Mechanical and Histological Characteristics of Human Tubular Bones after Hyperthermal Treatment
Abstract
:1. Introduction
2. Materials and Methods
- –
- Bars numbered 1, 2, 4, 5, and 6 were studied in bending experiments;
- –
- Bar 3 underwent a histological examination;
- –
- Bar 7 was studied in a compression experiment.
2.1. Compression Test Samples
2.2. Bending Test Samples
2.3. Histological Study Samples
- –
- The treatment has no damaging effect: 0–0.9 points;
- –
- Light damage to the structural elements of bone tissue: 1–1.9 points;
- –
- Moderate damage: 2–2.9 points;
- –
- Pronounced damage: 3–3.9 points;
- –
- Severe damage: 4 points.
2.4. Compression Experiments
2.5. Bending Experiments
3. Results and Discussion
3.1. Compression Test
3.1.1. Stress-to-Failure
3.1.2. Strain-to-Failure
3.1.3. Elastic Strain
3.1.4. Plastic Strain
3.1.5. Modulus of Elasticity
3.2. Bending Test
3.2.1. Stress-to-Failure
3.2.2. Strain-to-Failure
3.2.3. Elastic Strain
3.2.4. Plastic (Plastic–Elastic) Strain
3.2.5. Modulus of Elasticity
3.3. Histological Data
4. Conclusions
- In compression tests, it was demonstrated that there was an increase in the sustainable stress-to-failure after the bone was heated ex vivo to 80 °C.
- In bending tests, it was demonstrated that a reliable decrease in the strength characteristics of the bone at 80 °C (stress-to-failure) and 90 °C (stress-to-failure, modulus of elasticity) occurs.
- The data of histological examination revealed statistically significant differences that characterize considerable damage to the bone tissue after hyperthermal treatment at the temperature of 80–90 °C.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Casali, P.G.; Bielack, S.; Abecassis, N.; Aro, H.T.; Bauer, S.; Biagini, R.; Bonvalot, S.; Boukovinas, I.; Bovee, J.V.M.G.; Brennan, B.; et al. Bone sarcomas: ESMO–PaedCan–EURACAN clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2018, 29, iv79–iv95. [Google Scholar] [CrossRef] [PubMed]
- Gaston, C.L.; Goulding, K.; Grimer, R. The use of endoprostheses in musculoskeletal oncology. Oper. Tech. Orthop. 2014, 24, 91–102. [Google Scholar] [CrossRef]
- Litvinov, Y.Y.; Matveichuk, I.V.; Rozanov, V.V.; Krasnov, V.V. Optimization of technologies for manufacture of demineralized bone implants for drug release. Biomed. Eng. 2021, 54, 393–396. [Google Scholar] [CrossRef]
- Sevostyanova, I.N.; Sablina, T.Y.; Gorbatenko, V.V.; Kulkov, S.N. Strain Localization during Diametral Compression of ZrO2(Y2O3) Ceramics. Tech. Phys. Lett. 2019, 45, 943–946. [Google Scholar] [CrossRef]
- Zagho, M.M.; Hussein, E.A.; Elzatahry, A.A. Recent Overviews in Functional Polymer Composites for Biomedical Applications. Polymers 2018, 10, 739. [Google Scholar] [CrossRef] [Green Version]
- Sablina, T.Y.; Sevostyanova, I.N.; Gorbatenko, V.V.; Ryzhova, L.N.; Molchunova, L.M.; Kulkov, S.N. Investigation of the Strain Inhomogeneity of ZrO2-(Y2O3) during Brazilian Test. AIP Conf. Proc. 2019, 2167, 020302. [Google Scholar]
- Khattak, M.J.; Umer, M.; Haroon-ur-Rasheed Umar, M. Autoclaved Tumor Bone for Reconstruction. Clin. Orthop. Relat. Res. 2006, 447, 138–144. [Google Scholar] [CrossRef]
- Umer, M.; Umer, H.M.; Qadir, I.; Rasheed, H.; Awan, R.; Askari, R.; Ashraf, S. Autoclaved tumor done for skeletal reconstruction in paediatric patients: A lowcost alternative in developing countries. BioMed Res. Int. 2013, 2013, 698461. [Google Scholar] [CrossRef] [Green Version]
- Qu, H.; Guo, W.; Yang, R.; Li, D.; Tang, S.; Yang, Y.; Dong, S.; Zang, J. Reconstruction of segmental bone defect of long bones after tumor resection by devitalized tumor-bearing bone. World J. Surg. Oncol. 2015, 13, 282. [Google Scholar] [CrossRef] [Green Version]
- Manabe, J.; Ahmed, A.R.; Kawaguchi, N.; Matsumoto, S.; Kuroda, H. Pasteurized Autologous Bone Graft in Surgery for Bone and Soft Tissue Sarcoma. Clin. Orthop. Relat. Res. 2004, 419, 258–266. [Google Scholar] [CrossRef]
- Lee, S.Y.; Jeon, D.-G.; Cho, W.H.; Song, W.S.; Kim, B.S. Are Pasteurized Autografts Durable for Reconstructions After Bone Tumor Resections? Clin. Orthop. Relat. Res. 2018, 476, 1728–1737. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.A.; Nagalingam, J.; Saad, M.; Pailoor, J. Which is the best method of sterilization of tumour bone for reimplantation? A biomechanical and histopathological study. BioMedical Eng. OnLine 2010, 9, 48. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2944266/pdf/1475-925X-9-48.pdf (accessed on 4 May 2020). [CrossRef] [PubMed] [Green Version]
- Knaepler, H.; Von Garrel, T.; Seipp, H.M.; Ascherl, R. Experimental studies of thermal disinfection and sterilization of allogeneic bone transplants and their effects on biological viability. Unfallchirurg 1992, 95, 477–484. [Google Scholar] [PubMed]
- Pakhmurin, D.O.; Fedorov, A.A.; Kobzev, A.V.; Semenov, V.D.; Anisenya, I.I.; Bogoutdinova, A.V.; Sitnikov, P.K.; Kazhmaganbetova, M.; Matyushkov, S.; Khan, K.I.; et al. Method for Intraoperative Hyperthermic Action on Bone Tissue. RU Patent 2695305, 13 July 2018. [Google Scholar]
- Pakhmurin, D.O.; Kobzev, A.V.; Semenov, V.D.; Litvinov, A.V.; Uchaev, V.N.; Khutornoy, A.Y. A Method of Controlled Local Hyperthermia. World Appl. Sci. J. 2014, 30, 1182–1187. Available online: http://idosi.org/wasj/wasj30(9)14/19.pdf (accessed on 25 January 2022).
- Pakhmurin, D.O.; Kobzev, A.V.; Semenov, V.D.; Litvinov, A.V.; Uchaev, V.N.; Khutornoy, A.Y. A Temperature Stabilization Device for Local Hyperthermia in Cancer Treatment. Middle-East J. Sci. Res. 2014, 20, 1940–1945. Available online: http://www.idosi.org/mejsr/mejsr20(12)14.htm (accessed on 25 January 2022).
- Pakhmurin, D.O.; Semenov, V.D.; Kobzev, A.V.; Litvinov, A.V.; Uchaev, V.N.; Khutornoy, A.Y. Analysis of a temperature distribution in a heating area when using a complex for local hyperthermia. In Proceedings of the 2015 16th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices, Erlagol, Russia, 29 June–3 July 2015; pp. 591–594. [Google Scholar]
- Kobzev, A.V.; Pakhmurin, D.O.; Semenov, V.D.; Semenova, G.D. Complex for High-Temperature Effects on Biological Tissue (Options). RU Patent 2636877, 21 November 2016. [Google Scholar]
- Pakhmurin, D.; Pakhmurina, V.; Kashin, A.; Kulkov, A.; Khlusov, I.; Kostyuchenko, E.; Sidorov, I.; Anisenya, I. Compressive Strength Characteristics of Long Tubular Bones after Hyperthermal Ablation. Symmetry 2022, 14, 303. [Google Scholar] [CrossRef]
- Cristofolini, L.; Angeli, E.; Juszczyk, J.M.; Juszczyk, M.M. Shape and function of the diaphysis of the human tibia. J. Biomech. 2013, 26, 1882–1892. [Google Scholar] [CrossRef] [PubMed]
- Suvarna, S.K.; Layton, C.H.; Bancroft, J.D. Bancroft’s Theory and Practice of Histological Techniques, 8th ed.; Elsevier Limited: New York, NY, USA, 2019; 557p. [Google Scholar]
- ISO 10993-6:2016; Biological Evaluation of Medical Devices; Part 6: Tests for Local Effects after Implantation. International Organization for Standardization: Geneva, Switzerland, 2016.
- Sedelnikova, M.B.; Komarova, E.G.; Sharkeev, Y.P.; Tolkacheva, T.V.; Khlusov, I.A.; Litvinova, L.S.; Yurova, K.A.; Shupletsova, V.V. Comparative investigations of structure and properties of micro-arc wollastonite-calcium phosphate coatings on titanium and zirconium-niobium alloy. Bioact. Mater. 2017, 2, 177–184. [Google Scholar] [CrossRef]
- Sinha, E.; Rout, S.K. Influence of fibre-surface treatment on structural, thermal and mechanical properties of jute fibre and its composite. Bull. Mater. Sci. 2009, 32, 65–76. [Google Scholar] [CrossRef]
- Ratner, B.; Lemon, J.E.; Schoen, F.J. Biomaterials Science: An Introduction to Materials in Medicine, 2nd ed.; Ratner, B.D., Ed.; Elsevier Academic Press: San Diego, CA, USA, 2004; p. 864. ISBN 978-0-12-582463-7. [Google Scholar]
- Hart, N.H.; Nimphius, S.; Rantalainen, T.; Ireland, A.; Siafarikas, A.; Newton, R.U. Mechanical basis of bone strength: Influence of bone material, bone structure and muscle action. J. Musculoskelet. Neuronal Interact. 2017, 17, 114–139. Available online: http://www.ncbi.nlm.nih.gov/pubmed/28860414 (accessed on 25 January 2022).
- Perilli, E.; Baleani, M.; Ohman, C.; Fognani, R.; Baruffaldi, F.; Viceconti, M. Dependence of mechanical compressive strength on local variations in microarchitecture in cancellous bone of proximal human femur. J. Biomech. 2008, 41, 438–446. [Google Scholar] [CrossRef] [PubMed]
- Mann, H.B.; Whitney, D.R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 1947, 18, 50–60. [Google Scholar] [CrossRef]
- Kieser, D.C.; Kanade, S.; Waddell, N.J.; Kieser, J.A.; Theis, J.C.; Swain, M.V. The deer femur—A morphological and biomechanical animal model of the human femur. Biomed. Mater. Eng. 2014, 24, 1693–1703. [Google Scholar] [CrossRef] [PubMed]
- Bonney, H.; Goodman, A. Validity of the use of porcine bone in forensic cut mark studies. J. Forensic Sci. 2021, 66, 278–284. [Google Scholar] [CrossRef]
- Jardon, O.M.; Wingard, D.W.; Barak, A.J.; Connolly, J.F. Malignant hyperthermia. A potentially fatal syndrome in orthopaedic patients. J. Bone Jt. Surg. Am. 1979, 61, 1064–1070. [Google Scholar] [CrossRef]
- Dyson, H.J.; Wright, P.E. Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell Biol. 2005, 6, 197–208. [Google Scholar] [CrossRef]
- Tanford, C. Protein denaturation. Adv. Protein Chem. 1968, 23, 121–282. [Google Scholar] [CrossRef]
- Köhler, P.; Kreicbergs, A.; Strömberg, L. Physical properties of autoclaved bone. Torsion test of rabbit diaphyseal bone. Acta Orthop. Scand. 1986, 57, 141–145. [Google Scholar] [CrossRef]
- Irkutsk Supercomputer Center SB RAS. Available online: http://hpc.icc.ru/en/ (accessed on 16 January 2021).
Group Number | Description | Quantity of Samples |
---|---|---|
1 | 60 °C | 5 |
2 | 70 °C | 5 |
3 | 80 °C | 5 |
4 | 90 °C | 5 |
5 | Control | 5 |
Group Number | Description | Quantity of Samples |
---|---|---|
1 | 60 °C | 5 |
2 | 70 °C | 5 (−1) * |
3 | 80 °C | 5 |
4 | 90 °C | 5 (−1) * |
5 | Control | 5 |
Structural Element of the Bone Tissue of Bar 3 | 60–70 °C | 80–90 °C | ||
---|---|---|---|---|
Description | Bone Condition Assessment, Points | Description | Bone Condition Assessment, Points | |
Compact substance | The bone matrix is uniformly mineralized, bone laminae attach tightly to one another, stratification of bone laminae is extremely rare (Figure S12) | 1 | Tissue samples become brittle and crumble while sliced. There are some areas with detaching bone laminae, mainly those adjacent to canals of osteons (Figure S13A) | 2 |
Bone lacunae | Osteocyte lacunae are enlarged, often empty (Figure S12A,B) | 2 | Osteocyte lacunae are enlarged, mostly empty (Figure S13A–C) | 3 |
Osteon canals | Often empty, some of osteon canals contain homogeneous necrotic mass, residual connective tissue and fragments of bone laminae (Figure S12A,B) | 2 | Empty or filled with homogeneous necrotic mass, residual connective tissue and fragments of bone laminae (Figure S13A,B) | 3 |
Trabeculae of the spongy substance | Formed by mature lamellar bone tissue. Mostly, they tightly attached to each other. Sporadic areas of bone laminae disruption occur (Figure S12C) | 2 | Numerous areas of bone lamina disruption in the trabeculae in the spongy substance (Figure S13C) | 3 |
Intertrabecular space of the medullary cavity | Often filled with homogeneous necrotic mass, residual connective tissue and fragments of bone laminae (Figure S12C) | 2 | Fragments of bone laminae are visible near the medullary cavity (Figure S13C). Soft tissues surrounding the bone with signs of necrosis with pronounced swelling of the intercellular matrix and destruction of collagen fibers (Figure S13D) | 4 |
Me (Q1–Q3) | 2.0 (2–2) | 3.0 (3–3) PT = 0.043 PU = 0.012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pakhmurin, D.; Pakhmurina, V.; Kashin, A.; Kulkov, A.; Khlusov, I.; Kostyuchenko, E.; Anisenya, I.; Sitnikov, P.; Porokhova, E. Mechanical and Histological Characteristics of Human Tubular Bones after Hyperthermal Treatment. Symmetry 2023, 15, 156. https://doi.org/10.3390/sym15010156
Pakhmurin D, Pakhmurina V, Kashin A, Kulkov A, Khlusov I, Kostyuchenko E, Anisenya I, Sitnikov P, Porokhova E. Mechanical and Histological Characteristics of Human Tubular Bones after Hyperthermal Treatment. Symmetry. 2023; 15(1):156. https://doi.org/10.3390/sym15010156
Chicago/Turabian StylePakhmurin, Denis, Viktoriya Pakhmurina, Alexander Kashin, Alexey Kulkov, Igor Khlusov, Evgeny Kostyuchenko, Ilya Anisenya, Pavel Sitnikov, and Ekaterina Porokhova. 2023. "Mechanical and Histological Characteristics of Human Tubular Bones after Hyperthermal Treatment" Symmetry 15, no. 1: 156. https://doi.org/10.3390/sym15010156
APA StylePakhmurin, D., Pakhmurina, V., Kashin, A., Kulkov, A., Khlusov, I., Kostyuchenko, E., Anisenya, I., Sitnikov, P., & Porokhova, E. (2023). Mechanical and Histological Characteristics of Human Tubular Bones after Hyperthermal Treatment. Symmetry, 15(1), 156. https://doi.org/10.3390/sym15010156