Properties of q-Symmetric Starlike Functions of Janowski Type
Abstract
:1. Introduction and Preliminaries
- (a)
- if and onlyis a constant;
- (b)
- ;
- (c)
- ;
- (d)
- .
- (a)
- .
- (b)
- For and , then reduces to .
- (c)
- For and as , then is equivalent to the usual class of starlike functions.
2. Main Results
- (a)
- , then for ,
- (b)
- , then
- (c)
- ([26], Theorem 4) , then
- (a)
- If
- (b)
- If
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miller, S.S.; Mocanu, P.T. Differential Subordinations. In Theory and Applications; Marcel Dekker Inc.: New York, NY, USA, 2000. [Google Scholar]
- Janowski, W. Some extremal problems for certain families of analytic functions I. Ann. Pol. Math. 1973, 28, 297–326. [Google Scholar] [CrossRef]
- Brito da Cruz, A.M.C.; Martins, N. The q-symmetric variational calculus. Comput. Math. Appl. 2012, 64, 2241–2250. [Google Scholar] [CrossRef]
- Jackson, F.H. q-difference equations. Am. J. Math. 1910, 32, 305–314. [Google Scholar] [CrossRef]
- Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. Int. J. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Olatunji, S.O. Fekete–Szegö inequalities on certain subclasses of analytic functions defined by λ-pseudo-q-difference operator associated with s-sigmoid function. Bol. Soc. Mat. Mex. 2022, 28, 1–15. [Google Scholar] [CrossRef]
- Piejko, K.; Sokół, J.; Trabka-Wieclaw, K. On q-calculus and starlike functions. Iran. J. Sci. Technol. Trans. A Sci. 2019, 43, 2879–2883. [Google Scholar] [CrossRef]
- Piejko, K.; Sokół, J. On convolution and q-calculus. Bol. Soc. Mat. Mex. 2020, 26, 349–359. [Google Scholar] [CrossRef]
- Saliu, A.; Noor, K.I.; Hussain, S.; Darus, M. On Quantum Differential Subordination Related with Certain Family of Analytic Functions. J. Math. 2020, 2020, 6675732. [Google Scholar] [CrossRef]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Verma, S.; Kumar, R.; Sokół, J. A conjecture on Marx-Strohhäcker type inclusion relation between q-convex and q-starlike functions. Bull. Sci. Math. 2020, 174, 103088. [Google Scholar] [CrossRef]
- Alb Lupaş, A. Subordination Results on the q-Analogue of the Sălăgean Differential Operator. Symmetry 2022, 14, 1744. [Google Scholar] [CrossRef]
- Altintaş, O.; Mustafa, N. Distortion bound andgrowth theorems for a subclass of analytic functionsdefined by q-derivative. Turk. J. Math. 2022, 46, 2096–2108. [Google Scholar] [CrossRef]
- Orhan, H.; Porwal, S.; Magesh, N. The Fekete-Szegö problem for a generalized class ofanalytic functions of complex order associated with q-calculus. Palest. J. Math. 2022, 11, 39–47. [Google Scholar]
- Kanas, S.; Altinkaya, Ş.; Yalçin, S. Subclass of k-Uniformly Starlike Functions Defined by the Symmetric q-Derivative Operator. Ukr. Math. J. 2012, 70, 1727–1740. [Google Scholar] [CrossRef]
- Khan, S.; Khan, N.; Hussain, A.; Araci, S.; Khan, B.; Al-Sulami, H.H. Applications of Symmetric Conic Domains to a Subclass of q-Starlike Functions. Symmetry 2022, 14, 803. [Google Scholar] [CrossRef]
- Khan, S.; Hussain, S.; Naeem, M.; Darus, M.; Rasheed, A. A subclass of q-starlike functions defined by using a symmetric q-derivative operator and related with generalized symmetric conic domains. Mathematics 2022, 9, 917. [Google Scholar] [CrossRef]
- Seoudy, T.M. Convolution Results and Fekete–Szegö Inequalities for Certain Classes of Symmetric-Starlike and Symmetric-Convex Functions. J. Math. 2022, 2022, 8203921. [Google Scholar] [CrossRef]
- Zhang, C.; Khan, S.; Hussain, A.; Khan, N.; Hussain, S.; Khan, N. Applications of q-difference symmetric operator in harmonic univalent functions. AIMS Math. 2022, 7, 667–680. [Google Scholar] [CrossRef]
- Khan, M.F.; Goswami, A.; Khan, S. Certain New Subclass of Multivalent Q-Starlike Functions Associated with Q-Symmetric Calculus. Fractal Fract. 2022, 6, 367. [Google Scholar] [CrossRef]
- Kamel, B.; Yosr, S. On some symmetric q-special functions. Matematiche 2013, 68, 107–122. [Google Scholar]
- Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the International Conference on Complex Analytic at the Nankai Institute of Mathematics, Tianjin, China, 19–23 June 1992; pp. 157–169. [Google Scholar]
- Wilf, H.S. Subordinating factor sequences for convex maps of the unit circle. Proc. Am. Math. Soc. 1961, 12, 689–693. [Google Scholar] [CrossRef]
- Clunie, J.; Keogh, F.R. On starlike and convex schlicht functions. J. Lond. Math. Soc. 1960, 1, 229–233. [Google Scholar] [CrossRef]
- Nehari, Z. Conformal Mapping; McGraw-Hill: New York, NY, USA, 1952. [Google Scholar]
- Holland, F.; Thomas, D.K. The area Theorem for starlike functions. J. Lond. Math. Soc. 1969, 2, 127–134. [Google Scholar] [CrossRef]
- Hayami, T.; Owa, S. Hankel determinant for p-valently starlike and convex functions of order α. Gen. Math. 2009, 4, 29–44. [Google Scholar]
- Hadi, S.H.; Darus, M. Differentialsubordination and superordination of a q-derivativeoperator connected with the q-exponential function. Int. J. Nonlinear Anal. Appl. 2022, 13, 2795–2806. [Google Scholar] [CrossRef]
- Khan, S.; Hussain, S.; Darus, M. Certainsubclasses of meromorphic multivalent q-starlike and q-convex functions. Math. Slovaca 2022, 72, 635–646. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saliu, A.; Al-Shbeil, I.; Gong, J.; Malik, S.N.; Aloraini, N. Properties of q-Symmetric Starlike Functions of Janowski Type. Symmetry 2022, 14, 1907. https://doi.org/10.3390/sym14091907
Saliu A, Al-Shbeil I, Gong J, Malik SN, Aloraini N. Properties of q-Symmetric Starlike Functions of Janowski Type. Symmetry. 2022; 14(9):1907. https://doi.org/10.3390/sym14091907
Chicago/Turabian StyleSaliu, Afis, Isra Al-Shbeil, Jianhua Gong, Sarfraz Nawaz Malik, and Najla Aloraini. 2022. "Properties of q-Symmetric Starlike Functions of Janowski Type" Symmetry 14, no. 9: 1907. https://doi.org/10.3390/sym14091907
APA StyleSaliu, A., Al-Shbeil, I., Gong, J., Malik, S. N., & Aloraini, N. (2022). Properties of q-Symmetric Starlike Functions of Janowski Type. Symmetry, 14(9), 1907. https://doi.org/10.3390/sym14091907