Origin of Homochirality: The Formation and Stability of Homochiral Peptides in Aqueous Prebiological Environment in the Earth’s Crust
Abstract
:1. Introduction
2. The Right Conditions
2.1. The Right Location
2.2. The Thermodynamic Condition
2.3. The Conditions of the Chemistry at the Abiogenesis
2.3.1. The Conditions of the Chemical Reactions: The Frank Model
2.3.2. The Chemical Composition
3. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Bada, J.L. Kinetics of razimization of amino acids as a function of pH. J. Am. Chem. Soc. 1972, 94, 1371–1373. [Google Scholar] [CrossRef]
- Aki, K.; Fujii, N.; Fujii, N. Kineticsof Isomerization and Inversion of Aspartate 58 of α A-Crystallin Peptide Mimics ubder Physilogical Conditions. PLoS ONE 2013, 8, e58515. [Google Scholar] [CrossRef] [Green Version]
- Fujii, N.; Takata, T.; Fujii, N.; Aki, K.; Sakaue, H. D-Amino acids in protein: The mirror of life as a molecular index of aging. Biochim. Biophys. Acta Proteins Proteom. 2018, 1866, 840–847. [Google Scholar] [CrossRef] [PubMed]
- Liang, R.; Lau, M.C.Y.; Baars, O.; Robb, F.T.; Onstott, C. Aspartic acid racemization constrains long-term viability and longevity of endospores. FEMS Microbiol. Ecol. 2019, 95, fiz132. [Google Scholar] [CrossRef]
- Onstott, T.C.; Magnabosco, C.; Aubrey, A.D.; Burton, A.S.; Dworkin, J.P.; Elsila, J.E.; Grunsfeld, S.; Cao, B.H.; Hein, J.E.; Glavin, D.P.; et al. Does aspartic acid racemization constrain the depth limit of the subsurface biosphere? Geobiology 2014, 12, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Liang, R.; Robb, F.T. Aspartic acid racemization and repair in the survival and recovery of hyperthermophiles after prolonged starvation at high temperatures. FEMS Microbiol. Ecol. 2019, 97, fiab112. [Google Scholar] [CrossRef]
- Bada, J.L. Racemization of Amino Acids. In Chemistry and Biochemistry of Amino Acids; Barrett, G.C., Ed.; Chapman and Hall: London, UK, 1985. [Google Scholar]
- Toxvaerd, S. The role of the peptides at the origin of life. J. Theor. Biol. 2017, 429, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Brandenburg, A.; Andersen, A.C.; Höfner, S.; Nilsson, M. Homochiral growth through enantiomeric cross-inhibition. Orig. Life Evol. Biosph. 2005, 35, 225–241. [Google Scholar] [CrossRef] [PubMed]
- Ribó, J.M.; Crusats, J.; El-Hachemi, Z.; Moyano, A.; Hochberg, D. Spontaneous mirror symmetry breaking in heterocatalytically coupled enantioselectivve replicators. Chem. Sci. 2017, 8, 763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanco, C.; Stich, M.; Hochberg, D. Mechanically Induced Homochirality in Nucleated Enantioselective Polymerization. J. Phys. Chem. B 2017, 121, 942–955. [Google Scholar] [CrossRef]
- Buhse, T.; Micheau, J.-C. Spontaneous Emergence of Transient Chirality in Closed, Reversible Frank-like Deterministic Models. Orig. Life Evol. Biosph. 2022, 52, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Piñeros, W.D.; Tlusty, T. Spontaneous Chiral symmetry breaking in a random driven chemical system. Nat. Commun. 2022, 13, 2244. [Google Scholar] [CrossRef] [PubMed]
- Toxvaerd, S. Origin of Homochirality in Biosystems. Int. J. Mol. Sci. 2009, 10, 1290–1299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toxvaerd, S. A Prerequisity for life. Theor. Biol. 2019, 474, 48–51. [Google Scholar] [CrossRef] [Green Version]
- Ohtani, E. Hydration and Dehydration in Earth’s Interior. Ann. Rev. Earth Planet. Sci. 2021, 49, 253–278. [Google Scholar] [CrossRef]
- Jeanloz, R.; Morris, S. Temperature Distribution in the Crust and Mantle. Rev. Earth Planet. Sci. 1986, 14, 377–415. [Google Scholar] [CrossRef]
- Vogt, G.; Woell, S.; Argos, P. Protein Thermal Stability, Hydrogen Bonds, and Ion Pairs. J. Mol. Biol. 1997, 269, 631–643. [Google Scholar] [CrossRef] [Green Version]
- Shao, Q.; Gao, Y.Q. Temperature Dependence of Hydrogen-Bond Stability in β-Hairpin Structures. J. Chem. Theory Comput. 2010, 6, 3750–3760. [Google Scholar] [CrossRef]
- Miyazaki, Y. A wet heterogeneous mantle creates a habitable wold in the Hadean. Nature 2022, 625, 86. [Google Scholar] [CrossRef]
- Barboni, M.; Boehnke, P.; Keller, B.; Kohl, I.; Schoene, B.; Young, E.D.; McKeegan, K.D. Early formation of the Moon 4.51 billion years ago. Sci. Adv. 2017, 3, e1602365. [Google Scholar] [CrossRef]
- Thiemens, M.M.; Sprung, P.; Fonseca, R.O.C.; Leitzke, F.P.; Münker, C. Early Moon formation inferred from hafnium-tungsten systematics. Nat. Geosci. 2019, 12, 696. [Google Scholar] [CrossRef]
- Green, J.A.M.; Huber, M.; Waltham, D.; Buzan, J.; Wells, M. Explicitly modelled deep-time tidal dissipation and its implication for Lunar history. Earth Planet. Sci. Lett. 2017, 461, 46. [Google Scholar] [CrossRef] [Green Version]
- Harrison, T.M. Hadean Earth; Springer: Cham, Switzerland, 2020; ISBN 978–3-030-46687-9. [Google Scholar]
- Djokic, T.; Van Kranendonk, M.J.; Campbell, K.A.; Walter, M.R.; Ward, C.R. Eaiest signs of life on land preserved in ca. 3.5 Ga hot spring deposits. Nat. Commun. 2017, 8, 15263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schopf, J.W.; Kitajima, K.; Spicuzza, M.J.; Kudryavtsev, A.B.; Valley, J.W. SIMS analyses of the oldest known assemblage of microfossils document their taxon-correlated carbon isotope compositions. Proc. Natl. Acad. Sci. USA 2018, 115, 53–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavalazzi, B.; Lemelle, L.; Simionovici, A.; Cady, S.L.; Russell, M.J.; Bailo, E.; Canteri, R.; Enrico, E.; Manceau, A.; Maris, A.; et al. Cellular remains in a ≈ 3.42-billion-year-old subseafloor hydrothermal environment. Sci. Adv. 2021, 7, eabf3963. [Google Scholar] [CrossRef]
- Dodd, M.S.; Papineau, D.; Grenne, T.; Slack, J.F.; Rittner, M.; Pirajno, F.; O’Neil, J.; Little, C.T. Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature 2017, 543, 60–74. [Google Scholar] [CrossRef]
- Li, J.; Mara, P.; Schubotz, F.; Sylvan, J.B.; Burgaud, G.; Klein, F.; Beaudoin, D.; Wee, S.Y.; Dick, H.J.; Lott, S.; et al. Recycling and metabolic flexibility dictate life in the lower oceanic crust. Nature 2020, 579, 250–260. [Google Scholar] [CrossRef]
- Takamiya, H.; Kouduka, M.; Suzuki, Y. The Deep Rocky Biosphere: New Geomicrobiological Insight and Prospects. Front. Microbiol. 2021, 12, 785743. [Google Scholar] [CrossRef]
- Harrison, T.M. The Hadean Crust: Evidence from >4 Ga Zircons. Annu. Rev. Earth Planet. Sci. 2009, 37, 479–505. [Google Scholar] [CrossRef] [Green Version]
- Hansma, G.H. Potassium at the Origin of Life: Did Biology Emerge from Biotite in Micaceous Clay? Life 2022, 12, 301. [Google Scholar] [CrossRef]
- Paytan, A.; McLaughlin, K. The Oceanic Phosphorus Cycle. Chem. Rev. 2007, 107, 563–576. [Google Scholar] [CrossRef]
- Walton, C.R.; Shorttle, O.; Jenner, F.E.; Williams, H.M.; Golden, J.; Morrison, S.M.; Downs, R.T.; Zerkle, R.M.; Hazen, R.M.; Pasek, M. Phosphorus mineral evolution and prebiotic chemistry: From minerals to microbes. Earth Sci. Rev. 2021, 221, 103806. [Google Scholar] [CrossRef]
- Flores, E.; Martinez, E.; Rodriguez, L.E.; Weber, J.M.; Khodayari, A.; VanderVelde, D.G.; Barge, L.M. Effects of Amino Acids on Phosphata Adsorption Onto Iron (Oxy)hydroxide Minerals under Early Earth Conditions. ACS Earth Space Chem. 2021, 5, 1048–1057. [Google Scholar] [CrossRef]
- Cleaves, H.J.; Aubrey, A.D.; Bada, J.L. An Evaluation of the Critical Parameters for Abiotic Peptide Synthesis in Submarine Hydrothermal Systems. Orig. Life Evol. Biosph. 2009, 39, 109–126. [Google Scholar] [CrossRef] [PubMed]
- Branscomb, E.; Russell, M.J. Frankenstein or a Submarine Alkaline Vent: Who is Responsible for Abiogenesis? BioEssays 2018, 40, 1700182. [Google Scholar] [CrossRef]
- Moore, W.S.; Frankle, J.D.; Benitez-Nelson, C.R.; Früh-Green, G.L.; Lang, S.Q. Activities of 223Ra and 226Ra in Fluids From the Lost city Hydrothermal Field Require Short Fluid Residence Times. JGR Oceans 2021, 126, e2021JC017886. [Google Scholar] [CrossRef]
- Shock, E.L. Stability of peptides in high-temperature aqueous solutions. Geochim. Cosmochim. Acta 1992, 56, 3481–3491. [Google Scholar] [CrossRef]
- Takahagi, W.; Seo, K.; Shibuya, T.; Takano, Y.; Fujiishima, K.; Saitoh, M.; Shimamura, S.; Matsui, Y.; Tomita, M.; Takai, K. Peptide Synthesis under the Alkaline Hydrothermal Conditions on Enceladus. ACS Earth Space Chem. 2019, 3, 2559–2568. [Google Scholar] [CrossRef]
- Pedreira-Segade, U.; Hao, J.; Montagnac, G.; Cardon, H.; Daniel, I. Spontaneous Polymerization of Glycine under Hydrothermal Conditions. ACS Earth Space Chem. 2019, 3, 1669–1677. [Google Scholar] [CrossRef]
- Pauling, L.; Corey, R.B.; Branson, H.R. The structure of proteins: Two hydrogen-bonded helical configurations of the polypeptide chain. Proc. Natl. Acad. Sci. USA 1951, 37, 205–211. [Google Scholar] [CrossRef]
- Fujii, N.; Fijii, N.; Kida, M.; Kinouchi, T. Influence of Lβ-, Dα-Asp isomers of the Asp-76 residue of the properties of αA-crystallin 70–88 peptide. Amino Acids 2010, 39, 1393–1399. [Google Scholar] [CrossRef] [PubMed]
- Wendler, K.; Thar, J.; Zahn, S.; Kirchner, B. Estimating the Hydrogen Bond Energy. J. Phys. Chem. A 2010, 114, 9529–9536. [Google Scholar] [CrossRef] [PubMed]
- Frank, F.C. On spontaneous asymmetric Synthesis. Biochin. Biophys. Acta 1953, 11, 459–463. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Wang, Y.; Hamley, I.W.; Qi, W.; Su, R.; He, Z. Chiral self-assembly of peptides: Toward the design of supramolecular polymers with enhanced chemical and biological functions. Prog. Polym. Sci. 2021, 123, 101469. [Google Scholar] [CrossRef]
- Dunitz, J.D. Pauling’s left-handed α-helix. Angew. Chem. Int. Ed. 2001, 40, 4167–4173. [Google Scholar] [CrossRef]
- Toxvaerd, S. Molecular Dynamics simulations of isomerization kinetics in condensed fluids. Phys. Rev. Lett. 2000, 85, 4747. [Google Scholar] [CrossRef]
- Turing, A.M. The Chemical Basis of Morphogenesis. Phil. Trans. R. Soc. 1952, B237, 37–72. [Google Scholar] [CrossRef]
- Hunding, A.; Kauffman, S.A.; Goodwin, B.C. Drosophila Segmentation: Supercomputer Simulation of Prepattern Hierarchy. J. Theor. Biol. 1990, 145, 369–384. [Google Scholar] [CrossRef]
- Anderson, D.L. Chemical Composition of the Mantle. J. Geophys. Res. 1983, 88, B41–B52. [Google Scholar] [CrossRef]
- Lyubetskaya, T.; Korenaga, J. Chemical composition of Earth’s primitive mantle and its variance: 1. Method and results. J. Geophys. Res. 2007, 112, B03211. [Google Scholar] [CrossRef]
- Ménez, B.; Pisapia, C.; Jamme, F.; Vanbellingen, Q.; Brunell, A.; Richard, L.; Dumas, P.; Réfreégies, M. Abiotic synthesis of amino acids in the recesses of the oceanic lithosphere. Nature 2018, 564, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Sforna, M.C.; Brunelli, D.; Pisapia, C.; Pasini, V.; Malferrari, D.; Ménez, B. Abiotic formation of condensed carbonaceous matter in the hydrating oceanic crust. Nat. Commun. 2018, 9, 5049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lollar, B.; Heuer, V.B.; McDermott, J.; Tille, S.; Warr, O.; Moran, J.J.; Telling, J.; Hinrichs, K.-U. A window into the abiotic carbon cycle- Acetate and formate in fracture waters in 2.7 billion year-old rocks of the Canadian Shield. Geochim. Cosmochim. Acta 2021, 294, 295–314. [Google Scholar] [CrossRef]
- Oba, Y.; Takano, Y.; Furukawa, Y.; Koga, T.; Glavin, D.P.; Dwokin, J.P.; Naraoka, H. Identifying the wide diversity of extraterrestrial purine and pyrimidine nucleobases in carbonaceous meteorites. Nat. Commun. 2022, 13, 2008. [Google Scholar] [CrossRef] [PubMed]
- Aponte, J.C.; Elsila, J.E.; Hein, J.E.; Dworkin, J.P.; Glavin, D.P.; McLain, H.L.; Parker, E.T.; Cao, T.; Berger, E.L.; Burton, A.S. Analysis of amino acids, hydroxy acids, and amine in CR condrites. Meteor. Planet. Sci. 2020, 55, 2422–2439. [Google Scholar] [CrossRef]
- Glavin, D.P.; Burton, A.S.; Elsila, J.E.; Aponte, J.C.; Dwokin, J.P. The Search for Chiral Asymmetry as a Potential Biosignature in our Solar Systsem. Chem. Rev. 2020, 120, 4660–4689. [Google Scholar] [CrossRef] [Green Version]
- Robinson, K.J.; Bockisch, C.; Gould, I.R.; Liao, Y.; Yang, Z.; Glein, C.R.; Shaver, G.D.; Hartnett, H.E.; Williams, L.B.; Scock, E.L. Quantifying the extent of amide and peptide bond synthesis across conditions relevant to gologic and planetary environment. Geochim. Cosmochim. Acta 2021, 300, 318–332. [Google Scholar] [CrossRef]
- Fu, X.; Liao, Y.; Glein, C.R.; Jamison, M.; Hayes, K.; Zaporski, J.; Yang, Z. Direct Synthesis of Adides from Amines and Carboxylic Acids under Hydrothermal Conditions. ACS Earth Space Chem. 2020, 4, 722–729. [Google Scholar] [CrossRef]
- Yang, B.; Niu, K.; Haag, F.; Cao, N.; Zhang, J.; Zhang, H.; Li, Q.; Allegretti, F.; Björk, J.; Barth, J.V.; et al. Abiotic Formation of an Amide Bond via Surface-Supported Direct Carboxyl-Amine Coupling. Angew. Chem. Int. Ed. 2022, 61, e202113590. [Google Scholar]
- Furukawa, Y.; Chikaraishi, Y.; Ohkouchi, N.; Ogawa, N.O.; Glavin, D.P.; Dworkin, J.P.; Abe, C.; Nakamura, T. Extraterrestrial ribose and other sugars in primitive meteorites. Proc. Natl. Acad. Sci. USA 2019, 116, 24440–24445. [Google Scholar] [CrossRef] [Green Version]
- Guzmań-Marmolejo, A.; Segura, A. Methane in the Solar System. Bol. Soc. Geol. Mex. 2015, 67, 377–385. [Google Scholar] [CrossRef]
- Schlesinger, G.; Miller, S.L. Prebiotic synthesis in atmospheres containing CH4, CO, and CO2. J. Mol. Evol. 1983, 19, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Butlerow, A. Formation synthetique d’une substance sucree. Compt. Rend. Acad. Sci. 1861, 53, 145–147. [Google Scholar]
- Gabel, N.W.; Ponnamperuma, C. Model for Origin of Monosaccharides. Nature 1967, 216, 453–455. [Google Scholar] [CrossRef]
- Washington, J. The possible Role of Volcanic Aquifers in Prebiologic Genesis of Organic Compounds and RNA. Orig. Life Evol. Biosph. 2000, 30, 53–79. [Google Scholar] [CrossRef]
- Kim, H.-J.; Ricardo, A.; Illangkoon, H.I.; Kim, M.J.; Carrigan, M.A.; Frye, F.; Benner, S.A. Synthesis of Carbohydrates in Mineral-Guided Prebiotic Cycles. J. Am. Chem. Soc. 2011, 133, 9457–9468. [Google Scholar] [CrossRef]
- Jalbout, A.F.; Abrell, L.; Adamowicz, L.; Polt, R.; Apponi, A.J.; Ziurys, L.M. Sugar synthesis from a gas-phase formose reaction. Astrobiology 2007, 7, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Lambert, J.B.; Gurusamy-Thangavelu, S.A.; Ma, K. The silica-mediated formose reaction: Bottom-up synthesis of sugar silicates. Science 2010, 327, 984–986. [Google Scholar] [CrossRef] [Green Version]
- Weber, A.L. The Sugar Model: Catalysis by Amines and Amino Acid Products. Orig. Life Evol. Biosph. 2001, 31, 71–86. [Google Scholar] [CrossRef]
- Magnabosco, C.; Lin, L.-H.; Dong, H.; Bomberg, M.; Ghiorse, W.; Stan-Lotter, H.; Pedersen, K.; Kieft, T.L.; van Heeden, E.; Onstott, T.C. The biomass and biodiversity of the continental subsurface. Nat. Geosci. 2018, 11, 707–717. [Google Scholar] [CrossRef]
- Plesa, A.-C.; Padovan, S.; Tosi, N.; Breuer, D.; Grott, M.; Wieczorek, M.A.; Spohn, T.; Smrekar, S.E.; Banerdt, W.B. The Thermal State and Interior Structure of Mars. Geophys. Res. Lett. 2018, 45, 12198–12209. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toxvaerd, S. Origin of Homochirality: The Formation and Stability of Homochiral Peptides in Aqueous Prebiological Environment in the Earth’s Crust. Symmetry 2023, 15, 155. https://doi.org/10.3390/sym15010155
Toxvaerd S. Origin of Homochirality: The Formation and Stability of Homochiral Peptides in Aqueous Prebiological Environment in the Earth’s Crust. Symmetry. 2023; 15(1):155. https://doi.org/10.3390/sym15010155
Chicago/Turabian StyleToxvaerd, Søren. 2023. "Origin of Homochirality: The Formation and Stability of Homochiral Peptides in Aqueous Prebiological Environment in the Earth’s Crust" Symmetry 15, no. 1: 155. https://doi.org/10.3390/sym15010155
APA StyleToxvaerd, S. (2023). Origin of Homochirality: The Formation and Stability of Homochiral Peptides in Aqueous Prebiological Environment in the Earth’s Crust. Symmetry, 15(1), 155. https://doi.org/10.3390/sym15010155