Next Article in Journal
On Some Dynamic (ΔΔ)- Gronwall–Bellman–Pachpatte-Type Inequalities on Time Scales and Its Applications
Previous Article in Journal
The g-Extra Connectivity of the Strong Product of Paths and Cycles
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Generalized Preinvex Interval-Valued Functions and Related Hermite–Hadamard Type Inequalities

by
Muhammad Bilal Khan
1,*,
Savin Treanțǎ
2,3,4,* and
Mohamed S. Soliman
5
1
Department of Mathematics, COMSATS University Islamabad, Islamabad 44000, Pakistan
2
Department of Applied Mathematics, University Politehnica of Bucharest, 060042 Bucharest, Romania
3
Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
4
Fundamental Sciences Applied in Engineering—Research Center (SFAI), University Politehnica of Bucharest, 060042 Bucharest, Romania
5
Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
*
Authors to whom correspondence should be addressed.
Symmetry 2022, 14(9), 1901; https://doi.org/10.3390/sym14091901
Submission received: 11 August 2022 / Revised: 6 September 2022 / Accepted: 8 September 2022 / Published: 11 September 2022
(This article belongs to the Section Mathematics)

Abstract

:
This study aims to connect the idea of inequalities with Riemann integral operators, which are of interest because of their characteristics and widespread use. We create a new Hermite–Hadamard type integral inequality for an 𝔴-preinvex interval-valued function using an interval integral operator. In the context of pseudo-order relations, we also establish new variations of the Fejér type inequalities and the Pachpatte type inequalities. We further verify the veracity of the conclusions we draw in this study by providing a number of numerical examples. The findings given in this work, in our opinion, are innovative and will help spur more study in this area.

1. Introduction

The Hermite–Hadamard inequality [1,2] has garnered a lot of interest in elementary mathematics since it is the first fundamental conclusion of convex maps with a natural geometric interpretation and wide application. The inequality of the Hermite–Hadamard type, which is defined by:
S ( ς + υ 2 ) 1 υ ς   ς υ S ( 𝓸 ) d 𝓸 S ( ς ) + S ( υ ) 2
where S : I , is a convex function on closed bound interval I of , and ς , υ I with ς < υ , and for applications of the Hermite–Hadamard integral inequality, see [3,4,5,6,7,8,9,10,11,12,13] and the references therein.
Different integral inequalities have been discovered for different integrals operators. For generalizing significant and well-known integral inequalities, these integrals are helpful. The Hermite–Hadamard integral inequality is a particular type of integral inequality. It is frequently used in the literature and outlines the prerequisites and extenuating circumstances for a function to be convex. Using Riemann-Liouville fractional integrals, Sarikaya et al. [14] extended the Hermite–Hadamard inequality. Iscan [15] expanded Sarikaya et al.’s findings to include Hermite–Hadamard–Fejér type inequalities. By utilizing the product of two convex functions, Chen [16] produced fractional Hermite–Hadamard type integral inequalities using the methods of Sarikaya et al. [14]. Convex polytopes and Jensen type inequalities proposals were the subject of Guessab’s [17] study, which also looked at approximation error in convex functions. A sequence of operators need not have an identity limit, according to a Korovkin-type theorem found by Guessab et al. [18]. Additionally, Guessab [19] worked on ideas such as bivariate Hermite interpolation and higher order convexity. In recent years, mathematicians have become increasingly interested in the presentation of a number of well-known integral inequalities using different unique notions of fractional integral operators. The findings in [20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35] might be consulted in this respect.
Set-valued analysis is a subdivision of interval analysis. The value of interval analysis in both basic and practical research cannot be overstated. The error limitations of numerical solutions to finite state machines were one of the earliest applications of interval analysis. However, interval analysis has become more important in recent years as a part of mathematical and computational models for dealing with interval uncertainty. Moore [36], who is credited with being the first to apply intervals in computer mathematics, published the first book on interval analysis in 1966. Following the publication of this book, a number of scientists began examining the theory and uses of interval arithmetic. Due to its widespread use today, interval analysis is a helpful technique in many fields with ambiguous data. Applications may be found in computer graphics, computational and experimental physics, error analysis, robotics, and many other fields.
Convex interval-valued functions have recently been the subject of research on Jensen type inequality and Hermite–Hadamard type inequalities since, as we all know, convex functions and inequalities go hand in hand. It is important to keep in mind that inclusion relations or LU-orders [37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52], which are partial orders, are currently used to generate interval-valued inequalities. The midpoint and radius of the interval were used in 2014 by Bhunia and Samanta [53] to define the cr-order, which is a complete order relation. Rahman [54] developed the cr-convex function and investigated its nonlinearity in 2020. For more information related to interval-valued functions, see [55,56,57,58,59,60,61,62,63,64,65,66,67,68].
To demonstrate new inequalities, we have combined the ideas of an inclusion relation with interval valued analysis. There are still many unanswered questions about integral inequalities involving different kinds of convex functions, despite the fact that there are many studies on the evolution of integral inequalities using convex functions. The main objective of this paper is to develop new Hermite–Hadamard, Pachppate, and Fejér type inequalities for generalized convex interval-valued functions using interval Riemann integral operators.

2. Preliminaries

In this section, we recall some basic preliminary notions, definitions and results. With the help of these results, some new basic definitions and results are also discussed.
We begin by recalling the basic notations and definitions. We define interval as:
[ e * ,   e * ] = { 𝓸 : e * 𝓸   e *   and   e * , e *   } ,   where   e *   e *
We write len [ e * ,   e * ] = e * e * . If len [ e * ,   e * ] = 0 then, [ e * ,   e * ] is called degenerate. In this article, all intervals will be non-degenerate intervals. The collection of all closed and bounded intervals of is denoted and defined as I = { [ e * ,   e * ] : e * ,   e *   and   e *   e * } . If e * 0 , then [ e * ,   e * ] is called a positive interval. The set of all positive intervals is denoted by I + and defined as I + = { [ e * ,   e * ] : [ e * ,   e * ] I   and   e * 0 } .
We now consider some of the properties of intervals using arithmetic operations. Let [ e * ,   e * ] ,   [ 𝓲 * ,   𝓲 * ] I and ρ , then we have:
[ e * ,   e * ] + [ 𝓲 * ,   𝓲 * ] = [ e * + 𝓲 * ,   e * + 𝓲 * ] ,
[ e * ,   e * ] × [ 𝓲 * ,   𝓲 * ] = [ m i n { e * 𝓲 * ,   e * 𝓲 * ,   e * 𝓲 * ,   e * 𝓲 * } ,   m a x { e * 𝓲 * ,   e * 𝓲 * ,   e * 𝓲 * ,   e * 𝓲 * } ]
ρ . [ e * ,   e * ] = { [ ρ e * ,   ρ e * ] if   ρ > 0     { 0 } if     ρ = 0 [ ρ e * , ρ e * ] if   ρ < 0 .
Remark 1.
The relation is defined on I by
[ e * ,   e * ] [ 𝓲 * ,   𝓲 * ] ,   if   and   only   if ,   𝓲 * e * ,   e * 𝓲 *
for all [ e * ,   e * ] ,   [ 𝓲 * ,   𝓲 * ] I , it is an inclusion relation.
Moore [36] initially proposed the concept of the Riemann integral for IVF, which is defined as follows:
Theorem 1.
If  S : [ ς , υ ] I  is an IVF on such that  S ( 𝓸 ) = [ S * ( 𝓸 ) ,   S * ( 𝓸 ) ] .  Then  S  is Riemann integrable over  [ ς , υ ]  if and only if, S *  and  S *  both are Riemann integrable over  [ ς , υ ]  such that
( I R ) ς υ S ( 𝓸 ) d 𝓸 = [ ( R ) ς υ S * ( 𝓸 ) d 𝓸 ,   ( R ) ς υ S * ( 𝓸 ) d 𝓸 ]
Definition 1.
Let K be an invex set and w : [ 0 ,     1 ] such that w ( 𝓸 ) > 0 . Then IVF S : K I + is said to be w -preinvex on K with respect to γ if
S ( 𝓸 + ( 1 ρ ) γ ( y , 𝓸 ) ) w ( ρ ) S ( 𝓸 ) + w ( 1 ρ ) S ( y ) ,
for all 𝓸 ,   y K ,   ρ [ 0 ,   1 ] , γ : K × K . S is called h -preconcave on K with respect to γ if Inequality (8) is reversed. S is called affine 𝔴-preinvex on K with respect to γ if
S ( 𝓸 + ( 1 ρ ) γ ( y , 𝓸 )   ) = w ( ρ ) S ( 𝓸 ) + w ( 1 ρ ) S ( y ) ,
for all 𝓸 ,   y K .
Remark 2.
The 𝔴-preinvex IVFs have some very nice properties similar to preinvex IVF,
if  S  is 𝔴-preinvex IVF, then  Υ  is also 𝔴-preinvex for Υ 0 .
if  S  and  U  both are 𝔴-preinvex IVFs, then  max ( S ( 𝓸 ) , U ( 𝓸 ) )  is also 𝔴-preinvex IVF.
Now we discuss some new special cases of 𝔴-preinvex IVFs:
(i)
If one takes w ( ρ ) = ρ s , then from (8), one can acquire the following coming inequality, see [37]:
S ( 𝓸 + ( 1 ρ ) γ ( y , 𝓸 ) ) ρ s S ( 𝓸 ) + ( 1 ρ ) s S ( y ) ,     𝓸 ,   y K ,   ρ [ 0 ,   1 ] .
If one takes γ ( y , 𝓸 ) = y 𝓸 , then S is called s -convex IVF.
(ii)
If one takes w ( ρ ) = ρ , then from (8), one can acquire the following coming inequality, see [17]:
S ( 𝓸 + ( 1 ρ ) γ ( y , 𝓸 ) ) ρ S ( 𝓸 ) + ( 1 ρ ) S ( y ) ,     𝓸 ,   y K ,   ρ [ 0 ,   1 ] .
If one takes γ ( y , 𝓸 ) = y 𝓸 , then S is called convex IVF.
(iii)
If one takes w ( ρ ) 1 , then from (8), one can achieve the following coming inequality:
S ( 𝓸 + ( 1 ρ ) γ ( y , 𝓸 ) ) S ( 𝓸 ) + S ( y ) ,       𝓸 ,   y K ,   ρ [ 0 ,   1 ] .
If one takes γ ( y , 𝓸 ) = y 𝓸 , then S is called P -IVF.
Theorem 2.
Let K be an invex set and w : [ 0 ,     1 ] K + such that w > 0 , and let S : K I + be a IVF with S ( 𝓸 ) I 0 such that
S ( 𝓸 ) = [ S * ( 𝓸 ) ,   S * ( 𝓸 ) ] ,     𝓸 K .
for all 𝓸 K . Then  S  is 𝔴-preinvex IVF on  K ,  if and only if,  S * ( 𝓸 )  and  S * ( 𝓸 )  both are 𝔴-preinvex functions.
Proof. 
The proof of this result is similar to the proof of Theorem 3.7, see [37].  □
Example 1.
We consider  w ( ρ ) = ρ ,    for  ρ [ 0 ,   1 ]  and the IVF  S : + I +  defined by S ( 𝓸 ) = [ ( e 𝓸 , 2 e 𝓸   ] . Since  S * ( 𝓸 ) ,   S * ( 𝓸 )  are 𝔴-preinvex functions γ ( y , 𝓸 ) = y 𝓸 . Hence  S ( 𝓸 )  is 𝔴-preinvex IVF.

3. Main Results

Now, the application of inequality (2), Definition 1, and Theorems 1, 2 gives the followings results.
Theorem 3.
Let S : [ ς ,   ς + γ ( υ ,   ς ) ] I + be a w -preinvex IVF with w : [ 0 ,     1 ] + and w ( 1 2 ) 𝓸 0 such that S ( 𝓸 ) = [ S * ( 𝓸 ) ,   S * ( 𝓸 ) ] for all 𝓸 [ ς ,   ς + γ ( υ ,   ς ) ] . If S ( [ ς ,   ς + γ ( υ ,   ς ) ] ) , then
1 2 w ( 1 2 )   S ( 2 ς + γ ( υ ,   ς ) 2 ) 1 γ ( υ ,   ς )   ( I R ) ς ς + γ ( υ ,   ς ) S ( 𝓸 ) d 𝓸 [ S ( ς ) + S ( υ ) ] 0 1 w ( ρ ) d ρ .
If  S  is 𝔴-preinvex IVF, then (14) is reversed such that
1 2 w ( 1 2 )   S ( 2 ς + γ ( υ ,   ς ) 2 ) 1 γ ( υ ,   ς )   ( I R ) ς ς + γ ( υ ,   ς ) S ( 𝓸 ) d 𝓸 [ S ( ς ) + S ( υ ) ] 0 1 w ( ρ ) d ρ .
Proof. 
Let S : [ ς ,   ς + γ ( υ ,   ς ) ] I + be a 𝔴-preinvex IVF. Then, by hypothesis, we have
1 w ( 1 2 ) S ( 2 ς + γ ( υ ,   ς ) 2 ) S ( ς + ( 1 ρ ) γ ( υ ,   ς ) ) + S ( ς + ρ γ ( υ ,   ς ) ) .
Therefore, we have
1 w ( 1 2 ) S * ( 2 ς + γ ( υ ,   ς ) 2 ) S * ( ς + ( 1 ρ ) γ ( υ ,   ς ) ) + S * ( ς + ρ γ ( υ ,   ς ) ) , 1 w ( 1 2 ) S * ( 2 ς + γ ( υ ,   ς ) 2 ) S * ( ς + ( 1 ρ ) γ ( υ ,   ς ) ) + S * ( ς + ρ γ ( υ ,   ς ) ) .
Then
1 w ( 1 2 ) 0 1 S * ( 2 ς + γ ( υ ,   ς ) 2 ) d ρ 0 1 S * ( ς + ( 1 ρ ) γ ( υ ,   ς ) ) d ρ + 0 1 S * ( ς + ρ γ ( υ ,   ς ) ) d ρ , 1 w ( 1 2 ) 0 1 S * ( 2 ς + γ ( υ ,   ς ) 2 ) d ρ 0 1 S * ( ς + ( 1 ρ ) γ ( υ ,   ς ) ) d ρ + 0 1 S * ( ς + ρ γ ( υ ,   ς ) ) d ρ .
It follows that
1 w ( 1 2 ) S * ( 2 ς + γ ( υ ,   ς ) 2 ) 2 γ ( υ ,   ς )   ς ς + γ ( υ ,   ς ) S * ( 𝓸 ) d 𝓸 , 1 w ( 1 2 ) S * ( 2 ς + γ ( υ ,   ς ) 2 ) 2 γ ( υ ,   ς )   ς ς + γ ( υ ,   ς ) S * ( 𝓸 ) d 𝓸 .
That is
1 w ( 1 2 ) [ S * ( 2 ς + γ ( υ ,   ς ) 2 ) ,   S * ( 2 ς + γ ( υ ,   ς ) 2 ) ] 2 γ ( υ ,   ς ) [ ς ς + γ ( υ ,   ς ) S * ( 𝓸 ) d 𝓸 ,   ς ς + γ ( υ ,   ς ) S * ( 𝓸 ) d 𝓸 ] .
Thus,
1 2 w ( 1 2 )   S ( 2 ς + γ ( υ ,   ς ) 2 ) 1 γ ( υ ,   ς )   ( I R ) ς ς + γ ( υ ,   ς ) S ( 𝓸 ) d 𝓸 .
In a similar way to above, we have:
1 γ ( υ ,   ς )   ( I R ) ς ς + γ ( υ ,   ς ) S ( 𝓸 ) d 𝓸 [ S ( ς ) + S ( υ ) ] 0 1 w ( ρ ) d ρ .
Combining (16) and (17), we have
1 2 w ( 1 2 )   S ( 2 ς + γ ( υ ,   ς ) 2 ) 1 γ ( υ ,   ς )   ( I R ) ς ς + γ ( υ ,   ς ) S ( 𝓸 ) d 𝓸 [ S ( ς ) + S ( υ ) ] 0 1 w ( ρ ) d ρ ,
which completes the proof.  □
Note that, inequality (14) is known as fuzzy-interval H-H inequality for 𝔴-preinvex IVF.
Remark 3.
If one takes w ( ρ ) = ρ s , then from 14, we achieve the result for s -preinvex IVF in the second sense:
2 s 1   S ( 2 ς + γ ( υ ,   ς ) 2 ) 1 γ ( υ ,   ς )   ( I R ) ς ς + γ ( υ ,   ς ) S ( 𝓸 ) d 𝓸 1 s + 1 [ S ( ς ) + S ( υ ) ] .
If one takes w ( ρ ) = ρ , then from 14, we obtain the result for preinvex IVF:
S ( 2 ς + γ ( υ ,   ς ) 2 ) 1 γ ( υ ,   ς )   ( I R ) ς ς + γ ( υ ,   ς ) S ( 𝓸 ) d 𝓸 S ( ς ) + S ( υ ) 2 .
If one takes w ( ρ ) 1 , then we achieve the result for P IVF:
1 2 S ( 2 ς + γ ( υ ,   ς ) 2 ) 1 γ ( υ ,   ς )   ( I R ) ς ς + γ ( υ ,   ς ) S ( 𝓸 ) d 𝓸 S ( ς ) + S ( υ ) .
If one takes S * ( 𝓸 ) = S * ( 𝓸 ) , then we acquire the result for 𝔴-preinvex function, see [37]:
1 2 w ( 1 2 )   S ( 2 ς + γ ( υ ,   ς ) 2 ) 1 γ ( υ ,   ς )   ( R ) ς ς + γ ( υ ,   ς ) S ( 𝓸 ) d 𝓸 [ S ( ς ) + S ( υ ) ] 0 1 w ( ρ ) d ρ .
Note that, if γ ( υ , ς ) = υ ς , then integral inequalities (18)–(21) reduce to classical ones.
Example 2.
We consider w ( ρ ) = ρ ,   for ρ [ 0 ,   1 ] , and the IVF S : [ ς ,   ς + γ ( υ ,   ς ) ] = [ 0 ,   γ ( 2 ,   0 ) ] I + defined by S ( 𝓸 ) = [ 2 𝓸 2 , 4 𝓸 ] . Since S * ( 𝓸 ) = 2 𝓸 2 ,   S * ( 𝓸 ) = 4 𝓸 are 𝔴-preinvex functions with respect to γ ( υ ,   ς ) = υ ς . Hence S ( 𝓸 ) is 𝔴-preinvex IVF with respect to γ ( υ ,   ς ) = υ ς . Since S * ( 𝓸 ) = 2 𝓸 2 and S * ( 𝓸 ) = 4 𝓸 then, we compute the following
1 2 w ( 1 2 )   S * ( 2 ς + γ ( υ ,   ς ) 2 ) 1 γ ( υ ,   ς )   ς ς + γ ( υ ,   ς ) S * ( 𝓸 ) d 𝓸 [ S * ( ς ) + S * ( υ ) ] 0 1 w ( ρ ) d ρ .
1 2 w ( 1 2 )   S * ( 2 ς + γ ( υ ,   ς ) 2 ) = S * ( 1 ) = 2 ,
1 γ ( υ ,   ς )   ς ς + γ ( υ ,   ς ) S * ( 𝓸 ) d 𝓸 = 1 2   0 2 2 𝓸 2 d 𝓸 = 8 3 ,
[ S * ( ς ) + S * ( υ ) ] 0 1 w ( ρ ) d ρ = 4 ,
that means
2 8 3 4 .
Similarly, it can be easily show that
1 2 w ( 1 2 )   S * ( 2 ς + γ ( υ ,   ς ) 2 ) 1 γ ( υ ,   ς )   ς ς + γ ( υ ,   ς ) S * ( 𝓸 ) d 𝓸 [ S * ( ς ) + S * ( υ ) ] 0 1 w ( ρ ) d ρ .
such that
1 2 w ( 1 2 )   S * ( 2 ς + γ ( υ ,   ς ) 2 ) = S * ( 1 ) = 4 ,
1 γ ( υ ,   ς )   ς ς + γ ( υ ,   ς ) S * ( 𝓸 ) d 𝓸 = 1 2   0 2 4 𝓸 2 d 𝓸 = 4 ,
[ S * ( ς ) + S * ( υ ) ] 0 1 w ( ρ ) d ρ = 4 .
From which, it follows that
4 4 4 ,
that is
[ 2 ,   4 ] [ 8 3 ,   4 ] [ 4 ,   4 ]
Hence,
1 2 w ( 1 2 )   S ( 2 ς + γ ( υ ,   ς ) 2 ) 1 γ ( υ ,   ς )   ( I R ) ς ς + γ ( υ ,   ς ) S ( 𝓸 ) d 𝓸 [ S ( ς ) + S ( υ ) ] 0 1 w ( ρ ) d ρ ,
and the Theorem 3 is verified.
Theorem 4.
Let  S , U   : [ ς ,   ς + γ ( υ ,   ς ) ] I +  be two w 1 and w 2 -preinvex IVFs with  w 1 ,   w 2 : [ 0 , 1 ] +  such that  S ( 𝓸 ) = [ S * ( 𝓸 ) ,   S * ( 𝓸 ) ]  and  U ( 𝓸 ) = [ U * ( 𝓸 ) ,   U * ( 𝓸 ) ]  for all 𝓸 [ ς ,   ς + γ ( υ ,   ς ) ] . If S U ( [ ς ,   ς + γ ( υ ,   ς ) ] ) , then
1 γ ( υ ,   ς )   ( I R ) ς ς + γ ( υ ,   ς ) S ( 𝓸 ) × U ( 𝓸 ) d 𝓸 K ( ς , υ ) 0 1 w 1 ( ρ ) w 2 ( ρ ) d ρ + ( ς , υ ) 0 1 w 1 ( ρ ) w 2 ( 1 ρ ) d ρ ,
where  K ( ς , υ ) = S ( ς ) × U ( ς ) + S ( υ ) × U ( υ ) ,   ( ς , υ ) = S ( ς ) × U ( υ ) + S ( υ ) × U ( ς )  with  K ( ς , υ ) = [ K * ( ς , υ ) ,   K * ( ς , υ ) ]  and  ( ς , υ ) = [ * ( ς , υ ) ,   * ( ς , υ ) ] .
Example 3.
We consider  w 1 ( ρ ) = ρ ,   w 2 ( ρ ) ρ ,  for   ρ [ 0 ,   1 ] , and the IVFs  S ,   U : [ ς ,   ς + γ ( υ ,   ς ) ] = [ 0 ,   γ ( 1 ,   0 ) ] I +  defined by  S ( 𝓸 ) = [ 2 𝓸 2 , 4 𝓸 ]  and  U ( 𝓸 ) = [ 𝓸 , 2 𝓸 ] .  Since  S * ( 𝓸 ) = 2 𝓸 2  and  S * ( 𝓸 ) = 4 𝓸  both are w 1 -preinvex functions, and U * ( 𝓸 ) = 𝓸 , and  U * ( 𝓸 ) = 2 𝓸  both are also w 2 -preinvex functions with respect to same  γ ( υ ,   ς ) = υ ς  then, S and  U  both are  w 1  and w 2 -preinvex IVFs, respectively. Since  S * ( 𝓸 ) = 2 𝓸 2  and S * ( 𝓸 ) = 4 𝓸 , and U * ( 𝓸 ) = 𝓸 , and U * ( 𝓸 ) = 2 𝓸 , then we compute the following:
1 γ ( υ ,   ς )   ς ς + γ ( υ ,   ς ) S * ( 𝓸 ) × U * ( 𝓸 ) d 𝓸 = 0 1 ( 2 𝓸 2 ) ( 𝓸 ) d 𝓸 = 1 2   1 γ ( υ ,   ς )   ς ς + γ ( υ ,   ς ) S * ( 𝓸 ) × U * ( 𝓸 ) d 𝓸 = 0 1 ( 4 𝓸 ) ( 2 𝓸 ) d 𝓸 = 8 3 ,
K * ( ς , υ ) 0 1 w 1 ( ρ ) w 2 ( ρ ) d ρ = 2 3 , K * ( ς , υ ) 0 1 w 1 ( ρ ) w 2 ( ρ ) d ρ = 8 3 ,
* ( ς , υ ) 0 1 w 1 ( ρ ) w 2 ( 1 ρ ) d ρ = 0 * ( ς , υ ) 0 1 w 1 ( ρ ) w 2 ( 1 ρ ) d ρ = 0 ,
that means
1 2 2 3 + 0 = 2 3 , 8 3 8 3 + 0 = 8 3 ,
hence, Theorem 4 is verified.
The following assumption is required to prove the next result regarding the bi-function γ : K × K which is known as:
Condition C.
(see [60]) Let  K  be an invex set with respect to  γ .  For any  ς ,   υ K  and ρ [ 0 ,     1 ] ,
γ ( υ , ς + ρ γ ( υ , ς ) ) = ( 1 ρ ) γ ( υ , ς ) ,
γ ( ς , ς + ρ γ ( υ , ς ) ) = ρ γ ( υ , ς ) .
Clearly for ρ = 0, we have γ ( υ , ς ) = 0 if and only if,   υ = ς , for all ς ,   υ K . For the applications of Condition C, see [55,56,58,59,60].
Theorem 5.
Let  S , U   : [ ς ,   ς + γ ( υ ,   ς ) ] I +  be two  w 1  and w 2 -preinvex IVFs with  w 1 ,   w 2 : [ 0 ,   1 ] +  given by  S ( 𝓸 ) = [ S * ( 𝓸 ) ,   S * ( 𝓸 ) ]  and  U ( 𝓸 ) = [ U * ( 𝓸 ) ,   U * ( 𝓸 ) ]  for all 𝓸 [ ς ,   ς + γ ( υ ,   ς ) ] . If  S U ( [ ς ,   ς + γ ( υ ,   ς ) ] )  and condition C hold for γ , then
1 2 w 1 ( 1 2 ) w 2 ( 1 2 )   S ( 2 ς + γ ( υ ,   ς ) 2 ) × U ( 2 ς + γ ( υ ,   ς ) 2 ) 1 γ ( υ ,   ς )   ( I R ) ς ς + γ ( υ ,   ς ) S ( 𝓸 ) × U ( 𝓸 ) d 𝓸 + K ( ς , υ ) 0 1 w 1 ( ρ ) w 2 ( 1 ρ ) d ρ + ( ς , υ ) 0 1 w 1 ( ρ ) w 2 ( ρ ) d ρ ,
where K ( ς , υ ) = S ( ς ) × U ( ς ) + S ( υ ) × U ( υ ) ,   ( ς , υ ) = S ( ς ) × U ( υ ) + S ( υ ) × U ( ς ) , and  K ( ς , υ ) = [ K * ( ς , υ ) ,   K * ( ς , υ ) ]  and  ( ς , υ ) = [ * ( ς , υ ) ,   * ( ς , υ ) ] .
Proof. 
Using condition C, we can write
ς + 1 2 γ ( υ ,   ς ) = ς + ρ γ ( υ ,   ς ) + 1 2 γ ( ς + ( 1 ρ ) γ ( υ , ς ) ,   ς + ρ γ ( υ , ς ) ) .
By hypothesis, we have
S * ( 2 ς + γ ( υ ,   ς ) 2 ) × U * ( 2 ς + γ ( υ ,   ς ) 2 ) S * ( 2 ς + γ ( υ ,   ς ) 2 ) × U * ( 2 ς + γ ( υ ,   ς ) 2 ) = S * ( ς + ρ γ ( υ ,   ς ) + 1 2 γ ( ς + ( 1 ρ ) γ ( υ , ς ) ,   ς + ρ γ ( υ , ς ) ) ) × U * ( ς + ρ γ ( υ ,   ς ) + 1 2 γ ( ς + ( 1 ρ ) γ ( υ , ς ) ,   ς + ρ γ ( υ , ς ) ) ) ,   = S * ( ς + ρ γ ( υ ,   ς ) + 1 2 γ ( ς + ( 1 ρ ) γ ( υ , ς ) ,   ς + ρ γ ( υ , ς ) ) ) × U * ( ς + ρ γ ( υ ,   ς ) + 1 2 γ ( ς + ( 1 ρ ) γ ( υ , ς ) ,   ς + ρ γ ( υ , ς ) ) ) , w 1 ( 1 2 ) w 2 ( 1 2 ) [ S * ( ς + ( 1 ρ ) γ ( υ ,   ς ) ) × U * ( ς + ( 1 ρ ) γ ( υ ,   ς ) ) + S * ( ς + ( 1 ρ ) γ ( υ ,   ς ) ) × U * ( ς + ρ γ ( υ ,   ς ) ) ] +   w 1 ( 1 2 ) w 2 ( 1 2 ) [ S * ( ς + ρ γ ( υ ,   ς ) ) × U * ( ς + ( 1 ρ ) γ ( υ ,   ς ) ) + S * ( ς + ρ γ ( υ ,   ς ) ) × U * ( ς + ρ γ ( υ ,   ς ) ) ] , w 1 ( 1 2 ) w 2 ( 1 2 ) [ S * ( ς + ( 1 ρ ) γ ( υ ,   ς ) ) × U * ( ς + ( 1 ρ ) γ ( υ ,   ς ) ) + S * ( ς + ( 1 ρ ) γ ( υ ,   ς ) ) × U * ( ς + ρ γ ( υ ,   ς ) ) ] + w 1 ( 1 2 ) w 2 ( 1 2 ) [ S * ( ς + ρ γ ( υ ,   ς ) ) × U * ( ς + ( 1 ρ ) γ ( υ ,   ς ) ) + S * ( ς + ρ γ ( υ ,   ς ) ) × U * ( ς + ρ γ ( υ ,   ς ) ) ] , w 1 ( 1 2 ) w 2 ( 1 2 ) [ S * ( ς + ( 1 ρ ) γ ( υ ,   ς ) ) × U * ( ς + ( 1 ρ ) γ ( υ ,   ς ) ) + S * ( ς + ρ γ ( υ ,   ς ) ) × U * ( ς + ρ γ ( υ ,   ς ) ) ] + w 1 ( 1 2 ) w 2 ( 1 2 ) [ ( w 1 ( ρ ) S * ( ς ) + w 1 ( 1 ρ ) S * ( υ ) ) × ( w 2 ( 1 ρ ) U * ( ς ) + w 2 ( ρ ) U * ( υ ) ) + ( w 1 ( 1 ρ ) S * ( ς ) + w 1 ( ρ ) S * ( υ ) ) × ( w 2 ( ρ ) U * ( ς ) + w 2 ( 1 ρ ) U * ( υ ) ) ] , w 1 ( 1 2 ) w 2 ( 1 2 ) [ S * ( ς + ( 1 ρ ) γ ( υ ,   ς ) ) × U * ( ς + ( 1 ρ ) γ ( υ ,   ς ) ) + S * ( ς + ρ γ ( υ ,   ς ) ) × U * ( ς + ρ γ ( υ ,   ς ) ) ] +   w 1 ( 1 2 ) w 2 ( 1 2 ) [ ( w 1 ( ρ ) S * ( ς ) + w 1 ( 1 ρ ) S * ( υ ) ) × ( w 2 ( 1 ρ ) U * ( ς ) + w 2 ( ρ ) U * ( υ ) ) + ( w 1 ( 1 ρ ) S * ( ς ) + w 1 ( ρ ) S * ( υ ) ) × ( w 2 ( ρ ) U * ( ς ) + w 2 ( 1 ρ ) U * ( υ ) ) ] , = w 1 ( 1 2 ) w 2 ( 1 2 ) [ S * ( ς + ( 1 ρ ) γ ( υ ,   ς ) ) × U * ( ς + ( 1 ρ ) γ ( υ ,   ς ) ) + S * ( ς + ρ γ ( υ ,   ς ) ) × U * ( ς + ρ γ ( υ ,   ς ) ) ] + 2 w 1 ( 1 2 ) w 2 ( 1 2 ) [ { w 1 ( ρ ) w 2 ( ρ ) + w 1 ( 1 ρ ) w 2 ( 1 ρ ) } * ( ς , υ ) + { w 1 ( ρ ) w 2 ( 1 ρ ) + w 1 ( 1 ρ ) w 2 ( ρ ) } K * ( ς , υ ) ] , = w 1 ( 1 2 ) w 2 ( 1 2 ) [ S * ( ς + ( 1 ρ ) γ ( υ ,   ς ) ) × U * ( ς + ( 1 ρ ) γ ( υ ,   ς ) ) + S * ( ς + ρ γ ( υ ,   ς ) ) × U * ( ς + ρ γ ( υ ,   ς ) ) ] + 2 w 1 ( 1 2 ) w 2 ( 1 2 ) [ { w 1 ( ρ ) w 2 ( ρ ) + w 1 ( 1 ρ ) w 2 ( 1 ρ ) } * ( ς , υ ) + { w 1 ( ρ ) w 2 ( 1 ρ ) + w 1 ( 1 ρ ) w 2 ( ρ ) } K * ( ς , υ ) ] ,
Integrating over [ 0 ,   1 ] , we have
1 2 w 1 ( 1 2 ) w 2 ( 1 2 )   S * ( 2 ς + γ ( υ ,   ς ) 2 ) × U * ( 2 ς + γ ( υ ,   ς ) 2 ) 1 γ ( υ ,   ς )   ς ς + γ ( υ ,   ς ) S * ( 𝓸 ) × U * ( 𝓸 ) d 𝓸 + K * ( ς , υ ) 0 1 w 1 ( ρ ) w 2 ( 1 ρ ) d ρ + * ( ς , υ ) 0 1 w 1 ( ρ ) w 2 ( ρ ) d ρ ,     1 2 w 1 ( 1 2 ) w 2 ( 1 2 )   S * ( 2 ς + γ ( υ ,   ς ) 2 ) × U * ( 2 ς + γ ( υ ,   ς ) 2 ) 1 γ ( υ ,   ς )   ς ς + γ ( υ ,   ς ) S * ( 𝓸 ) × U * ( 𝓸 ) d 𝓸 +   K * ( ς , υ ) 0 1 w 1 ( ρ ) w 2 ( 1 ρ ) d ρ + * ( ς , υ ) 0 1 w 1 ( ρ ) w 2 ( ρ ) d ρ ,
from which, we have
1 2 w 1 ( 1 2 ) w 2 ( 1 2 ) [ S * ( 2 ς + γ ( υ ,   ς ) 2 ) × U * ( 2 ς + γ ( υ ,   ς ) 2 ) ,   S * ( 2 ς + γ ( υ ,   ς ) 2 ) × U * ( 2 ς + γ ( υ ,   ς ) 2 ) ] 1 γ ( υ ,   ς ) [ ς ς + γ ( υ ,   ς ) S * ( 𝓸 ) × U * ( 𝓸 ) d 𝓸   ,   ς ς + γ ( υ ,   ς ) S * ( 𝓸 ) × U * ( 𝓸 ) d 𝓸 ] + 0 1 w 1 ( ρ ) w 2 ( 1 ρ ) d ρ [ K * ( ς , υ ) ,   K * ( ς , υ ) ] + [ * ( ς , υ ) ,   * ( ς , υ ) ] 0 1 w 1 ( ρ ) w 2 ( ρ ) d ρ ,
that is
1 2 w 1 ( 1 2 ) w 2 ( 1 2 )   S ( 2 ς + γ ( υ ,   ς ) 2 ) × U ( 2 ς + γ ( υ ,   ς ) 2 ) 1 γ ( υ ,   ς )   ( I R ) ς ς + γ ( υ ,   ς ) S ( 𝓸 ) × U ( 𝓸 ) d 𝓸 + K ( ς , υ ) 0 1 w 1 ( ρ ) w 2 ( 1 ρ ) d ρ + ( ς , υ ) 0 1 w 1 ( ρ ) w 2 ( ρ ) d ρ ,
this completes the result.  □
Example 4.
We consider  w 1 ( ρ ) = ρ ,   w 2 ( ρ ) = ρ ,  for ρ [ 0 ,   1 ] , and the IVFs  S ,   U : [ ς ,   ς + γ ( υ ,   ς ) ] = [ 0 ,   γ ( 1 ,   0 ) ] I +  defined by  S ( 𝓸 ) = [ 2 𝓸 2 , 4 𝓸 ]  and  U ( 𝓸 ) = [ 𝓸 , 2 𝓸 ] ,  as in Example 3, and  S ( 𝓸 ) ,   U ( 𝓸 )  both are  w 1  and w 2 -preinvex IVFs with respect to γ ( υ ,   ς ) = υ ς , respectively. Since  S * ( 𝓸 ) = 2 𝓸 2 ,   S * ( 𝓸 ) = 4 𝓸  and U * ( 𝓸 ) = 𝓸 , U * ( 𝓸 ) = 2 𝓸 then, we have
1 2 w 1 ( 1 2 ) w 2 ( 1 2 )   S * ( 2 ς + γ ( υ ,   ς ) 2 ) × U * ( 2 ς + γ ( υ ,   ς ) 2 ) = 1 2 ,     1 2 w 1 ( 1 2 ) w 2 ( 1 2 )   S * ( 2 ς + γ ( υ ,   ς ) 2 ) × U * ( 2 ς + γ ( υ ,   ς ) 2 ) = 4 ,
1 γ ( υ ,   ς )   ς ς + γ ( υ ,   ς ) S * ( 𝓸 ) × U * ( 𝓸 ) d 𝓸 = 1 2     1 γ ( υ ,   ς )   ς ς + γ ( υ ,   ς ) S * ( 𝓸 ) × U * ( 𝓸 ) d 𝓸 = 4 ,
K * ( ς , υ ) 0 1 w 1 ( ρ ) w 2 ( 1 ρ ) d ρ = 1 3 ,   K * ( ς , υ ) 0 1 w 1 ( ρ ) w 2 ( 1 ρ ) d ρ = 4 3 ,
* ( ς , υ ) 0 1 w 1 ( ρ ) w 2 ( ρ ) d ρ = 0 , * ( ς , υ ) 0 1 w 1 ( ρ ) w 2 ( ρ ) d ρ = 0 ,
that means
1 2 1 2 + 0 + 1 3 = 5 6 ,   4 4 + 0 + 4 3 = 4 ,
hence, Theorem 5 is demonstrated.
We now give HH Fejér inequalities for 𝔴-preinvex IVFs. Firstly, we obtain the second HH Fejér inequality for 𝔴-preinvex IVF.
Theorem 6.
Let  S : [ ς ,   ς + γ ( υ ,   ς ) ] I +  be a 𝔴-preinvex IVF with  ς < ς + γ ( υ ,   ς )  and  w : [ 0 ,   1 ] + given by  S ( 𝓸 ) = [ S * ( 𝓸 ) ,   S * ( 𝓸 ) ] for all  𝓸 [ ς ,   ς + γ ( υ ,   ς ) ] . If  S ( [ ς ,   ς + γ ( υ ,   ς ) ] )  and  X : [ ς ,   ς + γ ( υ ,   ς ) ] ,   X ( 𝓸 ) 0 ,  symmetric with respect to  ς + 1 2 γ ( υ ,   ς ) ,  then
1 γ ( υ ,   ς )   ( I R ) ς ς + γ ( υ ,   ς ) S ( 𝓸 ) X ( 𝓸 ) d 𝓸 [ S ( ς ) + S ( υ ) ] 0 1 w ( ρ ) X ( ς + ρ γ ( υ ,   ς ) ) d ρ .
Proof. 
Let S be a 𝔴-preinvex IVF. Then, we have
S * ( ς + ( 1 ρ ) γ ( υ , ς ) ) X ( ς + ( 1 ρ ) γ ( υ , ς ) ) ( w ( ρ ) S * ( ς ) + w ( 1 ρ ) S * ( υ ) ) X ( ς + ( 1 ρ ) γ ( υ , ς ) ) , S * ( ς + ( 1 ρ ) γ ( υ , ς ) ) X ( ς + ( 1 ρ ) γ ( υ , ς ) ) ( w ( ρ ) S * ( ς ) + w ( 1 ρ ) S * ( υ ) ) X ( ς + ( 1 ρ ) γ ( υ , ς ) ) .
And
S * ( ς + ρ γ ( υ ,   ς ) ) X ( ς + ρ γ ( υ ,   ς ) ) ( w ( 1 ρ ) S * ( ς ) + w ( ρ ) S * ( υ ) ) X ( ς + ρ γ ( υ ,   ς ) ) , S * ( ς + ρ γ ( υ ,   ς ) ) X ( ς + ρ γ ( υ ,   ς ) ) ( w ( 1 ρ ) S * ( ς ) + w ( ρ ) S * ( υ ) ) X ( ς + ρ γ ( υ ,   ς ) ) .
After adding (23) and (24), and integrating over [ 0 ,   1 ] , we obtain
0 1 S * ( ς + ( 1 ρ ) γ ( υ , ς ) ) X ( ς + ( 1 ρ ) γ ( υ , ς ) ) d ρ + 0 1 S * ( ς + ρ γ ( υ ,   ς ) ) X ( ς + ρ γ ( υ ,   ς ) ) d ρ 0 1 [ S * ( ς ) { w ( ρ ) X ( ς + ( 1 ρ ) γ ( υ , ς ) ) + w ( 1 ρ ) X ( ς + ρ γ ( υ ,   ς ) ) } + S * ( υ ) { w ( 1 ρ ) X ( ς + ( 1 ρ ) γ ( υ , ς ) ) + w ( ρ ) X ( ς + ρ γ ( υ ,   ς ) ) } ] d ρ , 0 1 S * ( ς + ρ γ ( υ ,   ς ) ) X ( ς + ρ γ ( υ ,   ς ) ) d ρ + 0 1 S * ( ς + ( 1 ρ ) γ ( υ , ς ) ) X ( ς + ( 1 ρ ) γ ( υ , ς ) ) d ρ   0 1 [ S * ( ς ) { w ( ρ ) X ( ς + ( 1 ρ ) γ ( υ , ς ) ) + w ( 1 ρ ) X ( ς + ρ γ ( υ ,   ς ) ) } + S * ( υ ) { w ( 1 ρ ) X ( ς + ( 1 ρ ) γ ( υ , ς ) ) + w ( ρ ) X ( ς + ρ γ ( υ ,   ς ) ) } ] d ρ .
= 2 S * ( ς ) 0 1 w ( ρ ) X ( ς + ( 1 ρ ) γ ( υ , ς ) ) d ρ + 2 S * ( υ ) 0 1 w ( ρ ) X ( ς + ρ γ ( υ ,   ς ) ) d ρ , = 2 S * ( ς ) 0 1 w ( ρ ) X ( ς + ( 1 ρ ) γ ( υ , ς ) ) d ρ + 2 S * ( υ ) 0 1 w ( ρ ) X ( ς + ρ γ ( υ ,   ς ) ) d ρ .
Since X is symmetric, then
= 2 [ S * ( ς ) + S * ( υ ) ] 0 1 w ( ρ ) X ( ς + ρ γ ( υ ,   ς ) ) d ρ , = 2 [ S * ( ς ) + S * ( υ ) ] 0 1 w ( ρ ) X ( ς + ρ γ ( υ ,   ς ) ) d ρ .
Since
0 1 S * ( ς + ( 1 ρ ) γ ( υ , ς ) ) X ( ς + ( 1 ρ ) γ ( υ , ς ) ) d ρ = 0 1 S * ( ς + ρ γ ( υ ,   ς ) ) X ( ς + ρ γ ( υ ,   ς ) ) d ρ = 1 γ ( υ ,   ς )   ς ς + γ ( υ ,   ς ) S * ( 𝓸 ) X ( 𝓸 ) d 𝓸   0 1 S * ( ς + ( 1 ρ ) γ ( υ , ς ) ) X ( ς + ( 1 ρ ) γ ( υ , ς ) ) d ρ                                   = 0 1 S * ( ς + ρ γ ( υ ,   ς ) ) X ( ς + ρ γ ( υ ,   ς ) ) d ρ = 1 γ ( υ ,   ς )   ς ς + γ ( υ ,   ς ) S * ( 𝓸 ) X ( 𝓸 ) d 𝓸 .
From (25) and (26), we have
1 γ ( υ ,   ς )   ς ς + γ ( υ ,   ς ) S * ( 𝓸 ) X ( 𝓸 ) d 𝓸 [ S * ( ς ) + S * ( υ ) ] 0 1 w ( ρ ) X ( ς + ρ γ ( υ ,   ς ) ) d ρ , 1 γ ( υ ,   ς )   ς ς + γ ( υ ,   ς ) S * ( 𝓸 ) X ( 𝓸 ) d 𝓸 [ S * ( ς ) + S * ( υ ) ] 0 1 w ( ρ ) X ( ς + ρ γ ( υ ,   ς ) ) d ρ ,
that is
[ 1 γ ( υ ,   ς )   ς ς + γ ( υ ,   ς ) S * ( 𝓸 ) X ( 𝓸 ) d 𝓸 ,   1 γ ( υ ,   ς )   ς ς + γ ( υ ,   ς ) S * ( 𝓸 ) X ( 𝓸 ) d 𝓸 ] [ S * ( ς ) + S * ( υ ) ,   S * ( ς ) + S * ( υ ) ] 0 1 w ( ρ ) X ( ς + ρ γ ( υ ,   ς ) ) d ρ ,
hence
1 γ ( υ ,   ς )   ( I R ) ς ς + γ ( υ ,   ς ) S ( 𝓸 ) X ( 𝓸 ) d 𝓸 [ S ( ς )   + ˜   S ( υ ) ] 0 1 w ( ρ ) X ( ς + ρ γ ( υ ,   ς ) ) d ρ .
This completes the proof.  □
Next, we construct the first HH Fejér inequality for 𝔴-preinvex IVF, which generalizes the first HH Fejér inequality for the 𝔴-preinvex function, see [58,59].
Theorem 7.
Let  S : [ ς ,   ς + γ ( υ ,   ς ) ] I +  be a 𝔴-preinvex IVF with  ς < ς + γ ( υ ,   ς )  and  w : [ 0 ,   1 ] + , such that  S ( 𝓸 ) = [ S * ( 𝓸 ) ,   S * ( 𝓸 ) ]  for all  𝓸 [ ς ,   ς + γ ( υ ,   ς ) ] . If  S ( [ ς ,   ς + γ ( υ ,   ς ) ] )  and  X : [ ς ,   ς + γ ( υ ,   ς ) ] ,   X ( 𝓸 ) 0 ,  symmetric with respect to  ς + 1 2 γ ( υ ,   ς ) ,  and ς ς + γ ( υ ,   ς ) X ( 𝓸 ) d 𝓸 > 0 , and Condition C for γ , then
S ( ς + 1 2 γ ( υ ,   ς ) ) 2 w ( 1 2 ) ς ς + γ ( υ ,   ς ) X ( 𝓸 ) d 𝓸   ( I R ) ς ς + γ ( υ ,   ς ) S ( 𝓸 ) X ( 𝓸 ) d 𝓸 .
Proof. 
Using condition C, we can write
ς + 1 2 γ ( υ ,   ς ) = ς + ρ γ ( υ ,   ς ) + 1 2 γ ( ς + ( 1 ρ ) γ ( υ , ς ) ,   ς + ρ γ ( υ , ς ) ) .
Since S is a 𝔴-preinvex, we have
S * ( ς + 1 2 γ ( υ ,   ς ) ) = S * ( ς + ρ γ ( υ ,   ς ) + 1 2 γ ( ς + ( 1 ρ ) γ ( υ , ς ) ,   ς + ρ γ ( υ , ς ) ) ) , w ( 1 2 ) ( S * ( ς + ( 1 ρ ) γ ( υ , ς ) ) + S * ( ς + ρ γ ( υ , ς ) ) ) , S * ( ς + 1 2 γ ( υ ,   ς ) ) = S * ( ς + ρ γ ( υ ,   ς ) + 1 2 γ ( ς + ( 1 ρ ) γ ( υ , ς ) ,   ς + ρ γ ( υ , ς ) ) ) , w ( 1 2 ) ( S * ( ς + ( 1 ρ ) γ ( υ , ς ) ) + S * ( ς + ρ γ ( υ , ς ) ) ) ,
By multiplying (28) by X ( ς + ( 1 ρ ) γ ( υ , ς ) ) = X ( ς + ρ γ ( υ , ς ) ) and integrating it by ρ over [ 0 ,   1 ] , we obtain:
S * ( ς + 1 2 γ ( υ ,   ς ) ) 0 1 X ( ς + ρ γ ( υ ,   ς ) ) d ρ w ( 1 2 ) ( 0 1 S * ( ς + ( 1 ρ ) γ ( υ , ς ) ) X ( ς + ( 1 ρ ) γ ( υ ,   ς ) ) d ρ + 0 1 S * ( ς + ρ γ ( υ , ς ) ) X ( ς + ρ γ ( υ ,   ς ) ) d ρ ) , S * ( ς + 1 2 γ ( υ ,   ς ) ) 0 1 X ( ς + ρ γ ( υ ,   ς ) ) d ρ w ( 1 2 ) ( 0 1 S * ( ς + ( 1 ρ ) γ ( υ , ς ) ) X ( ς + ( 1 ρ ) γ ( υ ,   ς ) ) d ρ + 0 1 S * ( ς + ρ γ ( υ , ς ) ) X ( ς + ρ γ ( υ ,   ς ) ) d ρ ) ,
Since:
0 1 S * ( ς + ( 1 ρ ) γ ( υ , ς ) ) X ( ς + ( 1 ρ ) γ ( υ , ς ) ) d ρ = 0 1 S * ( ς + ρ γ ( υ ,   ς ) ) X ( ς + ρ γ ( υ ,   ς ) ) d ρ , = 1 γ ( υ ,   ς )   ς ς + γ ( υ ,   ς ) S * ( 𝓸 ) X ( 𝓸 ) d 𝓸 , 0 1 S * ( ς + ρ γ ( υ ,   ς ) ) X ( ς + ρ γ ( υ ,   ς ) ) d ρ = 0 1 S * ( ς + ( 1 ρ ) γ ( υ , ς ) ) X ( ς + ( 1 ρ ) γ ( υ , ς ) ) d ρ , = 1 γ ( υ ,   ς )   ς ς + γ ( υ ,   ς ) S * ( 𝓸 ) X ( 𝓸 ) d 𝓸 ,
From (29) and (30), we have
S * ( ς + 1 2 γ ( υ ,   ς ) )   2 w ( 1 2 ) ς ς + γ ( υ ,   ς ) X ( 𝓸 ) d 𝓸   ς ς + γ ( υ ,   ς ) S * ( 𝓸 ) X ( 𝓸 ) d 𝓸 , S * ( ς + 1 2 γ ( υ ,   ς ) )   2 w ( 1 2 ) ς ς + γ ( υ ,   ς ) X ( 𝓸 ) d 𝓸   ς ς + γ ( υ ,   ς ) S * ( 𝓸 ) X ( 𝓸 ) d 𝓸 .
From which, we have
[ S * ( ς + 1 2 γ ( υ ,   ς ) ) ,     S * ( ς + 1 2 γ ( υ ,   ς ) ) ] 2 w ( 1 2 ) ς ς + γ ( υ ,   ς ) X ( 𝓸 ) d 𝓸 [   ς ς + γ ( υ ,   ς ) S * ( 𝓸 ) X ( 𝓸 ) d 𝓸 ,       ς ς + γ ( υ ,   ς ) S * ( 𝓸 ) X ( 𝓸 ) d 𝓸 ] ,
that is
S ( ς + 1 2 γ ( υ ,   ς ) ) 2 w ( 1 2 ) ς ς + γ ( υ ,   ς ) X ( 𝓸 ) d 𝓸   ( I R ) ς ς + γ ( υ ,   ς ) S ( 𝓸 ) X ( 𝓸 ) d 𝓸 ,
Then the proof is complete.  □
Remark 4.
If one takes  w ( ρ ) = ρ , then (22) and (27) reduces to inequalities for preinvex IVFs.
If one takes S * ( 𝓸 ) = S * ( 𝓸 ) , then Inequalities (22) and (27) reduces to the classical first and second H–H Fejér inequality for 𝔴-preinvex function, see [59].
If one takes  S * ( 𝓸 ) = S * ( 𝓸 )   γ ( υ ,   ς ) = υ ς  then Inequalities (22) and (27) reduces to classical first and second H–H–Fejér inequality for 𝔴-convex function, see [58].
Example 5.
We consider  w ( ρ ) = ρ ,    for  ρ [ 0 ,   1 ]  and the IVF  S : [ 1 ,   1 + ( 4 ,   1 ) ] I +  defined by  S ( 𝓸 ) = [ 1 𝓸 , 𝓸 ] . Since  S * ( 𝓸 )  and  S * ( 𝓸 )  are 𝔴-preinvex functions γ ( y , 𝓸 ) = y 𝓸 , then  S ( 𝓸 )  is 𝔴-preinvex IVF. If
X ( 𝓸 ) = { 𝓸 1 , ϱ [ 1 , 5 2 ] 4 𝓸 , ϱ ( 5 2 ,   4 ] ,
then, we have
1 γ ( 4 ,   1 ) 1 1 +   γ ( 4 ,   1 ) S * ( 𝓸 ) X ( 𝓸 ) d 𝓸 = 1 3 1 4 S * ( 𝓸 ) X ( 𝓸 ) d 𝓸 = 1 3 1 5 2 S * ( 𝓸 ) X ( 𝓸 ) d 𝓸 + 1 3 5 2 4 S * ( 𝓸 ) X ( 𝓸 ) d 𝓸 ,   1 γ ( 4 ,   1 ) 1 1 +   γ ( 4 ,   1 ) S * ( 𝓸 ) X ( 𝓸 ) d 𝓸 = 1 3 1 4 S * ( 𝓸 ) X ( 𝓸 ) d 𝓸 = 1 3 1 5 2 S * ( 𝓸 ) X ( 𝓸 ) d 𝓸 + 1 3 5 2 4 S * ( 𝓸 ) X ( 𝓸 ) d 𝓸 ,
= 1 3 1 5 2 1 𝓸 ( 𝓸 1 ) d 𝓸 + 1 3 5 2 4 1 𝓸 ( 4 𝓸 ) d 𝓸 = 1 3 ( 4 l o g ( 8 5 ) + l o g ( 5 2 ) ) , = 1 3 1 5 2 𝓸 ( 𝓸 1 ) d 𝓸 + 1 3 5 2 4 𝓸 ( 4 𝓸 ) d 𝓸 = 15 8 ,
And
[ S * ( ς ) + S * ( υ ) ] 0 1 w ( ρ ) X ( ς + ρ γ ( υ ,   ς ) ) d ρ [ S * ( ς ) + S * ( υ ) ] 0 1 w ( ρ ) X ( ς + ρ γ ( υ ,   ς ) ) d ρ
= 5 4   [ 1 5 2 3 ρ 2 d 𝓸 + 5 2 4 ρ ( 3 3 ρ ) d ρ ] = 15 32 . = 5 [ 1 5 2 3 ρ 2 d 𝓸 + 5 2 4 ρ ( 3 3 ρ ) d ρ ] = 15 8 .
From (31) and (32), we have
[ 1 3 ( 4 l o g ( 8 5 ) + l o g ( 5 2 ) ) ,   15 8 ] [ 15 32 ,   15 8 ]
Hence, Theorem 6 is verified.
For Theorem 7, we have
S * ( ς + 1 2 γ ( υ ,   ς ) ) = 2 5 , S * ( ς + 1 2 γ ( υ ,   ς ) ) = 5 2 ,
ς ς + γ ( υ ,   ς ) X ( 𝓸 ) d 𝓸 = 1 5 2 ( 𝓸 1 ) d 𝓸 + ς ς + γ ( υ ,   ς ) ( 4 𝓸 ) d 𝓸 = 9 4 ,
2 w ( 1 2 ) ς ς + γ ( υ ,   ς ) X ( 𝓸 ) d 𝓸   ς ς + γ ( υ ,   ς ) S * ( 𝓸 ) X ( 𝓸 ) d 𝓸 = 4 9 ( 4 l o g ( 8 5 ) + l o g ( 5 2 ) ) 2 w ( 1 2 ) ς ς + γ ( υ ,   ς ) X ( 𝓸 ) d 𝓸   ς ς + γ ( υ ,   ς ) S * ( 𝓸 ) X ( 𝓸 ) d 𝓸 = 5 2
From (33) and (34), we have
[ 2 5 ,   5 2 ] [ 4 9 ( 4 l o g ( 8 5 ) + l o g ( 5 2 ) ) ,   5 2 ] .
Hence, Theorem 7 is verified.

4. Conclusions

For 𝔴-preinvex interval-valued functions, we have found the Hermite–Hadamard type inclusions in this paper. In addition, we have demonstrated Hermite–Hadamard–Fejer’ type inclusions for symmetric functions and Pachpatte type inclusions for the product of two 𝔴-preinvex interval-valued functions. In the future, we will investigate the quantum (or q-) calculus and 𝔴-preinvex interval-valued functions on coordinates. This new study aims to motivate researchers in interval analysis, fractional calculus, and other important areas.

Author Contributions

Conceptualization, M.B.K.; methodology, M.B.K. and M.S.S.; validation, S.T.; formal analysis, S.T.; investigation, M.B.K. and M.S.S.; resources, S.T.; data curation, M.B.K.; writing—original draft preparation, M.B.K.; writing—review and editing, M.B.K. and S.T.; visualization, M.B.K.; supervision, M.B.K. and M.S.S.; project administration, M.B.K.; funding acquisition, S.T. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Not applicable.

Acknowledgments

The authors would like to thank the Rector, COMSATS University Islamabad, Islamabad, Pakistan, for providing excellent research and academic environments.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Hadamard, J. Étude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann. J. De Mathématiques Pures Et Appliquées 1893, 7, 171–215. [Google Scholar]
  2. Hermite, C. Sur deux limites d’une intégrale définie. Mathesis 1883, 3, 82–97. [Google Scholar]
  3. Zhao, T.-H.; Castillo, O.; Jahanshahi, H.; Yusuf, A.; Alassafi, M.O.; Alsaadi, F.E.; Chu, Y.-M. A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak. Appl. Comput. Math. 2021, 20, 160–176. [Google Scholar]
  4. Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. On the bounds of the perimeter of an ellipse. Acta Math. Sci. 2022, 42B, 491–501. [Google Scholar] [CrossRef]
  5. Zhao, T.-H.; Wang, M.-K.; Hai, G.-J.; Chu, Y.-M. Landen inequalities for Gaussian hypergeometric function. Rev. De La Real Acad. De Cienc. Exactas Físicas Y Naturales. Ser. A Matemáticas RACSAM 2022, 116, 1–23. [Google Scholar] [CrossRef]
  6. Wang, M.-K.; Hong, M.-Y.; Xu, Y.-F.; Shen, Z.-H.; Chu, Y.-M. Inequalities for generalized trigonometric and hyperbolic functions with one parameter. J. Math. Inequal. 2020, 14, 1–21. [Google Scholar] [CrossRef]
  7. Zhao, T.-H.; Qian, W.-M.; Chu, Y.-M. Sharp power mean bounds for the tangent and hyperbolic sine means. J. Math. Inequal. 2021, 15, 1459–1472. [Google Scholar] [CrossRef]
  8. Narges Hajiseyedazizi, S.; Samei, M.E.; Alzabut, J.; Chu, Y.-M. On multi-step methods for singular fractional q-integro-differential equations. Open Math. 2021, 19, 1378–1405. [Google Scholar] [CrossRef]
  9. Jin, F.; Qian, Z.-S.; Chu, Y.-M.; ur Rahman, M. On nonlinear evolution model for drinking behavior under Caputo-Fabrizio derivative. J. Appl. Anal. Comput. 2022, 12, 790–806. [Google Scholar] [CrossRef]
  10. Khan, M.B.; Savin Treanțǎ, H.; Alrweili, T.; Saeed, M.S. Some new Riemann-Liouville fractional integral inequalities for interval-valued mappings. AIMS Math. 2022, 7, 15659–15679. [Google Scholar] [CrossRef]
  11. Khan, M.B.; Alsalami, O.M.; Treanțǎ, S.; Saeed, T.; Nonlaopon, K. New class of convex interval-valued functions and Riemann Liouville fractional integral inequalities. AIMS Math. 2022, 7, 15497–15519. [Google Scholar] [CrossRef]
  12. Saeed, T.; Khan, M.B.; Treanțǎ, S.; Alsulami, H.H.; Alhodaly, M.S. Interval Fejér-Type Inequalities for Left and Right-λ-Preinvex Functions in Interval-Valued Settings. Axioms 2022, 11, 368. [Google Scholar] [CrossRef]
  13. Khan, M.B.; Cătaş, A.; Alsalami, O.M. Some New Estimates on Coordinates of Generalized Convex Interval-Valued Functions. Fractal Fract. 2022, 6, 415. [Google Scholar] [CrossRef]
  14. Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Basak, N. Hermite-Hadamard inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
  15. Iscan, I. Hermite-Hadamard-Fejer type inequalities for convex functions via fractional integrals. Studia Univ. Babes-Bolyai Sect. A Math. 2015, 60, 355–366. [Google Scholar]
  16. Chen, F. A note on Hermite-Hadamard inequalities for products of convex functions via Riemann-Liouville fractional integrals. Ital. J. Pure Appl. Math. 2014, 33, 299–306. [Google Scholar]
  17. Guessab, A. Generalized barycentric coordinates and approximations of convex functions on arbitrary convex polytopes. Comput. Math. Appl. 2013, 66, 1120–1136. [Google Scholar] [CrossRef]
  18. Guessab, A.; Schmeisser, G. Two Korovkin-type theorems in multivariate approximation. Banach J. Math. Anal. 2008, 2, 121–128. [Google Scholar] [CrossRef]
  19. Alabdali, O.; Guessab, A.; Schmeisser, G. Characterizations of uniform convexity for differentiable functions. Appl. Anal. Discret. Math. 2019, 13, 721–732. [Google Scholar] [CrossRef]
  20. Wang, F.-Z.; Khan, M.N.; Ahmad, I.; Ahmad, H.; Abu-Zinadah, H.; Chu, Y.-M. Numerical solution of traveling waves in chemical kinetics: Time-fractional fishers equations. Fractals 2022, 30, 1–11. [Google Scholar] [CrossRef]
  21. Zhao, T.-H.; Bhayo, B.A.; Chu, Y.-M. Inequalities for generalized Grötzsch ring function. Comput. Methods Funct. Theory 2022, 22, 559–574. [Google Scholar] [CrossRef]
  22. Zhao, T.-H.; He, Z.-Y.; Chu, Y.-M. Sharp bounds for the weighted H\”{o}lder mean of the zero-balanced generalized complete elliptic integrals. Comput. Methods Funct. Theory 2021, 21, 413–426. [Google Scholar] [CrossRef]
  23. Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. Concavity and bounds involving generalized elliptic integral of the first kind. J. Math. Inequal. 2021, 15, 701–724. [Google Scholar] [CrossRef]
  24. Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. Monotonicity and convexity involving generalized elliptic integral of the first kind. Rev. De La Real Acad. De Cienc. Exactas Físicas Y Naturales. Ser. A Matemáticas RACSAM 2021, 115, 1–13. [Google Scholar] [CrossRef]
  25. Chu, H.-H.; Zhao, T.-H.; Chu, Y.-M. Sharp bounds for the Toader mean of order 3 in terms of arithmetic, quadratic and contra harmonic means. Math. Slovaca 2020, 70, 1097–1112. [Google Scholar] [CrossRef]
  26. Santos-García, G.; Khan, M.B.; Alrweili, H.; Alahmadi, A.A.; Ghoneim, S.S. Hermite–Hadamard and Pachpatte type inequalities for coordinated preinvex fuzzy-interval-valued functions pertaining to a fuzzy-interval double integral operator. Mathematics 2022, 10, 2756. [Google Scholar] [CrossRef]
  27. Macías-Díaz, J.E.; Khan, M.B.; Alrweili, H.; Soliman, M.S. Some Fuzzy Inequalities for Harmonically s-Convex Fuzzy Number Valued Functions in the Second Sense Integral. Symmetry 2022, 14, 1639. [Google Scholar] [CrossRef]
  28. Khan, M.B.; Noor, M.A.; Macías-Díaz, J.E.; Soliman, M.S.; Zaini, H.G. Some integral inequalities for generalized left and right log convex interval-valued functions based upon the pseudo-order relation. Demonstr. Math. 2022, 55, 387–403. [Google Scholar] [CrossRef]
  29. Khan, M.B.; Noor, M.A.; Zaini, H.G.; Santos-García, G.; Soliman, M.S. The New Versions of Hermite–Hadamard Inequalities for Pre-invex Fuzzy-Interval-Valued Mappings via Fuzzy Riemann Integrals. Int. J. Comput. Intell. Syst. 2022, 15, 66. [Google Scholar] [CrossRef]
  30. Khan, M.B.; Noor, M.A.; Al-Shomrani, M.M.; Abdullah, L. Some Novel Inequalities for LR-h-Convex Interval-Valued Functions by Means of Pseudo Order Relation. Math. Meth. Appl. Sci. 2022, 45, 1310–1340. [Google Scholar] [CrossRef]
  31. Guessab, A.; Nouisser, O.; Schmeisser, G. Enhancement of the algebraic precision of a linear operator and consequences under positivity. Positivity 2009, 13, 693–707. [Google Scholar] [CrossRef]
  32. Fernandez, A.; Mohammed, P.O. Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels. Math. Meth. Appl. Sci. 2021, 44, 8414–8431. [Google Scholar] [CrossRef]
  33. Ogulmus, H.; Sarikaya, M.Z. Hermite-Hadamard-Mercer type inequalities for fractional integrals. Filomat 2021, 35, 2425–2436. [Google Scholar] [CrossRef]
  34. Andric, M.; Pecaric, J.; Peric, I. A multiple Opial type inequality for the Riemann-Liouville fractional derivatives. J. Math. Inequal. 2013, 7, 139–150. [Google Scholar] [CrossRef]
  35. Ahmad, H.; Tariq, M.; Sahoo, S.K.; Baili, J.; Cesarano, C. New estimations of Hermite Hadamard type integral inequalities for special functions. Fractal Fract. 2021, 5, 144. [Google Scholar] [CrossRef]
  36. Moore, R.E. Interval Analysis; Prentice Hall: Englewood Cliffs, NJ, USA, 1966. [Google Scholar]
  37. Zhao, D.; An, T.; Ye, G.; Liu, W. New Jensen and Hermite–Hadamard type inequalities for h-convex interval-valued functions. J. Inequalities Appl. 2018, 2018, 1–14. [Google Scholar] [CrossRef]
  38. Luangboon, W.; Nonlaopon, K.; Tariboon, J.; Ntouyas, S.K.; Budak, H. Some (p, q)-Integral Inequalities of Hermite-Hadamard Inequalities for (p, q)-Differentiable Convex Functions. Mathematics 2022, 10, 826. [Google Scholar] [CrossRef]
  39. Khan, M.B.; Macías-Díaz, J.E.; Treanta, S.; Soliman, M.S.; Zaini, H.G. Hermite-Hadamard Inequalities in Fractional Calculus for Left and Right Harmonically Convex Functions via Interval-Valued Settings. Fractal Fract. 2022, 6, 178. [Google Scholar] [CrossRef]
  40. Zhao, D.; Ali, M.A.; Luangboon, W.; Budak, H.; Nonlaopon, K. Some Generalizations of Different Types of Quantum Integral Inequalities for Differentiable Convex Functions with Applications. Fractal Fract. 2022, 6, 129. [Google Scholar] [CrossRef]
  41. Zhao, T.-H.; He, Z.-Y.; Chu, Y.-M. On some refinements for inequalities involving zero-balanced hyper geometric function. AIMS Math. 2020, 5, 6479–6495. [Google Scholar] [CrossRef]
  42. Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. A sharp double inequality involving generalized complete elliptic integral of the first kind. AIMS Math. 2020, 5, 4512–4528. [Google Scholar] [CrossRef]
  43. Zhao, T.-H.; Shi, L.; Chu, Y.-M. Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means. Rev. De La Real Acad. De Cienc. Exactas Físicas Y Naturales. Ser. A Matemáticas RACSAM 2020, 114, 1–14. [Google Scholar] [CrossRef]
  44. Zhao, T.-H.; Zhou, B.-C.; Wang, M.-K.; Chu, Y.-M. On approximating the quasi-arithmetic mean. J. Inequal. Appl. 2019, 2019, 1–12. [Google Scholar] [CrossRef]
  45. Zhao, T.-H.; Wang, M.-K.; Zhang, W.; Chu, Y.-M. Quadratic transformation inequalities for Gaussian hyper geometric function. J. Inequal. Appl. 2018, 2018, 1–15. [Google Scholar] [CrossRef]
  46. Khan, M.B.; Noor, M.A.; Noor, K.I.; Nisar, K.S.; Ismail, K.A.; Elfasakhany, A. Some Inequalities for LR-(h1,h2)-Convex Interval-Valued Functions by Means of Pseudo Order Relation. Int. J. Comput. Intell. Syst. 2021, 14, 1–15. [Google Scholar] [CrossRef]
  47. Khan, M.B.; Noor, M.A.; Abdullah, L.; Chu, Y.M. Some new classes of preinvex fuzzy-interval-valued functions and inequalities. Int. J. Comput. Intell. Syst. 2021, 14, 1403–1418. [Google Scholar] [CrossRef]
  48. Liu, P.; Khan, M.B.; Noor, M.A.; Noor, K.I. New Hermite-Hadamard and Jensen inequalities for log-s-convex fuzzy-interval-valued functions in the second sense. Complex. Intell. Syst. 2021, 2021, 1–15. [Google Scholar] [CrossRef]
  49. Sana, G.; Khan, M.B.; Noor, M.A.; Mohammed, P.O.; Chu, Y.M. Harmonically convex fuzzy-interval-valued functions and fuzzy-interval Riemann–Liouville fractional integral inequalities. Int. J. Comput. Intell. Syst. 2021, 14, 1809–1822. [Google Scholar] [CrossRef]
  50. Khan, M.B.; Noor, M.A.; Noor, K.I.; Chu, Y.M. New Hermite-Hadamard type inequalities for -convex fuzzy-interval-valued functions. Adv. Differ. Equ. 2021, 2021, 6–20. [Google Scholar] [CrossRef]
  51. Khan, M.B.; Noor, M.A.; Al-Bayatti, H.M.; Noor, K.I. Some New Inequalities for LR-Log-h-Convex Interval-Valued Functions by Means of Pseudo Order Relation. Appl. Math. 2021, 15, 459–470. [Google Scholar]
  52. Khan, M.B.; Noor, M.A.; Abdeljawad, T.; Mousa, A.A.A.; Abdalla, B.; Alghamdi, S.M. LR-Preinvex Interval-Valued Functions and Riemann–Liouville Fractional Integral Inequalities. Fractal Fract. 2021, 5, 243. [Google Scholar] [CrossRef]
  53. Bhunia, A.; Samanta, S. A study of interval metric and its application in multi-objective optimization with interval objectives. Comput. Ind. Eng. 2014, 74, 169–178. [Google Scholar] [CrossRef]
  54. Rahman, M.; Shaikh, A.; Bhunia, A. Necessary and sufficient optimality conditions for non-linear unconstrained and constrained optimization problem with interval valued objective function. Comput. Ind. Eng. 2020, 147, 106634. [Google Scholar] [CrossRef]
  55. Macías-Díaz, J.E.; Khan, M.B.; Noor, M.A.; Abd Allah, A.M.; Alghamdi, S.M. Hermite-Hadamard inequalities for generalized convex functions in interval-valued calculus. AIMS Math. 2022, 7, 4266–4292. [Google Scholar] [CrossRef]
  56. Khan, M.B.; Zaini, H.G.; Treanțǎ, S.; Soliman, M.S.; Nonlaopon, K. Riemann–Liouville Fractional Integral Inequalities for Generalized Pre-Invex Functions of Interval-Valued Settings Based upon Pseudo Order Relation. Mathematics 2022, 10, 204. [Google Scholar] [CrossRef]
  57. Khan, M.B.; Treanțǎ, S.; Budak, H. Generalized p-Convex Fuzzy-Interval-Valued Functions and Inequalities Based upon the Fuzzy-Order Relation. Fractal Fract. 2022, 6, 63. [Google Scholar] [CrossRef]
  58. Bombardelli, M.; Varošanec, S. Properties of h-convex functions related to the Harmite–Hadamard–Fejér inequalities. Comput. Math. Appl. 2009, 58, 1869–1877. [Google Scholar] [CrossRef]
  59. Matłoka, M. Inequalities for h-preinvex functions. Appl. Math. Comput. 2014, 234, 52–57. [Google Scholar] [CrossRef]
  60. Mohan, S.R.; Neogy, S.K. On invex sets and preinvex functions. J. Math. Anal. Appl. 1995, 11, 901–908. [Google Scholar] [CrossRef]
  61. Chu, Y.-M.; Zhao, T.-H. Concavity of the error function with respect to Hölder means. Math. Inequal. Appl. 2016, 19, 589–595. [Google Scholar] [CrossRef]
  62. Qian, W.-M.; Chu, H.-H.; Wang, M.-K.; Chu, Y.-M. Sharp inequalities for the Toader mean of order −1 in terms of other bivariate means. J. Math. Inequal. 2022, 16, 127–141. [Google Scholar] [CrossRef]
  63. Zhao, T.-H.; Chu, H.-H.; Chu, Y.-M. Optimal Lehmer mean bounds for the nth power-type Toader mean of n = −1, 1, 3. J. Math. Inequal. 2022, 16, 157–168. [Google Scholar]
  64. Zhao, T.-H.; Wang, M.-K.; Dai, Y.-Q.; Chu, Y.-M. On the generalized power-type Toader mean. J. Math. Inequal. 2022, 16, 247–264. [Google Scholar]
  65. Iqbal, S.A.; Hafez, M.G.; Chu, Y.-M.; Park, C. Dynamical Analysis of nonautonomous RLC circuit with the absence and presence of Atangana-Baleanu fractional derivative. J. Appl. Anal. Comput. 2022, 12, 770–789. [Google Scholar] [CrossRef]
  66. Huang, T.-R.; Chen, L.; Chu, Y.-M. Asymptotically sharp bounds for the complete p-elliptic integral of the first kind. Hokkaido Math. J. 2022, 51, 189–210. [Google Scholar]
  67. Zhao, T.-H.; Qian, W.-M.; Chu, Y.-M. On approximating the arc lemniscate functions. Indian J. Pure Appl. Math. 2022, 53, 316–329. [Google Scholar] [CrossRef]
  68. Khan, M.B.; Treanțǎ, S.; Soliman, M.S.; Nonlaopon, K.; Zaini, H.G. Some Hadamard–Fejér Type Inequalities for LR-Convex Interval-Valued Functions. Fractal Fract. 2022, 6, 6. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Khan, M.B.; Treanțǎ, S.; Soliman, M.S. Generalized Preinvex Interval-Valued Functions and Related Hermite–Hadamard Type Inequalities. Symmetry 2022, 14, 1901. https://doi.org/10.3390/sym14091901

AMA Style

Khan MB, Treanțǎ S, Soliman MS. Generalized Preinvex Interval-Valued Functions and Related Hermite–Hadamard Type Inequalities. Symmetry. 2022; 14(9):1901. https://doi.org/10.3390/sym14091901

Chicago/Turabian Style

Khan, Muhammad Bilal, Savin Treanțǎ, and Mohamed S. Soliman. 2022. "Generalized Preinvex Interval-Valued Functions and Related Hermite–Hadamard Type Inequalities" Symmetry 14, no. 9: 1901. https://doi.org/10.3390/sym14091901

APA Style

Khan, M. B., Treanțǎ, S., & Soliman, M. S. (2022). Generalized Preinvex Interval-Valued Functions and Related Hermite–Hadamard Type Inequalities. Symmetry, 14(9), 1901. https://doi.org/10.3390/sym14091901

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop