New Developments in Relativistic Magnetohydrodynamics
Abstract
:1. Introduction
- Minkowski metric: . A curved-spacetime metric is denoted by ;
- Levi–Civita tensor in Minkowski spacetime: with ;
- Fluid velocity four vector: with and ;
- Direction of the magnetic field: with . Note that and ;
- Projector transverse to : ;
- Projector transverse to both and : ;
- Cross projector: . Note that , ;
- Co-moving derivative (or material derivative or proper-time derivative) of A: ;
- Spatial gradient of A: ;
- Symmetrization, anti-symmetrization, and traceless symmetrization of a rank-two tensor : , , and ;
- Decomposition of velocity gradient: where is the vorticity tensor and ∇〈μuν〉 θ = Δαβwαβ
2. Macroscopic Approach: The Entropy–Current Analysis
2.1. Primer to the Entropy–Current Analysis
2.2. Relativistic MHD from the Magnetic Flux Conservation
2.2.1. Entropy Production Rate with Magnetic Flux
2.2.2. Zeroth-Order in Derivatives: Nondissipative RMHD
2.2.3. First-Order Derivative Corrections: Dissipative RMHD
Electric Field and Resistivities
Stress Tensor and Viscosities
3. Nonequilibrium Statistical Operator Method for Relativistic MHD
3.1. Optimized Perturbation with Local Gibbs Distribution
3.2. Evaluating the Local Gibbs Averages
3.3. Evaluating the Dissipative Corrections
4. Interlude: Connection to the Conventional MHD
4.1. Anisotropic Pressure
- The right-hand side of the energy–momentum non-conservation law, , describes the Joule heat and Lorentz force which provide the source and/or dissipation of the energy and momentum, respectively. Similarly, the electric current in the Maxwell equation provides a source of EM fields. This latter equation constrains the electric field as a gapped mode excited by the source term. The new formulation does not contain such a redundancy and can work in the strict hydrodynamic limit.
- The pressures and in Equation (19) satisfy . Subtracting the magnetic pressures and , we obtain the anisotropic matter pressures as and , respectively. One thus finds that in the rest frame of the fluid. This leads to since the magnetic susceptibility is usually positive.
- These non-conservation equations can be combined together into the form , where is the Maxwell tensor. Explicitly, this means that . Therefore, this equation can be reduced from the first equation in Equation (13) if one assumes a clear separation between the matter and electromagnetic contributions to the energy–momentum tensor as in Equation (79). However, it would not be possible to separate those contributions in a strongly coupled system where excitations are composed of mixture of matter and electromagnetic fields. Moreover, hydrodynamic framework itself should not care such microscopic details of the system, and the translational symmetry of the system only tells us the conservation of the total energy–momentum. Those facts should be respected in the formulation.
- Excluding an electric field from the set of hydrodynamic variables, one does not need to assume an “infinite electric conductivity” as in the conventional formulation (see, e.g., Refs. [134,160]). Note that the electric conductivity is a dimensionful quantity and is, moreover, not defined a priori in the formulation of hydrodynamics. If it implies an infinitesimally short relaxation time, there would be also a conceptual conflict when one tries to include (finite) dissipative effects such as a viscosity in the derivative corrections. The formulation in Section 2 and Section 3 is free of such a dilemma.
4.2. First-Order Constitutive Relations Including Hall Transports
5. Towards Relativistic MHD from Kinetic Equations
5.1. Chapman–Enskog Method
5.2. Grad’s Method of Moments
6. Perturbative Evaluation of Transport Coefficients
6.1. Transport Coefficients in Strong Magnetic Fields
6.2. Roles of the Chiral Symmetry
6.3. Contributions of Higher Landau Levels
7. Chiral Magnetohydrodynamics
7.1. Entropy-Current Analysis with Chiral Anomaly
7.2. Linear Waves in Relativistic MHD
7.3. Helical Instabilities in the Chiral MHD
8. Conclusions and Future Prospects
- (1)
- Spin hydrodynamics. One profound effect of the magnetic field is to polarize spin. This naturally addresses the question of, in the situation where the spin can be a quasi-hydrodynamic mode, how the formulation of RMHD is modified by the spin degree of freedom. Quite recently, relativistic spin hydrodynamics have attracted intensive discussions. It is theoretically very interesting and potentially applicable to the study of spin transport phenomena in QGP or supernova matter. In fact, one of the main motivations that drives the study of relativistic spin hydrodynamics is the recent experimental breakthrough of the observation of the spin polarization in the vortical QGP produced in heavy-ion collisions (see Refs. [256,257,258,259,260] and references therein).In the absence of EM fields, the basic symmetries underlying spin hydrodynamics are the translational and Lorentz symmetries, which give the conservation laws of energy–momentum and angular momentumSuch pseudo-gauge ambiguity brings freedom of choosing different structures for the spin current and energy–momentum tensor in constructing the spin hydrodynamics. Then, in a similar manner as we present in this article, one can construct the spin hydrodynamics in an order-by-order analysis in the derivative expansion (see, e.g., Refs. [122,124,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280]). In particular, anisotropic constitutive relations arise as in RMHD when there is a zeroth-order vector provided by a strong spin polarization [124]. When dynamical EM fields are present, it is worth looking into how we can unify the frameworks of spin hydrodynamics and RMHD and clarify the resulting new phenomena in such a unified formulation (see recent attempts in Refs. [281,282] and also in Ref. [283] and references therein for non-relativistic cases). In this case, we need to choose a pseudo-gauge (e.g., a totally antisymmetric spin current) and couple Equations (169)–(171) with the magnetic flux conservation
- (2)
- Kinetic theory and transport coefficient with the new formulation. As we demonstrated in Section 2 and Section 3, the formulation based on magnetic flux conservation provides a new view on RMHD based on the symmetries of the system. Noting that the hydrodynamics provide a universal description of low-energy behaviors of the system, we expect that this formulation of RMHD should also be derived based on the kinetic theory. Since the kinetic theory reviewed in Section 5 is based on the conventional approach with background magnetic fields, it is an interesting problem to reconstruct the kinetic description along the line of the recent formulation of RMHD with dynamical magnetic fields.In establishing such a kinetic theory, it is again crucial to consider the Bianchi identity (174) as an additional equation of motion together with the energy–momentum conservation law. Thus, the reformulated kinetic theory should be equipped with the distribution function of photons as well as matters, and we need to clarify how we can extract information of based on the distribution functions. Expanding the off-equilibrium part of the distribution function by generalizing the approaches in Section 5, one may obtain the dissipative corrections to the constitutive relations. Once this is established, one can extract values of all the transport coefficients by the use of the resulting kinetic theory.As for the computation of transport coefficients, we have already presented the Green–Kubo formulas in terms of the correlation functions in the recent formulation of RMHD. Thus, one can also compute the Green–Kubo Formula (77) with field theoretical techniques. In Ref. [284], such a calculation at a certain strong-coupling regime is performed based on the holographic principle, but there is little discussion about the perturbative evaluation at the weak-coupling regime in Ref. [105]. It is worth working out the perturbative evaluation of the Green–Kubo Formula (77) and clarifying their relations to those obtained from the conventional approach partly reviewed in Section 6.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Electric Charges in MHD
Appendix B. Matching and Frame Conditions in Relativistic MHD
Appendix C. Derivation of Equation (73a–c)
Appendix D. Viscous Coefficients and Inequalities
References
- Eckart, C. The Thermodynamics of irreversible processes. 3. Relativistic theory of the simple fluid. Phys. Rev. 1940, 58, 919–924. [Google Scholar] [CrossRef]
- Kluitenberg, G.; De Groot, S.; Mazur, P. Relativistic thermodynamics of irreversible processes I: Heat conduction, diffusion, viscous flow and chemical reactions; formal part. Physica 1953, 19, 689–704. [Google Scholar]
- Kluitenberg, G.; De Groot, S.; Mazur, P. Relativistic thermodynamics of irreversible processes. II: Heat conduction and diffusion; physical part. Physica 1953, 19, 1079–1094. [Google Scholar] [CrossRef]
- Kluitenberg, G.; De Groot, S. Relativistic thermodynamics of irreversible processes. III: Systems without polarization and magnetization in an electromagnetic field. Physica 1954, 20, 199–209. [Google Scholar]
- Landau, L.; Lifshitz, E. Course of Theoretical Physics. Vol. 6: Fluid Mechanics; Pergamon Press: Oxford, UK, 1959. [Google Scholar]
- Yagi, K.; Hatsuda, T.; Miake, Y. Quark-gluon Plasma: From Big Bang to Little Bang; Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology, Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Romatschke, P.; Romatschke, U. Relativistic Fluid Dynamics In and Out of Equilibrium; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar] [CrossRef]
- Skokov, V.; Illarionov, A.Y.; Toneev, V. Estimate of the magnetic field strength in heavy-ion collisions. Int. J. Mod. Phys. A 2009, 24, 5925–5932. [Google Scholar] [CrossRef]
- Voronyuk, V.; Toneev, V.D.; Cassing, W.; Bratkovskaya, E.L.; Konchakovski, V.P.; Voloshin, S.A. (Electro-)Magnetic field evolution in relativistic heavy-ion collisions. Phys. Rev. C 2011, 83, 54911. [Google Scholar] [CrossRef]
- Bzdak, A.; Skokov, V. Event-by-event fluctuations of magnetic and electric fields in heavy ion collisions. Phys. Lett. B 2012, 710, 171–174. [Google Scholar] [CrossRef]
- Deng, W.T.; Huang, X.G. Event-by-event generation of electromagnetic fields in heavy-ion collisions. Phys. Rev. C 2012, 85, 44907. [Google Scholar] [CrossRef]
- Bloczynski, J.; Huang, X.G.; Zhang, X.; Liao, J. Azimuthally fluctuating magnetic field and its impacts on observables in heavy-ion collisions. Phys. Lett. B 2013, 718, 1529–1535. [Google Scholar] [CrossRef]
- Tuchin, K. Time and space dependence of the electromagnetic field in relativistic heavy-ion collisions. Phys. Rev. C 2013, 88, 24911. [Google Scholar] [CrossRef]
- Yan, L.; Huang, X.G. Dynamical evolution of magnetic field in the pre-equilibrium quark–gluon plasma. arXiv 2021, arXiv:2104.00831. [Google Scholar]
- Wang, Z.; Zhao, J.; Greiner, C.; Xu, Z.; Zhuang, P. Incomplete electromagnetic response of hot QCD matter. Phys. Rev. C 2022, 105, L041901. [Google Scholar] [CrossRef]
- Kharzeev, D.E.; McLerran, L.D.; Warringa, H.J. The Effects of topological charge change in heavy ion collisions: “Event by event P and CP violation”. Nucl. Phys. A 2008, 803, 227–253. [Google Scholar] [CrossRef]
- Fukushima, K.; Kharzeev, D.E.; Warringa, H.J. The Chiral Magnetic Effect. Phys. Rev. D 2008, 78, 74033. [Google Scholar] [CrossRef]
- Miransky, V.A.; Shovkovy, I.A. Quantum field theory in a magnetic field: From quantum chromodynamics to graphene and Dirac semimetals. Phys. Rept. 2015, 576, 1–209. [Google Scholar] [CrossRef]
- Huang, X.G. Electromagnetic fields and anomalous transports in heavy-ion collisions—A pedagogical review. Rept. Prog. Phys. 2016, 79, 76302. [Google Scholar] [CrossRef]
- Hattori, K.; Huang, X.G. Novel quantum phenomena induced by strong magnetic fields in heavy-ion collisions. Nucl. Sci. Tech. 2017, 28, 26. [Google Scholar] [CrossRef]
- Kharzeev, D.E.; Liao, J.; Voloshin, S.A.; Wang, G. Chiral magnetic and vortical effects in high-energy nuclear collisions—A status report. Prog. Part. Nucl. Phys. 2016, 88, 1–28. [Google Scholar] [CrossRef]
- Kharzeev, D.E.; Liao, J. Chiral magnetic effect reveals the topology of gauge fields in heavy-ion collisions. Nature Rev. Phys. 2021, 3, 55–63. [Google Scholar] [CrossRef]
- Shapiro, S.L.; Teukolsky, S.A. Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects; John Wiley & Sons: Hoboken, NJ, USA, 1983. [Google Scholar]
- Duncan, R.C.; Thompson, C. Formation of very strongly magnetized neutron stars—Implications for gamma-ray bursts. Astrophys. J. Lett. 1992, 392, L9. [Google Scholar] [CrossRef]
- Price, D.; Rosswog, S. Producing ultra-strong magnetic fields in neutron star mergers. Science 2006, 312, 719. [Google Scholar] [CrossRef] [PubMed]
- Kiuchi, K.; Cerdá-Durán, P.; Kyutoku, K.; Sekiguchi, Y.; Shibata, M. Efficient magnetic-field amplification due to the Kelvin-Helmholtz instability in binary neutron star mergers. Phys. Rev. D 2015, 92, 124034. [Google Scholar] [CrossRef] [Green Version]
- Thompson, C.; Duncan, R.C. Neutron star dynamos and the origins of pulsar magnetism. Astrophys. J. 1993, 408, 194. [Google Scholar] [CrossRef]
- Lai, D. Matter in strong magnetic fields. Rev. Mod. Phys. 2001, 73, 629–662. [Google Scholar] [CrossRef]
- Harding, A.K.; Lai, D. Physics of Strongly Magnetized Neutron Stars. Rept. Prog. Phys. 2006, 69, 2631. [Google Scholar] [CrossRef]
- Mereghetti, S.; Pons, J.; Melatos, A. Magnetars: Properties, Origin and Evolution. Space Sci. Rev. 2015, 191, 315–338. [Google Scholar] [CrossRef]
- Turolla, R.; Zane, S.; Watts, A. Magnetars: The physics behind observations: A review. Rept. Prog. Phys. 2015, 78, 116901. [Google Scholar] [CrossRef]
- Kaspi, V.M.; Beloborodov, A. Magnetars. Ann. Rev. Astron. Astrophys. 2017, 55, 261–301. [Google Scholar] [CrossRef]
- Enoto, T.; Kisaka, S.; Shibata, S. Observational diversity of magnetized neutron stars. Rept. Prog. Phys. 2019, 82, 106901. [Google Scholar] [CrossRef]
- Ciolfi, R. The key role of magnetic fields in binary neutron star mergers. Gen. Rel. Grav. 2020, 52, 59. [Google Scholar] [CrossRef]
- Turner, M.S.; Widrow, L.M. Inflation Produced, Large Scale Magnetic Fields. Phys. Rev. D 1988, 37, 2743. [Google Scholar] [CrossRef] [PubMed]
- Carroll, S.M.; Field, G.B.; Jackiw, R. Limits on a Lorentz and Parity Violating Modification of Electrodynamics. Phys. Rev. D 1990, 41, 1231. [Google Scholar] [CrossRef] [PubMed]
- Garretson, W.D.; Field, G.B.; Carroll, S.M. Primordial magnetic fields from pseudoGoldstone bosons. Phys. Rev. D 1992, 46, 5346–5351. [Google Scholar] [CrossRef] [PubMed]
- Hogan, C.J. Magnetohydrodynamic Effects of a First-Order Cosmological Phase Transition. Phys. Rev. Lett. 1983, 51, 1488–1491. [Google Scholar] [CrossRef]
- Quashnock, J.M.; Loeb, A.; Spergel, D.N. Magnetic Field Generation During the Cosmological QCD Phase Transition. Astrophys. J. Lett. 1989, 344, L49–L51. [Google Scholar] [CrossRef]
- Vachaspati, T. Magnetic fields from cosmological phase transitions. Phys. Lett. B 1991, 265, 258–261. [Google Scholar] [CrossRef]
- Cheng, B.l.; Olinto, A.V. Primordial magnetic fields generated in the quark-hadron transition. Phys. Rev. D 1994, 50, 2421–2424. [Google Scholar] [CrossRef]
- Baym, G.; Bodeker, D.; McLerran, L.D. Magnetic fields produced by phase transition bubbles in the electroweak phase transition. Phys. Rev. D 1996, 53, 662–667. [Google Scholar] [CrossRef]
- Son, D.T. Magnetohydrodynamics of the early universe and the evolution of primordial magnetic fields. Phys. Rev. D 1999, 59, 63008. [Google Scholar] [CrossRef]
- Grasso, D.; Rubinstein, H.R. Magnetic fields in the early universe. Phys. Rept. 2001, 348, 163–266. [Google Scholar] [CrossRef]
- Kandus, A.; Kunze, K.E.; Tsagas, C.G. Primordial magnetogenesis. Phys. Rept. 2011, 505, 1–58. [Google Scholar] [CrossRef]
- Subramanian, K. The origin, evolution and signatures of primordial magnetic fields. Rept. Prog. Phys. 2016, 79, 76901. [Google Scholar] [CrossRef] [Green Version]
- Lichnerowicz, A. Magnetohydrodynamics: Waves and Shock Waves in Curved Space-Time; Kluwer Academic: Norwell, MA, USA, 1994. [Google Scholar]
- Anile, A.M. Relativistic Fluids and Magneto-Fluids: With Applications in Astrophysics and Plasma Physics; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Rezzolla, L.; Zanotti, O. Relativistic Hydrodynamics; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Goedbloed, H.; Keppens, R.; Poedts, S. Magnetohydrodynamics of Laboratory and Astrophysical Plasmas; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Kato, S.; Fukue, J. Fundamentals of Astrophysical Fluid Dynamics: Hydrodynamics, Magnetohydrodynamics, and Radiation Hydrodynamics; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Tuchin, K. Particle production in strong electromagnetic fields in relativistic heavy-ion collisions. Adv. High Energy Phys. 2013, 2013, 490495. [Google Scholar] [CrossRef]
- Li, H.; Sheng, X.L.; Wang, Q. Electromagnetic fields with electric and chiral magnetic conductivities in heavy ion collisions. Phys. Rev. C 2016, 94, 44903. [Google Scholar] [CrossRef]
- Hattori, K.; Li, S.; Satow, D.; Yee, H.U. Longitudinal Conductivity in Strong Magnetic Field in Perturbative QCD: Complete Leading Order. Phys. Rev. D 2017, 95, 76008. [Google Scholar] [CrossRef]
- Hattori, K.; Satow, D. Electrical Conductivity of Quark-Gluon Plasma in Strong Magnetic Fields. Phys. Rev. D 2016, 94, 114032. [Google Scholar] [CrossRef]
- Hattori, K.; Fukushima, K.; Yee, H.U.; Yin, Y. Heavy-Quark Diffusion Dynamics in Quark–Gluon Plasma under Strong Magnetic Fields. Nucl. Part. Phys. Proc. 2017, 289–290, 273–276. [Google Scholar] [CrossRef]
- Hattori, K.; Huang, X.G.; Rischke, D.H.; Satow, D. Bulk Viscosity of Quark-Gluon Plasma in Strong Magnetic Fields. Phys. Rev. D 2017, 96, 94009. [Google Scholar] [CrossRef]
- Li, S.; Yee, H.U. Shear viscosity of the quark–gluon plasma in a weak magnetic field in perturbative QCD: Leading log. Phys. Rev. D 2018, 97, 56024. [Google Scholar] [CrossRef]
- Denicol, G.S.; Huang, X.G.; Molnár, E.; Monteiro, G.M.; Niemi, H.; Noronha, J.; Rischke, D.H.; Wang, Q. Nonresistive dissipative magnetohydrodynamics from the Boltzmann equation in the 14-moment approximation. Phys. Rev. D 2018, 98, 76009. [Google Scholar] [CrossRef]
- Denicol, G.S.; Molnár, E.; Niemi, H.; Rischke, D.H. Resistive dissipative magnetohydrodynamics from the Boltzmann-Vlasov equation. Phys. Rev. D 2019, 99, 56017. [Google Scholar] [CrossRef] [Green Version]
- Dey, J.; Satapathy, S.; Mishra, A.; Paul, S.; Ghosh, S. From noninteracting to interacting picture of quark–gluon plasma in the presence of a magnetic field and its fluid property. Int. J. Mod. Phys. E 2021, 30, 2150044. [Google Scholar] [CrossRef]
- Chen, Z.; Greiner, C.; Huang, A.; Xu, Z. Calculation of anisotropic transport coefficients for an ultrarelativistic Boltzmann gas in a magnetic field within a kinetic approach. Phys. Rev. D 2020, 101, 56020. [Google Scholar] [CrossRef]
- Dash, A.; Samanta, S.; Dey, J.; Gangopadhyaya, U.; Ghosh, S.; Roy, V. Anisotropic transport properties of a hadron resonance gas in a magnetic field. Phys. Rev. D 2020, 102, 16016. [Google Scholar] [CrossRef]
- Singh, B.; Kurian, M.; Mazumder, S.; Mishra, H.; Chandra, V.; Das, S.K. Momentum broadening of heavy quark in a magnetized thermal QCD medium. arXiv 2020, arXiv:2004.11092. [Google Scholar]
- Panda, A.K.; Dash, A.; Biswas, R.; Roy, V. Relativistic non-resistive viscous magnetohydrodynamics from the kinetic theory: A relaxation time approach. JHEP 2021, 3, 216. [Google Scholar] [CrossRef]
- Ghosh, R.; Haque, N. Shear viscosity of hadronic matter at finite temperature and magnetic field. arXiv 2022, arXiv:2204.01639. [Google Scholar] [CrossRef]
- Critelli, R.; Finazzo, S.I.; Zaniboni, M.; Noronha, J. Anisotropic shear viscosity of a strongly coupled non-Abelian plasma from magnetic branes. Phys. Rev. D 2014, 90, 66006. [Google Scholar] [CrossRef]
- Finazzo, S.I.; Critelli, R.; Rougemont, R.; Noronha, J. Momentum transport in strongly coupled anisotropic plasmas in the presence of strong magnetic fields. Phys. Rev. D 2016, 94, 54020, Erratum in Phys. Rev. D 2017, 96, 19903. [Google Scholar] [CrossRef]
- Li, W.; Lin, S.; Mei, J. Conductivities of magnetic quark–gluon plasma at strong coupling. Phys. Rev. D 2018, 98, 114014. [Google Scholar] [CrossRef]
- Fukushima, K.; Okutsu, A. Electric conductivity with the magnetic field and the chiral anomaly in a holographic QCD model. Phys. Rev. D 2022, 105, 54016. [Google Scholar] [CrossRef]
- Tuchin, K. On viscous flow and azimuthal anisotropy of quark–gluon plasma in strong magnetic field. J. Phys. G 2012, 39, 25010. [Google Scholar] [CrossRef] [Green Version]
- Gursoy, U.; Kharzeev, D.; Rajagopal, K. Magnetohydrodynamics, charged currents and directed flow in heavy ion collisions. Phys. Rev. C 2014, 89, 54905. [Google Scholar] [CrossRef]
- Roy, V.; Pu, S.; Rezzolla, L.; Rischke, D. Analytic Bjorken flow in one-dimensional relativistic magnetohydrodynamics. Phys. Lett. B 2015, 750, 45–52. [Google Scholar] [CrossRef]
- Pu, S.; Yang, D.L. Transverse flow induced by inhomogeneous magnetic fields in the Bjorken expansion. Phys. Rev. D 2016, 93, 54042. [Google Scholar] [CrossRef]
- Pu, S.; Roy, V.; Rezzolla, L.; Rischke, D.H. Bjorken flow in one-dimensional relativistic magnetohydrodynamics with magnetization. Phys. Rev. D 2016, 93, 74022. [Google Scholar] [CrossRef]
- Inghirami, G.; Del Zanna, L.; Beraudo, A.; Moghaddam, M.H.; Becattini, F.; Bleicher, M. Numerical magneto-hydrodynamics for relativistic nuclear collisions. Eur. Phys. J. C 2016, 76, 659. [Google Scholar] [CrossRef]
- Gürsoy, U.; Kharzeev, D.; Marcus, E.; Rajagopal, K.; Shen, C. Charge-dependent Flow Induced by Magnetic and Electric Fields in Heavy Ion Collisions. Phys. Rev. C 2018, 98, 55201. [Google Scholar] [CrossRef]
- She, D.; Jiang, Z.F.; Hou, D.; Yang, C.B. 1 + 1 dimensional relativistic magnetohydrodynamics with longitudinal acceleration. Phys. Rev. D 2019, 100, 116014. [Google Scholar] [CrossRef]
- Inghirami, G.; Mace, M.; Hirono, Y.; Del Zanna, L.; Kharzeev, D.E.; Bleicher, M. Magnetic fields in heavy ion collisions: Flow and charge transport. Eur. Phys. J. C 2020, 80, 293. [Google Scholar] [CrossRef]
- Kord, A.F.; Ghaani, A.; Moghaddam, M.H. Analytical solution of magneto-hydrodynamics with acceleration effects of Bjorken expansion in heavy-ion collisions. Eur. Phys. J. Plus 2022, 137, 53. [Google Scholar] [CrossRef]
- Emamian, R.; Kord, A.F.; Ghaani, A.; Azadegan, B. Transverse expansion of (1 + 2) dimensional magneto-hydrodynamics flow with longitudinal boost invariance. arXiv 2020, arXiv:2012.03829. [Google Scholar]
- Hongo, M.; Hirono, Y.; Hirano, T. Anomalous-hydrodynamic analysis of charge-dependent elliptic flow in heavy-ion collisions. Phys. Lett. B 2017, 775, 266–270. [Google Scholar] [CrossRef]
- Yee, H.U.; Yin, Y. Realistic Implementation of Chiral Magnetic Wave in Heavy Ion Collisions. Phys. Rev. C 2014, 89, 44909. [Google Scholar] [CrossRef]
- Hirono, Y.; Hirano, T.; Kharzeev, D.E. The chiral magnetic effect in heavy-ion collisions from event-by-event anomalous hydrodynamics. arXiv 2014, arXiv:1412.0311. [Google Scholar]
- Yin, Y.; Liao, J. Hydrodynamics with chiral anomaly and charge separation in relativistic heavy ion collisions. Phys. Lett. B 2016, 756, 42–46. [Google Scholar] [CrossRef]
- Huang, X.G.; Yin, Y.; Liao, J. In search of chiral magnetic effect: Separating flow-driven background effects and quantifying anomaly-induced charge separations. Nucl. Phys. A 2016, 956, 661–664. [Google Scholar] [CrossRef]
- Jiang, Y.; Shi, S.; Yin, Y.; Liao, J. Quantifying the chiral magnetic effect from anomalous-viscous fluid dynamics. Chin. Phys. C 2018, 42, 11001. [Google Scholar] [CrossRef]
- Shi, S.; Jiang, Y.; Lilleskov, E.; Liao, J. Anomalous Chiral Transport in Heavy Ion Collisions from Anomalous-Viscous Fluid Dynamics. Annals Phys. 2018, 394, 50–57. [Google Scholar] [CrossRef]
- Guo, X.; Kharzeev, D.E.; Huang, X.G.; Deng, W.T.; Hirono, Y. Chiral Vortical and Magnetic Effects in Anomalous Hydrodynamics. Nucl. Phys. A 2017, 967, 776–779. [Google Scholar] [CrossRef]
- Shi, S.; Zhang, H.; Hou, D.; Liao, J. Signatures of Chiral Magnetic Effect in the Collisions of Isobars. Phys. Rev. Lett. 2020, 125, 242301. [Google Scholar] [CrossRef] [PubMed]
- Siddique, I.; Wang, R.j.; Pu, S.; Wang, Q. Anomalous magnetohydrodynamics with longitudinal boost invariance and chiral magnetic effect. Phys. Rev. D 2019, 99, 114029. [Google Scholar] [CrossRef]
- Hattori, K.; Hirono, Y.; Yee, H.U.; Yin, Y. MagnetoHydrodynamics with chiral anomaly: Phases of collective excitations and instabilities. Phys. Rev. D 2019, 100, 65023. [Google Scholar] [CrossRef]
- Tashiro, H.; Vachaspati, T.; Vilenkin, A. Chiral Effects and Cosmic Magnetic Fields. Phys. Rev. D 2012, 86, 105033. [Google Scholar] [CrossRef] [Green Version]
- Boyarsky, A.; Frohlich, J.; Ruchayskiy, O. Magnetohydrodynamics of Chiral Relativistic Fluids. Phys. Rev. D 2015, 92, 43004. [Google Scholar] [CrossRef]
- Rogachevskii, I.; Ruchayskiy, O.; Boyarsky, A.; Fröhlich, J.; Kleeorin, N.; Brandenburg, A.; Schober, J. Laminar and turbulent dynamos in chiral magnetohydrodynamics-I: Theory. Astrophys. J. 2017, 846, 153. [Google Scholar] [CrossRef]
- Schober, J.; Rogachevskii, I.; Brandenburg, A.; Boyarsky, A.; Fröhlich, J.; Ruchayskiy, O.; Kleeorin, N. Laminar and turbulent dynamos in chiral magnetohydrodynamics. II. Simulations. Astrophys. J. 2018, 858, 124. [Google Scholar] [CrossRef]
- Brandenburg, A.; Schober, J.; Rogachevskii, I.; Kahniashvili, T.; Boyarsky, A.; Frohlich, J.; Ruchayskiy, O.; Kleeorin, N. The turbulent chiral-magnetic cascade in the early universe. Astrophys. J. Lett. 2017, 845, L21. [Google Scholar] [CrossRef]
- Boyarsky, A.; Cheianov, V.; Ruchayskiy, O.; Sobol, O. Evolution of the Primordial Axial Charge across Cosmic Times. Phys. Rev. Lett. 2021, 126, 21801. [Google Scholar] [CrossRef]
- Joyce, M.; Shaposhnikov, M.E. Primordial magnetic fields, right-handed electrons, and the Abelian anomaly. Phys. Rev. Lett. 1997, 79, 1193–1196. [Google Scholar] [CrossRef]
- Field, G.B.; Carroll, S.M. Cosmological magnetic fields from primordial helicity. Phys. Rev. D 2000, 62, 103008. [Google Scholar] [CrossRef]
- Giovannini, M. The Magnetized universe. Int. J. Mod. Phys. D 2004, 13, 391–502. [Google Scholar] [CrossRef]
- Semikoz, V.B.; Sokoloff, D.D. Magnetic helicity and cosmological magnetic field. Astron. Astrophys. 2005, 433, L53. [Google Scholar] [CrossRef]
- Laine, M. Real-time Chern-Simons term for hypermagnetic fields. JHEP 2005, 10, 56. [Google Scholar] [CrossRef] [Green Version]
- Boyarsky, A.; Frohlich, J.; Ruchayskiy, O. Self-consistent evolution of magnetic fields and chiral asymmetry in the early Universe. Phys. Rev. Lett. 2012, 108, 31301. [Google Scholar] [CrossRef]
- Grozdanov, S.; Hofman, D.M.; Iqbal, N. Generalized global symmetries and dissipative magnetohydrodynamics. Phys. Rev. D 2017, 95, 96003. [Google Scholar] [CrossRef]
- Glorioso, P.; Son, D.T. Effective field theory of magnetohydrodynamics from generalized global symmetries. arxiv 2018, arXiv:1811.04879. [Google Scholar]
- Armas, J.; Jain, A. Magnetohydrodynamics as superfluidity. Phys. Rev. Lett. 2019, 122, 141603. [Google Scholar] [CrossRef]
- Armas, J.; Jain, A. One-form superfluids & magnetohydrodynamics. JHEP 2020, 1, 41. [Google Scholar] [CrossRef]
- Hongo, M.; Hattori, K. Revisiting relativistic magnetohydrodynamics from quantum electrodynamics. JHEP 2021, 2, 11. [Google Scholar] [CrossRef]
- Grozdanov, S.; Poovuttikul, N. Generalized global symmetries in states with dynamical defects: The case of the transverse sound in field theory and holography. Phys. Rev. D 2018, 97, 106005. [Google Scholar] [CrossRef]
- Armas, J.; Gath, J.; Jain, A.; Pedersen, A.V. Dissipative hydrodynamics with higher-form symmetry. JHEP 2018, 5, 192. [Google Scholar] [CrossRef]
- Gralla, S.E.; Iqbal, N. Effective Field Theory of Force-Free Electrodynamics. Phys. Rev. D 2019, 99, 105004. [Google Scholar] [CrossRef]
- Delacrétaz, L.V.; Hofman, D.M.; Mathys, G. Superfluids as Higher-form Anomalies. SciPost Phys. 2020, 8, 47. [Google Scholar] [CrossRef]
- Iqbal, N.; Poovuttikul, N. 2-group global symmetries, hydrodynamics and holography. arXiv 2020, arXiv:2010.00320. [Google Scholar]
- Landry, M.J. Higher-form and (non-)Stückelberg symmetries in non-equilibrium systems. arXiv 2021, arXiv:2101.02210. [Google Scholar]
- Braginskii, S.I. Transport processes in a plasma. Rev. Plasma Phys. 1965, 1, 205–311. [Google Scholar]
- Lifschitz, E.M.; Pitaevskii, L.P. Physical Kinetics; Pergamon: Oxford, UK, 1981. [Google Scholar]
- Huang, X.G.; Huang, M.; Rischke, D.H.; Sedrakian, A. Anisotropic Hydrodynamics, Bulk Viscosities and R-Modes of Strange Quark Stars with Strong Magnetic Fields. Phys. Rev. D 2010, 81, 45015. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.G.; Sedrakian, A.; Rischke, D.H. Kubo formulae for relativistic fluids in strong magnetic fields. Annals Phys. 2011, 326, 3075–3094. [Google Scholar] [CrossRef]
- Hernandez, J.; Kovtun, P. Relativistic magnetohydrodynamics. JHEP 2017, 5, 1–39. [Google Scholar] [CrossRef]
- De Groot, S.R.; Mazur, P. Non-Equilibrium Thermodynamics; North-Holland Publishing Company: Amsterdam, The Netherlands, 1962. [Google Scholar]
- Hongo, M.; Huang, X.G.; Kaminski, M.; Stephanov, M.; Yee, H.U. Relativistic spin hydrodynamics with torsion and linear response theory for spin relaxation. JHEP 2021, 11, 150. [Google Scholar] [CrossRef]
- Hongo, M.; Huang, X.G.; Kaminski, M.; Stephanov, M.; Yee, H.U. Spin relaxation rate for heavy quarks in weakly coupled QCD plasma. arXiv 2022, arXiv:2201.12390. [Google Scholar] [CrossRef]
- Cao, Z.; Hattori, K.; Hongo, M.; Huang, X.G.; Taya, H. Gyrohydrodynamics: Relativistic spinful fluid with strong vorticity. arXiv 2022, arXiv:2205.08051. [Google Scholar] [CrossRef]
- Israel, W.; Stewart, J.M. Transient relativistic thermodynamics and kinetic theory. Annals Phys. 1979, 118, 341–372. [Google Scholar] [CrossRef]
- Baier, R.; Romatschke, P.; Son, D.T.; Starinets, A.O.; Stephanov, M.A. Relativistic viscous hydrodynamics, conformal invariance, and holography. JHEP 2008, 4, 100. [Google Scholar] [CrossRef]
- Kapusta, J.I.; Gale, C. Finite-Temperature Field Theory: Principles and Applications; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar] [CrossRef]
- Bellac, M.L. Thermal Field Theory; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar] [CrossRef]
- Schubring, D. Dissipative String Fluids. Phys. Rev. 2015, D91, 043518. [Google Scholar] [CrossRef] [Green Version]
- Gaiotto, D.; Kapustin, A.; Seiberg, N.; Willett, B. Generalized Global Symmetries. JHEP 2015, 2, 172. [Google Scholar] [CrossRef]
- Landau, L.D.; Lífshíts, E.M.; Pitaevskii, L. Electrodynamics of Continuous Media; Pergamon Press: Oxord, UK, 1984; Volume 8. [Google Scholar]
- Kluitenberg, G.A.; De Groot, S. Relativistic thermodynamics of irreversible processes. IV: Systems with polarization and magnetization in an electromagnetic field. Physica 1954, 21, 148–168. [Google Scholar] [CrossRef]
- Kluitenberg, G.A.; De Groot, S. Relativistic thermodynamics of irreversible processes. V: The energy–momentum tensor of the macroscopic electromagnetic field, the macroscopic forces acting on the matter and the first and second laws of thermodynamics. Physica 1954, 21, 169–192. [Google Scholar] [CrossRef]
- Lichnerowicz, A. Relativistic Hydrodynamics and Magnetohydrodynamics. Lectures on the Existence of Solutions; WA Benjamin, Inc.: New York, NY, USA, 1967. [Google Scholar]
- Israel, W. The Dynamics of Polarization. Gen. Rel. Grav. 1978, 9, 451–468. [Google Scholar] [CrossRef]
- Gedalin, M. Relativistic hydrodynamics and thermodynamics of anisotropic plasmas. Phys. Fluids Plasma Phys. 1991, 3, 1871–1875. [Google Scholar] [CrossRef]
- Onsager, L. Reciprocal Relations in Irreversible Processes. I. Phys. Rev. 1931, 37, 405–426. [Google Scholar] [CrossRef]
- Hooyman, G.; Mazur, P.; De Groot, S. Coefficients of viscosity for a fluid in a magnetic field or in a rotating system. Physica 1954, 21, 355–359. [Google Scholar] [CrossRef]
- Nakajima, S. Thermal Irreversible Processes. Busseironkenkyu 1957, 2, 197–208. (In Japanese) [Google Scholar] [CrossRef]
- Mori, H. Statistical-Mechanical Theory of Transport in Fluids. Phys. Rev. 1958, 112, 1829–1842. [Google Scholar] [CrossRef]
- McLennan, J.A. Statistical Mechanics of Transport in Fluids. Phys. Fluids 1960, 3, 493–502. [Google Scholar] [CrossRef]
- McLennan, J.A. Introduction to Non Equilibrium Statistical Mechanics; Prentice Hall Advanced Reference Series; Prentice Hall: Hoboken, NJ, USA, 1988. [Google Scholar]
- Kawasaki, K.; Gunton, J.D. Theory of Nonlinear Transport Processes: Nonlinear Shear Viscosity and Normal Stress Effects. Phys. Rev. A 1973, 8, 2048–2064. [Google Scholar] [CrossRef]
- Zubarev, D.N.; Prozorkevich, A.V.; Smolyanskii, S.A. Derivation of nonlinear generalized equations of quantum relativistic hydrodynamics. Theor. Math. Phys. 1979, 40, 821–831. [Google Scholar] [CrossRef]
- Zubarev, D.N.; Morozov, V.; Ropke, G. Statistical Mechanics of Nonequilibrium Processes, Volume 1: Basic Concepts, Kinetic Theory, 1st ed.; Wiley-VCH: Weinheim, Germany, 1996. [Google Scholar]
- Zubarev, D.N.; Morozov, V.; Ropke, G. Statistical Mechanics of Nonequilibrium Processes, Volume 2: Relaxation and Hydrodynamic Processes; Wiley-VCH: Weinheim, Germany, 1997. [Google Scholar]
- Sasa, S.I. Derivation of Hydrodynamics from the Hamiltonian Description of Particle Systems. Phys. Rev. Lett. 2014, 112, 100602. [Google Scholar] [CrossRef]
- Becattini, F.; Bucciantini, L.; Grossi, E.; Tinti, L. Local thermodynamical equilibrium and the beta frame for a quantum relativistic fluid. Eur. Phys. J. C 2015, 75, 191. [Google Scholar] [CrossRef]
- Hayata, T.; Hidaka, Y.; Noumi, T.; Hongo, M. Relativistic hydrodynamics from quantum field theory on the basis of the generalized Gibbs ensemble method. Phys. Rev. D 2015, 92, 65008. [Google Scholar] [CrossRef]
- Hongo, M. Path-integral formula for local thermal equilibrium. Annals Phys. 2017, 383, 1–32. [Google Scholar] [CrossRef]
- Hongo, M. Nonrelativistic hydrodynamics from quantum field theory: (I) Normal fluid composed of spinless Schrödinger fields. J. Statist. Phys. 2019, 174, 1038. [Google Scholar] [CrossRef]
- Becattini, F.; Buzzegoli, M.; Grossi, E. Reworking the Zubarev’s approach to non-equilibrium quantum statistical mechanics. Particles 2019, 2, 197–207. [Google Scholar] [CrossRef]
- Hongo, M.; Hidaka, Y. Anomaly-Induced Transport Phenomena from Imaginary-Time Formalism. Particles 2019, 2, 261–280. [Google Scholar] [CrossRef]
- Stevenson, P.M. Optimized Perturbation Theory. Phys. Rev. D 1981, 23, 2916. [Google Scholar] [CrossRef]
- Kleinert, H. Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets; EBL-Schweitzer; World Scientific: Singapore, 2009. [Google Scholar]
- Jakovác, A.; Patkós, A. Resummation and Renormalization in Effective Theories of Particle Physics; Lecture Notes in Physics; Springer International Publishing: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Green, M.S. Markoff Random Processes and the Statistical Mechanics of Time-Dependent Phenomena. II. Irreversible Processes in Fluids. J. Chem. Phys. 1954, 22, 398–413. [Google Scholar] [CrossRef]
- Nakano, H. A Method of Calculation of Electrical Conductivity. Prog. Theor. Phys. 1956, 15, 77–79. [Google Scholar] [CrossRef]
- Kubo, R. Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems. J. Phys. Soc. Jpn. 1957, 12, 570–586. [Google Scholar] [CrossRef]
- Davidson, P.A. An Introduction to Magnetohydrodynamics; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Vardhan, S.; Grozdanov, S.; Leutheusser, S.; Liu, H. A new formulation of strong-field magnetohydrodynamics for neutron stars. arXiv 2022, arXiv:2207.01636. [Google Scholar]
- de Groot, S.R.; van Leeuwen, W.A.; van Weert, C.G. Relativistic Kinetic Theory: Principles and Applications; North-Holland Publishing: Amsterdam, The Netherlands, 1980. [Google Scholar]
- Chapman, S.; Cowling, T.G. The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction, and Diffusion in Gases, 3 ed.; Cambridge University Press: Cambridge, UK, 1970. [Google Scholar]
- Grad, H. On the kinetic theory of rarefied gases. Pure Appl. Math. 1949, 2, 331. [Google Scholar] [CrossRef]
- Denicol, G.S.; Niemi, H.; Molnar, E.; Rischke, D.H. Derivation of transient relativistic fluid dynamics from the Boltzmann equation. Phys. Rev. D 2015, 85, 114047. [Google Scholar] [CrossRef]
- Stewart, J.M. Non-Equilibrium Relativistic Kinetic Theory; Springer: Berlin/Heidelberg, Germany, 1971. [Google Scholar] [CrossRef]
- Mohanty, P.; Dash, A.; Roy, V. One particle distribution function and shear viscosity in magnetic field: A relaxation time approach. Eur. Phys. J. A 2019, 55, 35. [Google Scholar] [CrossRef]
- Das, A.; Mishra, H.; Mohapatra, R.K. Electrical conductivity and Hall conductivity of a hot and dense quark gluon plasma in a magnetic field: A quasiparticle approach. Phys. Rev. D 2020, 101, 34027. [Google Scholar] [CrossRef]
- Dey, J.; Satapathy, S.; Murmu, P.; Ghosh, S. Shear viscosity and electrical conductivity of the relativistic fluid in the presence of a magnetic field: A massless case. Pramana 2021, 95, 125. [Google Scholar] [CrossRef]
- Das, A.; Mishra, H.; Mohapatra, R.K. Transport coefficients of hot and dense hadron gas in a magnetic field: A relaxation time approach. Phys. Rev. D 2019, 100, 114004. [Google Scholar] [CrossRef] [Green Version]
- Rath, S.; Patra, B.K. Viscous properties of hot and dense QCD matter in the presence of a magnetic field. Eur. Phys. J. C 2021, 81, 139. [Google Scholar] [CrossRef]
- Panda, A.K.; Dash, A.; Biswas, R.; Roy, V. Relativistic resistive dissipative magnetohydrodynamics from the relaxation time approximation. Phys. Rev. D 2021, 104, 54004. [Google Scholar] [CrossRef]
- Rath, S.; Dash, S. Effects of weak magnetic field and finite chemical potential on the transport of charge and heat in hot QCD matter. arXiv 2021, arXiv:2112.11802. [Google Scholar]
- Rath, S.; Dash, S. Momentum transport properties of a hot and dense QCD matter in a weak magnetic field. arXiv 2022, arXiv:2203.16199. [Google Scholar]
- Satapathy, S.; Ghosh, S.; Ghosh, S. Kubo estimation of the electrical conductivity for a hot relativistic fluid in the presence of a magnetic field. Phys. Rev. D 2021, 104, 056030. [Google Scholar] [CrossRef]
- Ghosh, S.; Ghosh, S. One-loop Kubo estimations of the shear and bulk viscous coefficients for hot and magnetized Bosonic and Fermionic systems. Phys. Rev. D 2021, 103, 096015. [Google Scholar] [CrossRef]
- Burnett, D. The Distribution of Velocities in a Slightly Non-Uniform Gas. Proc. Lond. Math. Soc. 1935, 39, 385. [Google Scholar] [CrossRef]
- Burnett, D. The Distribution of Molecular Velocities and the Mean Motion in a Non-Uniform Gas. Proc. Lond. Math. Soc. 1936, 40, 382. [Google Scholar] [CrossRef]
- Hiscock, W.A.; Lindblom, L. Stability and causality in dissipative relativistic fluids. Ann. Phys. 1983, 151, 466–496. [Google Scholar] [CrossRef]
- Hiscock, W.A.; Lindblom, L. Generic instabilities in first-order dissipative relativistic fluid theories. Phys. Rev. D 1985, 31, 725–733. [Google Scholar] [CrossRef] [PubMed]
- Hiscock, W.A.; Lindblom, L. Linear plane waves in dissipative relativistic fluids. Phys. Rev. D 1987, 35, 3723–3732. [Google Scholar] [CrossRef] [PubMed]
- Denicol, G.S.; Kodama, T.; Koide, T.; Mota, P. Stability and Causality in relativistic dissipative hydrodynamics. J. Phys. G 2008, 35, 115102. [Google Scholar] [CrossRef] [Green Version]
- Pu, S.; Koide, T.; Rischke, D.H. Does stability of relativistic dissipative fluid dynamics imply causality? Phys. Rev. D 2010, 81, 114039. [Google Scholar] [CrossRef]
- Biswas, R.; Dash, A.; Haque, N.; Pu, S.; Roy, V. Causality and stability in relativistic viscous non-resistive magneto-fluid dynamics. JHEP 2020, 10, 171. [Google Scholar] [CrossRef]
- Bemfica, F.S.; Disconzi, M.M.; Noronha, J. Causality and existence of solutions of relativistic viscous fluid dynamics with gravity. Phys. Rev. D 2018, 98, 104064. [Google Scholar] [CrossRef]
- Bemfica, F.S.; Bemfica, F.S.; Disconzi, M.M.; Disconzi, M.M.; Noronha, J.; Noronha, J. Nonlinear Causality of General First-Order Relativistic Viscous Hydrodynamics. Phys. Rev. D 2019, 100, 104020, Erratum in Phys. Rev. D 2022, 105, 069902. [Google Scholar] [CrossRef]
- Kovtun, P. First-order relativistic hydrodynamics is stable. JHEP 2019, 10, 34. [Google Scholar] [CrossRef]
- Bemfica, F.S.; Disconzi, M.M.; Noronha, J. First-Order General-Relativistic Viscous Fluid Dynamics. Phys. Rev. X 2022, 12, 21044. [Google Scholar] [CrossRef]
- Hoult, R.E.; Kovtun, P. Stable and causal relativistic Navier–Stokes equations. JHEP 2020, 6, 67. [Google Scholar] [CrossRef]
- Armas, J.; Camilloni, F. A stable and causal model of magnetohydrodynamics. arXiv 2022, arXiv:2201.06847. [Google Scholar]
- Bobylev, A.V. The Chapman–Enskog and Grad methods for solving the Boltzmann equation. Sov. Phys. Dokl. 1982, 27, 29. [Google Scholar]
- Betz, B.; Henkel, D.; Rischke, D.H. Complete second-order dissipative fluid dynamics. J. Phys. G 2009, 36, 64029. [Google Scholar] [CrossRef]
- Denicol, G.S.; Koide, T.; Rischke, D.H. Dissipative relativistic fluid dynamics: A new way to derive the equations of motion from kinetic theory. Phys. Rev. Lett. 2010, 105, 162501. [Google Scholar] [CrossRef]
- Denicol, G.S.; Huang, X.G.; Koide, T.; Rischke, D.H. Consistency of Field-Theoretical and Kinetic Calculations of Viscous Transport Coefficients for a Relativistic Fluid. Phys. Lett. B 2012, 708, 174–178. [Google Scholar] [CrossRef] [Green Version]
- Denicol, G.S.; Molnár, E.; Niemi, H.; Rischke, D.H. Derivation of fluid dynamics from kinetic theory with the 14-moment approximation. Eur. Phys. J. A 2012, 48, 170. [Google Scholar] [CrossRef]
- Israel, W.; Stewart, J.M. Thermodynamics of nonstationary and transient effects in a relativistic gas. Phys. Lett. A 1976, 58, 213–215. [Google Scholar] [CrossRef]
- Israel, W.; Stewart, J.M. On transient relativistic thermodynamics and kinetic theory.II. Proc. R. Soc. Lond. A 1979, 365, 43–52. [Google Scholar] [CrossRef]
- Jaiswal, A. Relativistic dissipative hydrodynamics from kinetic theory with relaxation time approximation. Phys. Rev. C 2013, 87, 51901. [Google Scholar] [CrossRef]
- Bazow, D.; Heinz, U.W.; Strickland, M. Second-order (2+1)-dimensional anisotropic hydrodynamics. Phys. Rev. C 2014, 90, 54910. [Google Scholar] [CrossRef]
- Denicol, G.S.; Jeon, S.; Gale, C. Transport Coefficients of Bulk Viscous Pressure in the 14-moment approximation. Phys. Rev. C 2014, 90, 24912. [Google Scholar] [CrossRef]
- Molnar, E.; Niemi, H.; Rischke, D.H. Derivation of anisotropic dissipative fluid dynamics from the Boltzmann equation. Phys. Rev. D 2016, 93, 114025. [Google Scholar] [CrossRef]
- Molnár, E.; Niemi, H.; Rischke, D.H. Closing the equations of motion of anisotropic fluid dynamics by a judicious choice of a moment of the Boltzmann equation. Phys. Rev. D 2016, 94, 125003. [Google Scholar] [CrossRef]
- Tinti, L.; Vujanovic, G.; Noronha, J.; Heinz, U. Resummed hydrodynamic expansion for a plasma of particles interacting with fields. Phys. Rev. D 2019, 99, 16009. [Google Scholar] [CrossRef]
- Most, E.R.; Noronha, J.; Philippov, A.A. Modeling general-relativistic plasmas with collisionless moments and dissipative two-fluid magnetohydrodynamics. Mon. Not. R. Astron. Soc. 2021, 514, 4989–5003. [Google Scholar] [CrossRef]
- Wagner, D.; Palermo, A.; Ambruş, V.E. Inverse Reynolds-dominance approach to transient fluid dynamics. arXiv 2022, arXiv:2203.12608. [Google Scholar] [CrossRef]
- Marcowith, A.; Ferrand, G.; Grech, M.; Meliani, Z.; Plotnikov, I.; Walder, R. Multi-scale simulations of particle acceleration in astrophysical systems. Liv. Rev. Comput. Astrophys. 2020, 6, 1. [Google Scholar] [CrossRef]
- Pohl, M.; Hoshino, M.; Niemiec, J. PIC Simulation Methods for Cosmic Radiation and Plasma Instabilities. Prog. Part. Nucl. Phys. 2020, 111, 103751. [Google Scholar] [CrossRef]
- Baumgarte, T.W.; Shapiro, S.L. Numerical Relativity: Solving Einstein’s Equations on the Computer; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Baumgarte, T.W.; Shapiro, S.L. Numerical Relativity: Starting from Scratch; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Fukushima, K.; Hidaka, Y. Electric conductivity of hot and dense quark matter in a magnetic field with Landau level resummation via kinetic equations. Phys. Rev. Lett. 2018, 120, 162301. [Google Scholar] [CrossRef]
- Fukushima, K.; Hidaka, Y. Resummation for the Field-theoretical Derivation of the Negative Magnetoresistance. JHEP 2020, 4, 162. [Google Scholar] [CrossRef]
- Arnold, P.B.; Dogan, C.; Moore, G.D. The Bulk Viscosity of High-Temperature QCD. Phys. Rev. D 2006, 74, 85021. [Google Scholar] [CrossRef]
- Arnold, P.B.; Moore, G.D.; Yaffe, L.G. Transport coefficients in high temperature gauge theories. 1. Leading log results. JHEP 2000, 11, 1. [Google Scholar] [CrossRef]
- Donoghue, J.F.; Golowich, E.; Holstein, B.R. Dynamics of the Standard Model; Cambridge University Press: Cambridge, UK, 2014; Volume 2. [Google Scholar] [CrossRef]
- Particle Data Group; Zyla, P.A.; Barnett, R.M.; Beringer, J.; Dahl, O.; Dwyer, D.A.; Groom, D.E.; Lin, C.-J.; Lugovsky, K.S.; Pianori, E.; et al. Review of Particle Physics. PTEP 2020, 2020, 83C01. [Google Scholar] [CrossRef]
- Fukuda, H.; Miyamoto, Y. On the γ-Decay of Neutral Meson. Prog. Theor. Phys. 1949, 4, 347–357. [Google Scholar] [CrossRef]
- Adler, S.L. Axial vector vertex in spinor electrodynamics. Phys. Rev. 1969, 177, 2426–2438. [Google Scholar] [CrossRef]
- Bell, J.S.; Jackiw, R. A PCAC puzzle: π0→γγ in the σ model. Nuovo Cim. A 1969, 60, 47–61. [Google Scholar] [CrossRef]
- Bertlmann, R.A. Anomalies in Quantum Field Theory; Oxford University Press: Oxford, UK, 2000; Volume 91. [Google Scholar]
- Fujikawa, K.; Fujikawa, K.; Suzuki, H. Path Integrals and Quantum Anomalies; Oxford University Press: Oxford, UK, 2004; Volume 122. [Google Scholar]
- ’t Hooft, G. Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking. In Recent Developments in Gauge Theories; Springer: Boston, MA, USA, 1980; Volume 59, pp. 135–157. [Google Scholar] [CrossRef]
- Frishman, Y.; Schwimmer, A.; Banks, T.; Yankielowicz, S. The Axial Anomaly and the Bound State Spectrum in Confining Theories. Nucl. Phys. 1981, B177, 157–171. [Google Scholar] [CrossRef]
- Vilenkin, A. Equilibrium parity violating current in a magnetic field. Phys. Rev. 1980, D22, 3080–3084. [Google Scholar] [CrossRef]
- Nielsen, H.B.; Ninomiya, M. The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal. Phys. Lett. 1983, 130B, 389–396. [Google Scholar] [CrossRef]
- Alekseev, A.Y.; Cheianov, V.V.; Frohlich, J. Universality of transport properties in equilibrium, Goldstone theorem and chiral anomaly. Phys. Rev. Lett. 1998, 81, 3503–3506. [Google Scholar] [CrossRef]
- Son, D.T.; Surowka, P. Hydrodynamics with Triangle Anomalies. Phys. Rev. Lett. 2009, 103, 191601. [Google Scholar] [CrossRef]
- Neiman, Y.; Oz, Y. Relativistic Hydrodynamics with General Anomalous Charges. JHEP 2011, 3, 23. [Google Scholar] [CrossRef]
- Sadofyev, A.V.; Isachenkov, M.V. The Chiral magnetic effect in hydrodynamical approach. Phys. Lett. B 2011, 697, 404–406. [Google Scholar] [CrossRef] [Green Version]
- Kharzeev, D.E.; Yee, H.U. Anomalies and time reversal invariance in relativistic hydrodynamics: The second order and higher dimensional formulations. Phys. Rev. D 2011, 84, 45025. [Google Scholar] [CrossRef]
- Furusawa, T.; Hongo, M. Anomaly-induced edge currents in hydrodynamics with parity anomaly. Phys. Rev. D 2021, 104, 125021. [Google Scholar] [CrossRef]
- Lin, S. An anomalous hydrodynamics for chiral superfluid. Phys. Rev. D 2012, 85, 45015. [Google Scholar] [CrossRef]
- Banerjee, N.; Bhattacharya, J.; Bhattacharyya, S.; Jain, S.; Minwalla, S.; Sharma, T. Constraints on Fluid Dynamics from Equilibrium Partition Functions. JHEP 2012, 9, 46. [Google Scholar] [CrossRef]
- Jensen, K.; Kaminski, M.; Kovtun, P.; Meyer, R.; Ritz, A.; Yarom, A. Towards hydrodynamics without an entropy current. Phys. Rev. Lett. 2012, 109, 101601. [Google Scholar] [CrossRef]
- Jensen, K. Triangle Anomalies, Thermodynamics, and Hydrodynamics. Phys. Rev. D 2012, 85, 125017. [Google Scholar] [CrossRef]
- Jensen, K.; Loganayagam, R.; Yarom, A. Thermodynamics, gravitational anomalies and cones. JHEP 2013, 2, 88. [Google Scholar] [CrossRef]
- Jensen, K.; Kovtun, P.; Ritz, A. Chiral conductivities and effective field theory. JHEP 2013, 10, 186. [Google Scholar] [CrossRef]
- Jensen, K.; Loganayagam, R.; Yarom, A. Anomaly inflow and thermal equilibrium. JHEP 2014, 5, 134. [Google Scholar] [CrossRef]
- Jensen, K.; Loganayagam, R.; Yarom, A. Chern-Simons terms from thermal circles and anomalies. JHEP 2014, 5, 110. [Google Scholar] [CrossRef] [Green Version]
- Haehl, F.M.; Loganayagam, R.; Rangamani, M. Effective actions for anomalous hydrodynamics. JHEP 2014, 3, 34. [Google Scholar] [CrossRef]
- Golkar, S.; Sethi, S. Global Anomalies and Effective Field Theory. JHEP 2016, 5, 105. [Google Scholar] [CrossRef]
- Chowdhury, S.D.; David, J.R. Global gravitational anomalies and transport. JHEP 2016, 12, 116. [Google Scholar] [CrossRef]
- Glorioso, P.; Liu, H.; Rajagopal, S. Global Anomalies, Discrete Symmetries, and Hydrodynamic Effective Actions. JHEP 2019, 1, 43. [Google Scholar] [CrossRef]
- Mañes, J.L.; Megías, E.; Valle, M.; Vazquez-Mozo, M.A. Non-Abelian Anomalous (Super)Fluids in Thermal Equilibrium from Differential Geometry. JHEP 2018, 11, 76. [Google Scholar] [CrossRef]
- Mañes, J.L.; Megías, E.; Valle, M.; Vázquez-Mozo, M.A. Anomalous Currents and Constitutive Relations of a Chiral Hadronic Superfluid. JHEP 2019, 12, 18. [Google Scholar] [CrossRef]
- Liao, J. Anomalous transport effects and possible environmental symmetry violation in heavy-ion collisions. Pramana 2015, 84, 901–926. [Google Scholar] [CrossRef]
- Skokov, V.; Sorensen, P.; Koch, V.; Schlichting, S.; Thomas, J.; Voloshin, S.; Wang, G.; Yee, H.U. Chiral Magnetic Effect Task Force Report. Chin. Phys. 2017, C41, 72001. [Google Scholar] [CrossRef]
- Landsteiner, K. Notes on Anomaly Induced Transport. Acta Phys. Polon. 2016, B47, 2617. [Google Scholar] [CrossRef]
- Armitage, N.P.; Mele, E.J.; Vishwanath, A. Weyl and Dirac Semimetals in Three Dimensional Solids. Rev. Mod. Phys. 2018, 90, 15001. [Google Scholar] [CrossRef] [Green Version]
- Chernodub, M.N.; Ferreiros, Y.; Grushin, A.G.; Landsteiner, K.; Vozmediano, M.A.H. Thermal transport, geometry, and anomalies. Phys. Res. 2022, 977, 1–58. [Google Scholar] [CrossRef]
- Biskamp, D. Nonlinear Magnetohydrodynamics; Cambridge University Press: Cambridge, UK, 1997; Volume 1. [Google Scholar]
- Gedalin, M. Linear waves in relativistic anisotropic magnetohydrodynamics. Phys. Rev. E 1993, 47, 4354–4357. [Google Scholar] [CrossRef]
- Akamatsu, Y.; Yamamoto, N. Chiral Plasma Instabilities. Phys. Rev. Lett. 2013, 111, 52002. [Google Scholar] [CrossRef] [PubMed]
- Akamatsu, Y.; Yamamoto, N. Chiral Langevin theory for non-Abelian plasmas. Phys. Rev. D 2014, 90, 125031. [Google Scholar] [CrossRef]
- Yamamoto, N. Chiral transport of neutrinos in supernovae: Neutrino-induced fluid helicity and helical plasma instability. Phys. Rev. D 2016, 93, 65017. [Google Scholar] [CrossRef]
- Kojima, Y.; Miura, Y. The growth of chiral magnetic instability in a large-scale magnetic field. PTEP 2019, 2019, 43E01. [Google Scholar] [CrossRef]
- Liu, Y.C.; Huang, X.G. Anomalous chiral transports and spin polarization in heavy-ion collisions. Nucl. Sci. Tech. 2020, 31, 56. [Google Scholar] [CrossRef]
- Gao, J.H.; Ma, G.L.; Pu, S.; Wang, Q. Recent developments in chiral and spin polarization effects in heavy-ion collisions. Nucl. Sci. Tech. 2020, 31, 90. [Google Scholar] [CrossRef]
- Huang, X.G. Vorticity and Spin Polarization—A Theoretical Perspective. Nucl. Phys. A 2021, 1005, 121752. [Google Scholar] [CrossRef]
- Becattini, F.; Lisa, M.A. Polarization and Vorticity in the Quark–Gluon Plasma. Ann. Rev. Nucl. Part. Sci. 2020, 70, 395–423. [Google Scholar] [CrossRef]
- Becattini, F. Spin and polarization: A new direction in relativistic heavy ion physics. arXiv 2022, arXiv:2204.01144. [Google Scholar]
- Grozdanov, S.; Lucas, A.; Poovuttikul, N. Holography and hydrodynamics with weakly broken symmetries. Phys. Rev. D 2019, 99, 86012. [Google Scholar] [CrossRef]
- Stephanov, M.; Yin, Y. Hydrodynamics with parametric slowing down and fluctuations near the critical point. Phys. Rev. D 2018, 98, 36006. [Google Scholar] [CrossRef]
- Belinfante, F. On the spin angular momentum of mesons. Physica 1939, 6, 887–898. [Google Scholar] [CrossRef]
- Belinfante, F. On the current and the density of the electric charge, the energy, the linear momentum and the angular momentum of arbitrary fields. Physica 1940, 7, 449–474. [Google Scholar] [CrossRef]
- Rosenfeld, L. On the energy-momentum tensor. Mem. Acad. Roy. Belg. Sci. 1940, 18, 1–30. [Google Scholar]
- Montenegro, D.; Tinti, L.; Torrieri, G. Ideal relativistic fluid limit for a medium with polarization. Phys. Rev. D 2017, 96, 56012. [Google Scholar] [CrossRef]
- Florkowski, W.; Friman, B.; Jaiswal, A.; Speranza, E. Relativistic fluid dynamics with spin. Phys. Rev. C 2018, 97, 041901. [Google Scholar] [CrossRef]
- Florkowski, W.; Kumar, A.; Ryblewski, R. Relativistic hydrodynamics for spin-polarized fluids. Prog. Part. Nucl. Phys. 2019, 108, 103709. [Google Scholar] [CrossRef]
- Montenegro, D.; Torrieri, G. Causality and dissipation in relativistic polarizable fluids. Phys. Rev. D 2019, 100, 56011. [Google Scholar] [CrossRef]
- Hattori, K.; Hongo, M.; Huang, X.G.; Matsuo, M.; Taya, H. Fate of spin polarization in a relativistic fluid: An entropy–current analysis. Phys. Lett. B 2019, 795, 100–106. [Google Scholar] [CrossRef]
- Fukushima, K.; Pu, S. Spin hydrodynamics and symmetric energy–momentum tensors—A current induced by the spin vorticity. Phys. Lett. B 2021, 817, 136346. [Google Scholar] [CrossRef]
- Bhadury, S.; Florkowski, W.; Jaiswal, A.; Kumar, A.; Ryblewski, R. Relativistic dissipative spin dynamics in the relaxation time approximation. Phys. Lett. B 2021, 814, 136096. [Google Scholar] [CrossRef]
- Li, S.; Stephanov, M.A.; Yee, H.U. Nondissipative Second-Order Transport, Spin, and Pseudogauge Transformations in Hydrodynamics. Phys. Rev. Lett. 2021, 127, 82302. [Google Scholar] [CrossRef]
- She, D.; Huang, A.; Hou, D.; Liao, J. Relativistic Viscous Hydrodynamics with Angular Momentum. arXiv 2021, arXiv:2105.04060. [Google Scholar]
- Gallegos, A.D.; Gürsoy, U.; Yarom, A. Hydrodynamics of spin currents. SciPost Phys. 2021, 11, 41. [Google Scholar] [CrossRef]
- Peng, H.H.; Zhang, J.J.; Sheng, X.L.; Wang, Q. Ideal Spin Hydrodynamics from the Wigner Function Approach. Chin. Phys. Lett. 2021, 38, 116701. [Google Scholar] [CrossRef]
- Hu, J. Relativistic first-order spin hydrodynamics via the Chapman–Enskog expansion. Phys. Rev. D 2022, 105, 76009. [Google Scholar] [CrossRef]
- Daher, A.; Das, A.; Florkowski, W.; Ryblewski, R. Equivalence of canonical and phenomenological formulations of spin hydrodynamics. arXiv 2022, arXiv:2202.12609. [Google Scholar]
- Gallegos, A.D.; Gursoy, U.; Yarom, A. Hydrodynamics, spin currents and torsion. arXiv 2022, arXiv:2203.05044. [Google Scholar]
- Weickgenannt, N.; Wagner, D.; Speranza, E.; Rischke, D. Relativistic second-order dissipative spin hydrodynamics from the method of moments. arXiv 2022, arXiv:2203.04766. [Google Scholar]
- Singh, R.; Shokri, M.; Mehr, S.M.A.T. Relativistic magnetohydrodynamics with spin. arXiv 2022, arXiv:2202.11504. [Google Scholar]
- Bhadury, S.; Florkowski, W.; Jaiswal, A.; Kumar, A.; Ryblewski, R. Relativistic spin-magnetohydrodynamics. arXiv 2022, arXiv:2204.01357. [Google Scholar]
- Koide, T. Spin-electromagnetic hydrodynamics and magnetization induced by spin-magnetic interaction. Phys. Rev. C 2013, 87, 34902. [Google Scholar] [CrossRef]
- Grozdanov, S.; Poovuttikul, N. Generalised global symmetries in holography: Magnetohydrodynamic waves in a strongly interacting plasma. JHEP 2019, 4, 141. [Google Scholar] [CrossRef]
- Bhattacharya, J.; Bhattacharyya, S.; Minwalla, S.; Yarom, A. A Theory of first order dissipative superfluid dynamics. JHEP 2014, 5, 147. [Google Scholar] [CrossRef]
- Kovtun, P. Lectures on hydrodynamic fluctuations in relativistic theories. J. Phys. A 2012, 45, 473001. [Google Scholar] [CrossRef]
- Minami, Y.; Hidaka, Y. Relativistic hydrodynamics from the projection operator method. Phys. Rev. E 2013, 87, 23007. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hattori, K.; Hongo, M.; Huang, X.-G. New Developments in Relativistic Magnetohydrodynamics. Symmetry 2022, 14, 1851. https://doi.org/10.3390/sym14091851
Hattori K, Hongo M, Huang X-G. New Developments in Relativistic Magnetohydrodynamics. Symmetry. 2022; 14(9):1851. https://doi.org/10.3390/sym14091851
Chicago/Turabian StyleHattori, Koichi, Masaru Hongo, and Xu-Guang Huang. 2022. "New Developments in Relativistic Magnetohydrodynamics" Symmetry 14, no. 9: 1851. https://doi.org/10.3390/sym14091851
APA StyleHattori, K., Hongo, M., & Huang, X. -G. (2022). New Developments in Relativistic Magnetohydrodynamics. Symmetry, 14(9), 1851. https://doi.org/10.3390/sym14091851