73908509 7.0 × 10 8 0.73908513 1.0 × 10 8
0.5 0.73912846 0.7251 × 10 4 0.73908512 2.0 × 10 8 0.73908514 1.0 × 10 8
0.4 0.73907500 0.1696 × 10 4 0.73908514 1.0 × 10 8 0.73908515 3.0 × 10 8
Table 9. Calculation of ˜ i and Ξ 1 ˜ i for i = 1 , 2 , 3 and different values of q by using QAG4.
Table 9. Calculation of ˜ i and Ξ 1 ˜ i for i = 1 , 2 , 3 and different values of q by using QAG4.
q ˜ 1 Ξ 1 ˜ 1 ˜ 2 Ξ 1 ˜ 2 ˜ 3 Ξ 1 ˜ 3
1.02 0.72875514 0.01724884 0.73908597 0.140 × 10 5 0.73908512 2.0 × 10 8
1.01 0.72804826 0.01842628 0.73908432 0.136 × 10 5 0.73908514 1.0 × 10 8
0.9999 0.72731877 0.01964098 0.73908229 0.476 × 10 5 0.73908518 8.0 × 10 8
0.98 0.72582276 0.02213081 0.73907685 0.1386 × 10 4 0.73908508 9.0 × 10 8
0.97 0.72504916 0.02341766 0.73907340 0.1964 × 10 4 0.73908516 4.0 × 10 8
0.99 0.72658119 0.02086875 0.73907980 0.893 × 10 5 0.73908515 3.0 × 10 8
0.96 0.72426152 0.02472741 0.73906940 0.2633 × 10 4 0.73908518 8.0 × 10 8
0.95 0.72346100 0.02605810 0.73906479 0.3405 × 10 4 0.73908516 4.0 × 10 8
0.9 0.71931432 0.03294336 0.73903128 0.9013 × 10 4 0.73908507 1.1 × 10 7
0.8 0.71102869 0.04666225 0.73889767 0.31373 × 10 3 0.73908399 0.191 × 10 5
0.7 0.70499831 0.05661434 0.73867172 0.69183 × 10 3 0.73908049 0.777 × 10 5
0.6 0.70549106 0.05580218 0.73844540 0.107051 × 10 2 0.73907346 0.1954 × 10 4
0.5 0.71907370 0.03334249 0.73853449 0.92145 × 10 3 0.73907013 0.2511 × 10 4
0.4 0.75440547 0.2572663 × 10 1 0.73966849 0.97644 × 10 3 0.73910731 0.3712 × 10 4
Table 10. Calculation of ˜ i and Ξ 1 ˜ i for i = 1 , 2 , 3 and different values of q by using QAG5.
Table 10. Calculation of ˜ i and Ξ 1 ˜ i for i = 1 , 2 , 3 and different values of q by using QAG5.
q ˜ 1 Ξ 1 ˜ 1 ˜ 2 Ξ 1 ˜ 2 ˜ 3 Ξ 1 ˜ 3
1.02 0.74177078 0.449739 × 10 2 0.73908522 1.5 × 10 7 0.73908510 6.0 × 10 8
1.01 0.74210039 0.504973 × 10 2 0.73908519 1.0 × 10 7 0.73908514 1.0 × 10 8
0.9999 0.74245983 0.565214 × 10 2 0.73908514 1.0 × 10 8 0.73908510 6.0 × 10 8
0.98 0.74325814 0.699042 × 10 2 0.73908500 2.2 × 10 7 0.73908513 1.0 × 10 8
0.97 0.74370437 0.773868 × 10 2 0.73908490 3.9 × 10 7 0.73908509 7.0 × 10 8
0.99 0.74284286 0.629419 × 10 2 0.73908507 1.1 × 10 7 0.73908513 1.0 × 10 8
0.96 0.74418248 0.854057 × 10 2 0.73908481 5.4 × 10 7 0.73908516 4.0 × 10 8
0.95 0.74469363 0.939805 × 10 2 0.73908464 8.3 × 10 7 0.73908514 1.0 × 10 8
0.9 0.74777644 0.1457372 × 10 1 0.73908285 0.382 × 10 5 0.73908512 2.0 × 10 8
0.8 0.75674474 0.2966996 × 10 1 0.73906877 0.2739 × 10 4 0.73908516 4.0 × 10 8
0.7 0.76856553 0.4965701 × 10 1 0.73901927 0.11023 × 10 3 0.73908528 2.5 × 10 7
0.6 0.77810379 0.6585797 × 10 1 0.73890963 0.29371 × 10 3 0.73908586 0.122 × 10 5
0.5 0.77021498 0.5245398 × 10 1 0.73884034 0.40967 × 10 3 0.73908693 0.73908693
0.4 0.70625933 0.05453553 0.73944871 0.60854 × 10 3 0.73908086 0.715 × 10 5
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Nonlaopon, K.; Khan, A.G.; Ameen, F.; Awan, M.U.; Cesarano, C. Some New Quantum Numerical Techniques for Solving Nonlinear Equations. Symmetry 2022, 14, 1829. https://doi.org/10.3390/sym14091829

AMA Style

Nonlaopon K, Khan AG, Ameen F, Awan MU, Cesarano C. Some New Quantum Numerical Techniques for Solving Nonlinear Equations. Symmetry. 2022; 14(9):1829. https://doi.org/10.3390/sym14091829

Chicago/Turabian Style

Nonlaopon, Kamsing, Awais Gul Khan, Farah Ameen, Muhammad Uzair Awan, and Clemente Cesarano. 2022. "Some New Quantum Numerical Techniques for Solving Nonlinear Equations" Symmetry 14, no. 9: 1829. https://doi.org/10.3390/sym14091829

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop