Next Article in Journal
Common Fixed-Points Technique for the Existence of a Solution to Fractional Integro-Differential Equations via Orthogonal Branciari Metric Spaces
Next Article in Special Issue
Transient Propagation of Longitudinal and Transverse Waves in Cancellous Bone: Application of Biot Theory and Fractional Calculus
Previous Article in Journal
Meir–Keeler Type Contraction in Orthogonal M-Metric Spaces
Previous Article in Special Issue
Subordination Results on the q-Analogue of the Sălăgean Differential Operator
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Fourier Series Expansion and Integral Representation of Apostol-Type Frobenius–Euler Polynomials of Complex Parameters and Order α

by
Cristina Corcino
1,2,†,
Roberto Corcino
1,2,*,† and
Jeremar Casquejo
1,2,†
1
Research Institute for Computational Mathematics and Physics, Cebu Normal University, Cebu City 6000, Philippines
2
Mathematics Department, Cebu Normal University, Cebu City 6000, Philippines
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Symmetry 2022, 14(9), 1860; https://doi.org/10.3390/sym14091860
Submission received: 13 August 2022 / Revised: 30 August 2022 / Accepted: 4 September 2022 / Published: 6 September 2022

Abstract

:
In this paper, the Fourier series expansions of Apostol-type Frobenius–Euler polynomials of complex parameters and order α are derived, and consequently integral representations of these polynomials are established. This paper provides some techniques in computing the symmetries of the defining equation of Apostol-type Frobenius–Euler polynomials resulting in their expansions and integral representations.

1. Introduction

The Euler and Genocchi polynomials of order k are constructed by mixing the concepts of Euler and Genocchi numbers with the exponential polynomials. For k = 1 , we have the classical Euler and Genocchi polynomials, denoted by E n ( x ) and G n ( x ) , respectively, defined by the following generating functions:
n = 0 E n ( x ) t n n ! = 2 e t + 1 e x t , | t | < π ,
n = 0 G n ( x ) t n n ! = 2 t e t + 1 e x t , | t | < π .
For k > 1 , we have the polynomials E n ( k ) ( x ) and G n ( k ) ( x ) , which denote the Euler and Genocchi polynomials of order k, respectively, defined by
n = 0 E n ( k ) ( x ) t n n ! = 2 e t + 1 k e x t , | t | < π ,
n = 0 G n ( k ) ( x ) t n n ! = 2 t e t + 1 k e x t , | t | < π .
In fact, G n ( x ) can be expressed in terms of E n ( x ) as follows:
G n + 1 ( x ) = ( n + 1 ) E n ( x ) .
Similarly, G n ( k ) ( x ) can be expressed in terms of E n ( k ) ( x ) as follows:
G n + k ( k ) ( x ) = ( n + k ) k E n ( k ) ( x ) .
These polynomials have a rich literature in the history of special functions. The two most recent studies on Genocchi polynomials are from the papers of Corcino-Corcino [1,2] on asymptotic approximations.
The Apostol-type Frobenius–Euler polynomials H n ( x ; u ; λ ) in the variable x are defined in (see [3,4,5]) by mixing Euler polynomials with the concept of Apostol and Frobenius polynomials as follows:
n = 0 H n ( x ; u ; λ ) t n n ! = 1 u λ e t u e x t , | t | < log u λ ,
where the logarithm function log is taken to be the principal branch. The Fourier series expansion of the Apostol-type Frobenius–Euler polynomials are given by
H n ( x ; u ; λ ) = u 1 u n ! u λ x k Z e 2 k π i x ( 2 π i k log ( λ u ) ) n + 1 ,
where u , λ C with u 1 , λ 1 , u λ and 0 < x < 1 (see Theorem 1 of [3] (p. 5)), with Z and C denoting the sets of integers and complex numbers, respectively.
Recently, Alam et al. [6] defined a new class of Bell-based Apostol-type Frobenius–Euler polynomials and obtained some properties of these numbers and polynomials. Moreover, they derived summation formulas of Apostol-type Frobenius–Euler numbers and polynomials, expressed in terms of Apostol-type Bernoulli, Euler, and Genocchi polynomials. Furthermore, they proved several identities of Apostol-type Frobenius–Euler polynomials by using different analytical methods and generating function method. Lastly, they introduced parametric kinds of Apostol-type Frobenius–Euler polynomials and obtained some identities of these polynomials.
The Fourier series and integral representations for the Apostol–Euler polynomials and Apostol–Bernoulli polynomials were obtained by Luo (see [7]) using the Lipschitz summation formula, while in [8], using the Cauchy’s residue theorem in the complex plane, Bayad derived a Fourier series for the Apostol–Bernoulli, Apostol–Genocchi and Apostol–Euler polynomials. Recently, the Fourier series expansions for the Apostol-Genocchi, Apostol-Bernoulli, Apostol–Euler polynomials, Tangent Polynomials, Tangent–Bernoulli and Tangent–Genocchi polynomials of higher order were established in (see [9,10,11]).
In this paper, the Apostol-type Frobenius–Euler polynomials of complex parameters and order α will be introduced and their Fourier series expansions will also be derived. Moreover, their integral representations will be obtained by following the method of Luo [7]. The results in this study can be helpful in establishing the asymptotic approximation of Apostol-type Frobenius–Euler polynomials of order α .

2. Methods

This study was facilitated with the use of residue theory—in particular, the Cauchy’s residue theorem [12] is applied to solve the contour integral representation of the polynomials. This theory demonstrates the technique of computing the symmetries of the defining equation of Apostol-type Frobenius–Euler polynomials of complex parameters and order α .

3. Results and Discussions

The Apostol-type Frobenius–Euler polynomials of complex parameters and order α are defined by means of the generating function
n = 0 H n ( α ) ( x ; u ; λ ) t n n ! = 1 u λ e t u α e x t ,
where u , λ C with u 1 , λ 1 , u λ and α Z + (a set of positive integers). Now, let us consider first the function
f n ( t ) = 1 u λ e t u α e x t t n + 1 .
The function f n ( t ) has a pole of order n + 1 at t = 0 and poles of order α at t k where t k are the zeroes of λ e t u . The values of t k are obtained as follows:
λ e t u = 0 λ e t = u log ( λ e t ) = log ( u ) log ( λ ) + log ( e t ) = log ( u ) t + 2 k π i = log ( u ) log ( λ ) t = log u λ 2 k π i t k : = t = 2 k π i log λ u , f o r k Z .
Note that log λ u = Log λ u + 2 n π i where Log is the principal branch. We then integrate f n ( t ) around the circle with radius ( 2 N + ϵ ) π where ϵ R (set of real numbers) such that ϵ π i ± log λ u 0 ( mod 2 π i ) . This radius ensures that the circle C N does not pass any of the poles t k . Then, from Cauchy’s residue theorem, we have
C N f n ( t ) d t = 2 π i Res ( f n ( t ) , t = 0 ) + N < k < N Res ( f n ( t ) , t = t k ) .
The following lemma contains the limit of the integral in (7) as N .
Lemma 1.
Let α Z + , λ , u C { 0 , 1 } with | λ | | u | . For 0 < x < α , n 1 ,
lim N C N f n ( t ) d t = lim N C N 1 u λ e t u α e x t t n + 1 d t = 0 ,
where C N = { t : | t | = ( 2 N + ϵ ) π and ϵ R , ( ϵ π i ± log λ u 0 ( mod 2 π i ) ) } and C N is positively-oriented.
Proof. 
Taking the modulus of the integral gives
C N 1 u λ e t u α e x t t n + 1 d t sup t C N 1 u λ e t u α e x t t n + 1 · 2 π ( 2 N + ϵ ) π
where C N = { t : | t | = ( 2 N + ϵ ) π and ϵ R , ( ϵ π i ± log λ u 0 ( mod 2 π i ) ) } .
We first show that e x t λ u e t 1 α is bounded above, for all t C N .
Let t = a + i b , a = Re ( t ) and b = Im ( t ) . Then,
| e x t | = | e x ( a + i b ) | = e x a
and
λ u e t 1 = λ u e a + i b 1 λ u e a + i b | 1 | = λ u e a 1 = λ u e a 1 2 = e a λ u 2 2 λ u e a + 1 e 2 a 1 / 2 .
Thus,
e x t λ u e t 1 α e x a e α a λ u 2 2 λ u e a + e 2 a α / 2 = 1 e ( α x ) a λ u 2 2 λ u e a + e 2 a α / 2 .
Let D = e ( α x ) a λ u 2 2 λ u e a + e 2 a α / 2 . Note that, with 0 < x < α , α x > 0 . Now, we write t = r e i θ = r ( cos θ + i sin θ ) and see that a = r cos θ = [ ( 2 N + ϵ ) π ] cos θ , π < θ π . Thus, we have three cases:
Case 1. When cos θ > 0 , e ( α x ) a and e a , e 2 a 0 as N , which means that D , and thus e x t λ u e t 1 α is bounded.
Case 2. When cos θ < 0 , we write
D = e x a λ u 2 e 2 a 2 λ u e a + 1 α / 2
and see that e x a and e 2 a , e a 0 as N , which means that D , and thus e x t λ u e t 1 α is bounded.
Case 3. When cos θ = 0 , e ( α x ) a = 1 = e a = e 2 a , which means that
D = λ u 2 2 λ u + 1 α / 2 .
For e x t λ u e t 1 α to be bounded, λ u 2 2 λ u + 1 must not be zero. Note that λ u 2 2 λ u + 1 = 0 , if and only if, λ u = 1 . Hence, e x t λ u e t 1 α is bounded whenever | λ | | u | .
Thus, in any case, t C N ,
e x t λ u e t 1 α K ,
for some constant K provided that | λ | | u | when Re ( t ) = 0 .
It then follows that, t C N ,
1 u u α e x t λ u e t 1 α K ,
for some constant K .
Finally, with | t | = ( 2 N + ϵ ) π ,
C N 1 u λ e t u α e x t t n + 1 d t 1 u λ e t u α e x t t n + 1 · 2 π ( 2 N + ϵ ) π = 1 u u α e x t λ u e t 1 α 2 π ( 2 N + ϵ ) . π | t n + 1 | 2 π K ( 2 N + ϵ ) π n ,
and clearly the last expression goes to 0 as N for n 1 . This proves the lemma. □
Using Lemma 1, Equation (7) becomes
Res ( f n ( t ) , t = 0 ) = k Z Res ( f n ( t ) , t = t k ) .

Fourier Series Expansion and Integral Representation

In this section, the main results of the paper will be discussed, which include the Fourier series expansion and integral representation of the Apostol-Frobenius–Euler polynomials of complex parameters and order α . The following theorem contains the said Fourier series expansion.
Theorem 1.
Let α Z + , u , λ C { 0 , 1 } with | u | | λ | and 0 < x < α . We have
H n ( α ) ( x ; u ; λ ) = n ! u 1 u α u λ x k Z j = 0 α 1 ( 1 ) j n + α j 1 α j 1 B j ( α ) ( x ) j ! × e 2 k x π i ( 2 k π i log ( λ u ) ) n + α j ,
where B j ( α ) ( x ) denotes the Bernoulli polynomials of order α defined by (see [13])
w e w 1 α e x w = j = 0 B j ( α ) ( x ) w j j ! .
Proof. 
We compute Res ( f n ( t ) , t = 0 ) and Res ( f n ( t ) , t = t k ) as follows:
Res ( f n ( t ) , t = 0 ) = 1 n ! lim t 0 d n d t n ( t 0 ) n + 1 f n ( t ) = 1 n ! lim t 0 d n d t n t n + 1 1 t n + 1 m = 0 H m ( α ) ( x ; u ; λ ) t m m ! = 1 n ! lim t 0 d n d t n m = 0 H m ( α ) ( x ; u ; λ ) t m m ! = 1 n ! lim t 0 m = n H m ( α ) ( x ; u ; λ ) t m n ( m n ) ! = H n ( α ) ( x ; u ; λ ) n !
and
Res ( f n ( t ) , t = t k ) = 1 ( α 1 ) ! lim t t k d α 1 d t α 1 ( t t k ) α f n ( t ) = 1 ( α 1 ) ! lim t t k d α 1 d t α 1 ( t t k ) α 1 u λ e t u α e x t t n + 1 = 1 ( α 1 ) ! lim t t k d α 1 d t α 1 ( t t k ) α ( 1 u ) α u α λ u e t 1 α e x t t n + 1 = 1 ( α 1 ) ! 1 u u α lim t t k d α 1 d t α 1 ( t t k ) α λ u e t 1 α e x t t n + 1 .
Since e t k = exp ( 2 k π i + log ( λ u ) ) = λ u , we can write λ u e t 1 α = e t k e t 1 α = e ( t t k ) 1 α . Thus, we have
( t t k ) α λ u e t 1 α e x t t n + 1 = ( t t k ) α e ( t t k ) 1 α e x t t n + 1 = m = 0 B m ( α ) ( t t k ) m m ! e x t t n + 1 = e x t m = 0 B m ( α ) ( t t k ) m m ! t ( n + 1 ) ,
where B m ( α ) denotes the Bernoulli numbers of order α defined by (see [13])
w e w 1 α = m = 0 B m ( α ) w m m ! .
Applying the Leibniz Rule on differentiation,
d α 1 d t α 1 ( t t k ) α λ u e t 1 α e x t t n + 1 = d α 1 d t α 1 e x t m = 0 B m ( α ) ( t t k ) m m ! t ( n + 1 ) = j = 0 α 1 α 1 j d j d t j e x t m = 0 B m ( α ) ( t t k ) m m ! · d α 1 j d t α 1 j t ( n + 1 ) ,
where
d j d t j e x t m = 0 B m ( α ) ( t t k ) m m ! = l = 0 j j l d l d t l m = 0 B m ( α ) ( t t k ) m m ! · d j l d t j l e x t = l = 0 j j l m = l B m ( α ) ( t t k ) m l ( m l ) ! · x j l e x t = e x t l = 0 j j l x j l m = l B m ( α ) ( t t k ) m l ( m l ) !
and
d α 1 j d t α 1 j t ( n + 1 ) = d α 1 j d t α 1 j t n 1 = ( n 1 ) ( n 2 ) . . . ( n α + 1 + j ) t n α + j = ( 1 ) α 1 j ( n + α j 1 ) . . . ( n + 2 ) ( n + 1 ) t ( n + α j ) = ( 1 ) α 1 j ( n + α j 1 ) ! n ! t ( n + α j ) .
Thus,
d α 1 d t α 1 ( t t k ) α λ u e t 1 α e x t t n + 1 = j = 0 α 1 α 1 j ( 1 ) α 1 j ( n + α j 1 ) ! n ! t ( n + α j ) × e x t l = 0 j j l x j l m = l B m ( α ) ( t t k ) m l ( m l ) ! .
Applying (11) to (10) yields
Res ( f n ( t ) , t = t k ) = 1 ( α 1 ) ! 1 u u α lim t t k j = 0 α 1 α 1 j ( 1 ) α 1 j ( n + α j 1 ) ! n ! t ( n + α j ) × lim t t k e x t l = 0 j j l x j l m = l B m ( α ) ( t t k ) m l ( m l ) ! .
Observe that B m ( α ) ( t t k ) m l ( m l ) ! 0 as t t k except when m = l . Then,
Res ( f n ( t ) , t = t k ) = 1 ( α 1 ) ! 1 u u α j = 0 α 1 α 1 j ( 1 ) α 1 j ( n + α j 1 ) ! n ! t k ( n + α j ) × e x t k l = 0 j j l x j l B l ( α ) = ( 1 ) α ( α 1 ) ! 1 u u α j = 0 α 1 ( α 1 ) ! j ! ( α j 1 ) ! ( 1 ) 1 j ( n + α j 1 ) ! n ! t k ( n + α j ) × e x t k l = 0 j j l x j l B l ( α ) = u 1 u α j = 0 α 1 ( 1 ) j + 1 ( n + α j 1 ) ! n ! ( α j 1 ) ! e x t k j ! t k n + α j l = 0 j j l x j l B l ( α ) .
Recall from [13] that B j ( α ) ( x ) = l = 0 j j l B l ( α ) x j l . Thus,
Res ( f n ( t ) , t = t k ) = u 1 u α j = 0 α 1 ( 1 ) j + 1 n + α j 1 α j 1 e x t k j ! t k n + α j B j ( α ) ( x ) = u 1 u α j = 0 α 1 ( 1 ) j + 1 n + α j 1 α j 1 B j ( α ) ( x ) j ! e x t k t k n + α j .
Substituting t k = 2 k π i log λ u , we find
Res ( f n ( t ) , t = t k ) = u 1 u α j = 0 α 1 ( 1 ) j + 1 n + α j 1 α j 1 B j ( α ) ( x ) j ! × exp 2 k x π i + log u λ x ( 2 k π i log ( λ u ) ) n + α j = u 1 u α u λ x j = 0 α 1 ( 1 ) j + 1 n + α j 1 α j 1 B j ( α ) ( x ) j ! × e 2 k x π i ( 2 k π i log ( λ u ) ) n + α j .
Combining the residues (9) and (12) with Equation (8) yields
H n ( α ) ( x ; u ; λ ) = n ! u 1 u α u λ x k Z j = 0 α 1 ( 1 ) j n + α j 1 α j 1 B j ( α ) ( x ) j ! × e 2 k x π i ( 2 k π i log ( λ u ) ) n + α j .
This completes the proof. □
Now, let us consider an integral representation of the Apostol-type Frobenius–Euler polynomials of complex parameters and order α .
Theorem 2.
For n N (set of natural numbers), 0 < x < α , | ξ | < 1 2 , ξ R , we have
H n ( α ) ( x ; u ; u e 2 ξ π i ) = u 1 u α j = 0 α 1 ( 1 ) j B j ( α ) ( x ) j ! ( α j 1 ) ! e 2 ξ x π i × × 0 M ( n ; x , v ) cosh ( 2 ξ π v ) + i N ( n ; x , v ) sinh ( 2 ξ π v ) cosh 2 π v s . cos 2 x π v n + α j 1 d v ,
where
M ( n ; x , v ) = e π v cos π x ( n + α j ) π 2 e π v cos π x + ( n + α j ) π 2 , N ( n ; x , v ) = e π v sin π x ( n + α j ) π 2 + e π v sin π x + ( n + α j ) π 2 .
Proof. 
From (1), we have
H n ( α ) ( x ; u ; λ ) = u 1 u α j = 0 α 1 ( 1 ) j B j ( α ) ( x ) j ! ( α j 1 ) ! × u λ x ( n + α j 1 ) ! k Z e 2 k x π i ( 2 k π i log ( λ u ) ) n + α j .
Now, we look at
Θ = u λ x ( n + α j 1 ) ! k Z e 2 k x π i ( 2 k π i log ( λ u ) ) n + α j .
Taking λ = u e 2 ξ π i , k k , we have
Θ = 1 e π i e 2 ξ π i x ( n + α j 1 ) ! k Z e 2 k x π i ( 2 k π i log e π i e 2 ξ π i ) n + α j = e ( 2 ξ + 1 ) x π i ( n + α j 1 ) ! k Z e 2 k x π i ( 2 k π i 2 ξ π i π i ) n + α j = e ( 2 ξ + 1 ) x π i ( n + α j 1 ) ! ( π i ) n + α j k Z e 2 k x π i ( 2 k + 2 ξ + 1 ) n + α j = e ( 2 ξ + 1 ) x π i ( n + α j 1 ) ! ( π i ) n + α j k = 0 e 2 k x π i ( 2 k + 2 ξ + 1 ) n + α j + k = 1 e 2 k x π i ( 2 k + 2 ξ + 1 ) n + α j = e ( 2 ξ + 1 ) x π i ( n + α j 1 ) ! ( π i ) n + α j k = 0 e 2 k x π i ( 2 k + 2 ξ + 1 ) n + α j + ( 1 ) n + α j k = 1 e 2 k x π i ( 2 k 2 ξ 1 ) n + α j = e ( 2 ξ + 1 ) x π i ( π i ) n + α j k = 0 e 2 k x π i ( n + α j 1 ) ! ( 2 k + 2 ξ + 1 ) n + α j + ( 1 ) n + α j k = 1 e 2 k x π i ( n + α j 1 ) ! ( 2 k 2 ξ 1 ) n + α j .
Here,
( 2 k + 2 ξ + 1 ) > 0 i f | ξ | < 1 2 , ξ R a n d k 0 , ( 2 k 2 ξ 1 ) > 0 i f | ξ | < 1 2 , ξ R a n d k 1 .
Applying the integral formula (see [7] (p. 294, Equation (3.2)))
0 t n e a t d t = n ! a n + 1 ( n = 0 , 1 , . . . ; ( a ) > 0 )
in (16), we find that
Θ = e ( 2 ξ + 1 ) x π i ( π i ) n + α j k = 0 e 2 k x π i 0 t n + α j 1 e ( 2 k + 2 ξ + 1 ) t d t + ( 1 ) n + α j k = 1 e 2 k x π i 0 t n + α j 1 e ( 2 k 2 ξ 1 ) t d t = e ( 2 ξ + 1 ) x π i ( π i ) n + α j 0 t n + α j 1 e ( 2 ξ + 1 ) t k = 0 e 2 ( x π i + t ) k d t + ( 1 ) n + α j 0 t n + α j 1 e ( 2 ξ + 1 ) t k = 1 e 2 ( x π i t ) k d t = e ( 2 ξ + 1 ) x π i ( π i ) n + α j 0 t n + α j 1 e ( 2 ξ + 1 ) t 1 1 e 2 ( x π i + t ) d t + ( 1 ) n + α j 0 t n + α j 1 e ( 2 ξ + 1 ) t e 2 ( x π i t ) 1 e 2 ( x π i t ) d t = e ( 2 ξ + 1 ) x π i ( π i ) n + α j 0 t n + α j 1 e ( 2 ξ + 1 ) t e 2 t e 2 t e 2 x π i d t + ( 1 ) n + α j 0 t n + α j 1 e ( 2 ξ + 1 ) t e 2 x π i e 2 t e 2 x π i d t = e 2 ξ x π i ( π i ) n + α j 0 e x π i e 2 t e 2 x π i e ( 1 2 ξ ) t t n + α j 1 d t + ( 1 ) n + α j 0 e x π i e 2 t e 2 x π i e ( 1 + 2 ξ ) t t n + α j 1 d t = e 2 ξ x π i ( π i ) n + α j 0 1 e 2 t + x π i e x π i · 2 ( e 2 x π i e 2 t ) e x π i 2 ( e x π i e 2 t + x π i ) e ( 1 2 ξ ) t t n + α j 1 d t + ( 1 ) n + α j 0 1 e 2 t x π i e x π i · 2 ( e 2 x π i e 2 t ) e x π i 2 ( e x π i e 2 t x π i ) e ( 1 + 2 ξ ) t t n + α j 1 d t = e 2 ξ x π i 2 ( π i ) n + α j 0 2 ( e 2 x π i e 2 t ) e x π i ( e 2 t + e 2 t ) ( e 2 x π i + e 2 x π i ) e ( 1 2 ξ ) t t n + α j 1 d t + ( 1 ) n + α j 0 2 ( e 2 x π i e 2 t ) e x π i ( e 2 t + e 2 t ) ( e 2 x π i + e 2 x π i ) e ( 1 + 2 ξ ) t t n + α j 1 d t = e 2 ξ x π i 2 ( π i ) n + α j 0 ( e 2 x π i e 2 t ) e x π i cosh 2 t cos 2 x π e ( 1 2 ξ ) t t n + α j 1 d t + ( 1 ) n + α j 0 ( e 2 x π i e 2 t ) e x π i cosh 2 t cos 2 x π e ( 1 + 2 ξ ) t t n + α j 1 d t .
Making the substitution t = π v and noting that ( 1 / i ) n + α j = e ( n + α j ) π i / 2 and ( 1 ) n + α j = e ( n + α j ) π i , we find
Θ = e 2 ξ x π i 2 · π n + α j 0 e ( n + α j ) π i / 2 ( e 2 x π i e 2 π v ) e x π i cosh 2 π v s . cos 2 x π e ( 1 2 ξ ) π v ( π v ) n + α j 1 π d v + 0 e ( n + α j ) π i / 2 ( e 2 x π i e 2 π v ) e x π i cosh 2 π v s . cos 2 x π e ( 1 + 2 ξ ) π v ( π v ) n + α j 1 π d v = e 2 ξ x π i 2 0 e i π x + ( n + α j ) π / 2 e i π x + ( n + α j ) π / 2 e 2 π v cosh 2 π v s . cos 2 x π e ( 1 2 ξ ) π v v n + α j 1 d v + 0 e i π x ( n + α j ) π / 2 e i π x ( n + α j ) π / 2 e 2 π v cosh 2 π v s . cos 2 x π e ( 1 + 2 ξ ) π v v n + α j 1 d v = e 2 ξ x π i 2 0 e π v e i π x + ( n + α j ) π / 2 e 2 ξ π v e π v e i π x + ( n + α j ) π / 2 e 2 ξ π v cosh 2 π v s . cos 2 x π v n + α j 1 d v + 0 e π v e i π x ( n + α j ) π / 2 e 2 ξ π v e π v e i π x ( n + α j ) π / 2 e 2 ξ π v cosh 2 π v s . cos 2 x π v n + α j 1 d v .
Let A = [ π x ( n + α j ) π / 2 ] and B = [ π x + ( n + α j ) π / 2 ] . Then,
Θ = e 2 ξ x π i 2 0 e π v e i ( A ) e 2 ξ π v e π v e i B e 2 ξ π v cosh 2 π v s . cos 2 x π v n + α j 1 d v + 0 e π v e i A e 2 ξ π v e π v e i ( B ) e 2 ξ π v cosh 2 π v s . cos 2 x π v n + α j 1 d v = e 2 ξ x π i 2 0 e π v cos A e π v cos B e 2 ξ π v + e 2 ξ π v cosh 2 π v s . cos 2 x π v n + α j 1 d v + 0 i e π v sin A + e π v sin B e 2 ξ π v e 2 ξ π v cosh 2 π v s . cos 2 x π v n + α j 1 d v = e 2 ξ x π i 0 e π v cos A e π v cos B cosh ( 2 ξ π v ) cosh 2 π v s . cos 2 x π v n + α j 1 d v + 0 i e π v sin A + e π v sin B sinh ( 2 ξ π v ) cosh 2 π v s . cos 2 x π v n + α j 1 d v = e 2 ξ x π i 0 M ( n ; x , v ) cosh ( 2 ξ π v ) + i N ( n ; x , v ) sinh ( 2 ξ π v ) cosh 2 π v s . cos 2 x π v n + α j 1 d v ,
where
M ( n ; x , v ) = e π v cos π x ( n + α j ) π 2 e π v cos π x + ( n + α j ) π 2 , N ( n ; x , v ) = e π v sin π x ( n + α j ) π 2 + e π v sin π x + ( n + α j ) π 2 .
Replacing (15) with (17) in (14), we obtain the desired integral representation. □

4. Conclusions and Recommendations

The Fourier series expansion of the Apostol-type Frobenius–Euler polynomials of complex parameters and order α was derived using the Cauchy residue theorem. Consequently, an integral representation of the Apostol-type Frobenius–Euler polynomials of complex parameters and order α was obtained using the Fourier series expansion of the polynomials. We recommend establishing the asymptotic approximation of these Apostol-type Frobenius–Euler polynomials.

Author Contributions

Conceptualization, C.C. and R.C.; Formal analysis, C.C., R.C. and J.C.; Funding acquisition, C.C. and R.C.; Investigation, C.C., R.C. and J.C.; Methodology, C.C., R.C. and J.C.; Supervision, C.C. and R.C.; Writing—original draft, J.C.; Writing—review and editing, C.C. and R.C. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by Cebu Normal University through its Research Institute for Computational Mathematics and Physics under the Grant: RICMP Project 2 (2022).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The newly added information in this study are available on request from the corresponding author.

Acknowledgments

The authors would like to thank the Research Institute for Computational Mathematics and Physics of Cebu Normal University for funding this research.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Corcino, C.; Corcino, R. Approximations of Genocchi polynomials of complex order. Asian-Eur. J. Math. 2021, 14, 2150083. [Google Scholar] [CrossRef]
  2. Corcino, C.; Corcino, R. Asymptotics of Genocchi polynomials and higher order Genocchi polynomials using residues. Afr. Mat. 2020, 31, 781–792. [Google Scholar] [CrossRef]
  3. Araci, S.; Acikgoz, M. Construction of Fourier expansion of Apostol Frobenius–Euler polynomials and its applications. Adv. Differ. Equ. 2018, 2018, 67. [Google Scholar] [CrossRef]
  4. Bayad, A.; Kim, T. Identities for Apostol-type Frobenius–Euler polynomials resulting from the study of a nonlinear operator. Russ. J. Math. Phys. 2016, 23, 164–171. [Google Scholar] [CrossRef]
  5. Urieles, A.; Ramírez, W.; Ortega, M.J.; Bedoya, D. Fourier expansion and integral representation generalized Apostol-type Frobenius–Euler polynomials. Adv. Differ. Equ. 2020, 2020, 534. [Google Scholar] [CrossRef]
  6. Alam, N.; Khan, W.A.; Ryoo, C.S. A Note on Bell-Based Apostol-Type Frobenius–Euler Polynomials of Complex Variable with Its Certain Applications. Mathematics 2022, 10, 2109. [Google Scholar] [CrossRef]
  7. Luo, Q.M. Fourier expansions and integral representations for the Apostol-Bernoulli and Apostol–Euler polynomials. Math. Comp. 2009, 78, 2193–2208. [Google Scholar] [CrossRef]
  8. Bayad, A. Fourier expansions for Apostol-Bernoulli, Apostol–Euler and Apostol-Genocchi polynomials. Math. Comp. 2011, 2011, 2219–2221. [Google Scholar] [CrossRef]
  9. Corcino, C.; Corcino, R. Fourier expansions for higher-order Apostol-Genocchi, Apostol-Bernoulli and Apostol–Euler polynomials. Adv. Differ. Equ. 2020, 2020, 346. [Google Scholar] [CrossRef]
  10. Corcino, C.; Corcino, R. Fourier Series for the Tangent Polynomials, Tangent-Bernoulli and Tangent-Genocchi Polynomials of Higher Order. Axioms 2022, 11, 86. [Google Scholar] [CrossRef]
  11. Corcino, C.; Corcino, R.; Casquejo, J. Fourier Expansion, Integral Representation and Explicit Formula at Rational Arguments of the Tangent Polynomials of Higher-Order. Eur. J. Pure Appl. Math. 2021, 14, 1457–1466. [Google Scholar] [CrossRef]
  12. Churchill, R.V.; Brown, J.W. Complex Variable and Applications, 8th ed.; McGraw-Hill: New York, NY, USA, 2008. [Google Scholar]
  13. Kim, D.S.; Kim, T. A note on higher-order Bernoulli polynomials. J. Inequal. Appl. 2013, 2013, 111. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Corcino, C.; Corcino, R.; Casquejo, J. Fourier Series Expansion and Integral Representation of Apostol-Type Frobenius–Euler Polynomials of Complex Parameters and Order α. Symmetry 2022, 14, 1860. https://doi.org/10.3390/sym14091860

AMA Style

Corcino C, Corcino R, Casquejo J. Fourier Series Expansion and Integral Representation of Apostol-Type Frobenius–Euler Polynomials of Complex Parameters and Order α. Symmetry. 2022; 14(9):1860. https://doi.org/10.3390/sym14091860

Chicago/Turabian Style

Corcino, Cristina, Roberto Corcino, and Jeremar Casquejo. 2022. "Fourier Series Expansion and Integral Representation of Apostol-Type Frobenius–Euler Polynomials of Complex Parameters and Order α" Symmetry 14, no. 9: 1860. https://doi.org/10.3390/sym14091860

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop