Subclass of Analytic Functions Connected with Double Zeta Function
Abstract
:1. Introduction
2. Coefficient Bounds
3. Neighborhood Result
4. Partial Sums
5. Integral Means Property
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silverman, H. Univalent functions with negative coefficients. Proc. Am. Math. Soc. 1975, 51, 109–116. [Google Scholar] [CrossRef]
- Goodman, A.W. On uniformly starlike functions. J. Math. Anal. Appl. 1991, 155, 364–370. [Google Scholar] [CrossRef]
- Sakaguchi, K. On a certain univalent function. Math. Soc. Jpn. 1959, 11, 72–75. [Google Scholar] [CrossRef]
- Owa, S.; Sekine, I.; Yamakawa, R. On Sakaguchi type functions. Appl. Math. Comput. 2007, 187, 356–361. [Google Scholar] [CrossRef]
- Aleksandar, I. The Riemann Zeta-Mapping: Theory and Applications; John-Wiley and Sons, Inc.: New York, NY, USA, 1985. [Google Scholar]
- Erdelyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hill: New York, NY, USA, 1953; Volume I. [Google Scholar]
- Srivastava, H.M.; Choi, J. Series Associated with the Zeta and Related Functions; Kluwer Academic Publishers: Dordrecht, The Netherands, 2001. [Google Scholar]
- Choi, J.; Srivastava, H.M. Certain families of series associated with the Hurwitz–Lerch Zeta function. Appl. Math. Comput. 2005, 170, 399–409. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G. Subordination results for spirallike functions associated with Hurwitz–Lerch zeta function. Integral Trans. Spec. Func. 2012, 23, 97–103. [Google Scholar] [CrossRef]
- Barnes, E.W. The theory of the double gamma function. Philos. Trans. R. Soc. A 1901, 196, 265–387. [Google Scholar]
- Ibrahim, R.W.; Darus, M. On operator defined by double zeta functions. Tamkang J. Math. 2011, 42, 163–174. [Google Scholar] [CrossRef]
- Bin-Saad, M.G. Hypergeometric seires associated with the Hurwitz–Lerch zeta function. Acta Math. Univ. Comen. 2009, 78, 269–286. [Google Scholar]
- Reddy, P.T.; Venkateswarlu, B. New subclass of analytic functions involving Hurwitz–Lerch Zeta functions. Int. J. Math. Comput. 2020, 31, 76–83. [Google Scholar]
- Venkateswarlu, B.; Reddy, P.T.; Swapna, G.; Shilpa, R.M. Certain classes of anaytic functions defined by Hurwitz–Lerch Zeta function. J. Appl. Anal. 2022, 28, 73–81. [Google Scholar] [CrossRef]
- Aqlan, E.; Jahangiri, J.M.; Kulkarni, S.R. New classes of k-uniformly convex and starlike functions. Tamkang J. Math. 2003, 35, 261–266. [Google Scholar] [CrossRef]
- Goodman, A.W. Univalent functions and nonanalytic curves. Proc. Am. Math. Soc. 1957, 8, 598–601. [Google Scholar] [CrossRef]
- Ruscheweyh, S. Neighborhoods of univalent functions. Proc. Am. Math. Soc. 1981, 81, 521–527. [Google Scholar] [CrossRef]
- Venkateswarlu, B.; Reddy, P.T.; Altınkaya, S.; Boonsatit, N.; Hammachukiattikul, P. On a certain subclass of analytic functions defined by Touchard polynomials. Symmetry 2022, 14, 838. [Google Scholar] [CrossRef]
- Silverman, H. Partial sums of starlike and convex functions. J. Anal. Appl. 1997, 209, 221–227. [Google Scholar] [CrossRef]
- Silvia, E.M. Partial sums of convex functions of order. Houst. J. Math. 1985, 11, 397–404. [Google Scholar]
- Caglar, M.; Deniz, E. Partial sums of the normalized Lommel functions. Math. Inequal. Appl. 2015, 18, 1189–1199. [Google Scholar]
- Frasin, B.A. Partial sums of certain analytic and univalent functions. Acta Math. Acad. Paedagog. Nyí RegyháZiensis 2005, 21, 35–145. [Google Scholar] [CrossRef]
- Wang, Z.G.; Yuan, X.S.; Shi, L. Neighborhoods and partial sums of certain subclass of starlike functions. J. Ineq. Appl. 2013, 2013, 1–7. [Google Scholar] [CrossRef]
- Ahuja, O.P.; Murugusundaramoorthy, G.; Magesh, N. Integral means for uniformly convex and starlikefunctions associated with generalized hypergeometric functions. J. Inequal. Pure Appl. Math. 2007, 8, 118–119. [Google Scholar]
- Reddy, P.T.; Venkateswarlu, B. A certain subclass of uniformly convex functions defined by Bessel functions. Proyecciones 2019, 38, 719–731. [Google Scholar] [CrossRef]
- Littlewood, J.E. On inequalities in the theory of functions. Proc. Lond. Math. Soc. 1925, 23, 481–519. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srinivas, M.N.; Niranjan, H.; Thirupathi Reddy, P.; Venkateswarlu, B.; Altınkaya, Ş.; Shashikala, A. Subclass of Analytic Functions Connected with Double Zeta Function. Symmetry 2022, 14, 1872. https://doi.org/10.3390/sym14091872
Srinivas MN, Niranjan H, Thirupathi Reddy P, Venkateswarlu B, Altınkaya Ş, Shashikala A. Subclass of Analytic Functions Connected with Double Zeta Function. Symmetry. 2022; 14(9):1872. https://doi.org/10.3390/sym14091872
Chicago/Turabian StyleSrinivas, M. N., Hari Niranjan, Pinninti Thirupathi Reddy, Bolenini Venkateswarlu, Şahsene Altınkaya, and A. Shashikala. 2022. "Subclass of Analytic Functions Connected with Double Zeta Function" Symmetry 14, no. 9: 1872. https://doi.org/10.3390/sym14091872
APA StyleSrinivas, M. N., Niranjan, H., Thirupathi Reddy, P., Venkateswarlu, B., Altınkaya, Ş., & Shashikala, A. (2022). Subclass of Analytic Functions Connected with Double Zeta Function. Symmetry, 14(9), 1872. https://doi.org/10.3390/sym14091872