Certain Solutions of Abel’s Integral Equations on Distribution Spaces via Distributional Gα-Transform
Abstract
:1. Introduction
2. Preliminaries
- (i)
- The meromorphic function contains singularities with ;
- (ii)
- There is a circular region Γ of radius R, M and N are positive constants, such that
- (i)
- If f is differentiable on for and then and
- (ii)
- In a broader sense, if f is differentiable on for and then
3. The -Transform of Abel’s Integral Equation
4. The -Transform and Abel’s Integral Equation on Distribution Spaces
5. Application
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wazwaz, A.M. Linear and Nonlinear Integral Equations Methods and Applications; Higher Education Press: Beijing, China, 2011. [Google Scholar]
- Wazwaz, A.M.; Mehanna, M.S. The combined Laplace-Adomian method for handling singular integral equation of heat transfer. Int. J. Nonlinear Sci. 2010, 10, 248–252. [Google Scholar]
- Gorenflo, R.; Vessella, S. Abel Integral Equations; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Mann, W.R.; Wolf, F. Heat transfer between solids and gases under nonlinear boundary conditions. Q. Appl. Math. 1951, 9, 163–184. [Google Scholar] [CrossRef] [Green Version]
- Minerbo, G.N.; Levy, M.E. Inversion of Abel’s integral equation by means of orthogonal polynomials. SIAM J. Numer. Anal. 1969, 6, 598–616. [Google Scholar] [CrossRef]
- Sadri, K.; Amini, A.; Cheng, C. A new operational method to solve Abel’s and generalized Abel’s integral equations. Appl. Math. Comput. 2018, 317, 49–67. [Google Scholar] [CrossRef]
- Bougoffa, L.; Rach, R.C.; Mennouni, A. A convenient technique for solving linear and nonlinear Abel integral equations by the Adomian decomposition method. Appl. Math. Comput. 2011, 218, 1785–1793. [Google Scholar] [CrossRef]
- Huang, L.; Huang, Y.; Li, X.F. Approximate solution of Abel integral equation. Comput. Math. Appl. 2008, 56, 1748–1757. [Google Scholar] [CrossRef] [Green Version]
- Gulsu, M.; Ozturk, Y.; Sezer, M. On the solution of the Abel equation of the second kind by the shifted Chebyshev polynomials. Appl. Math. Comput. 2011, 217, 4827–4833. [Google Scholar] [CrossRef]
- Sohrabi, S. Comparison Chebyshev wavelets method with BPFs method for solving Abels’s integral equation. Ain Shams Eng. J. 2011, 2, 249–254. [Google Scholar] [CrossRef] [Green Version]
- Jahanshahi, S.; Babolian, E.; Torres, D.F.M. Solving Abel integral equations of first kind via fractional calculus. J. King Saud Univ. Sci. 2015, 27, 161–167. [Google Scholar] [CrossRef] [Green Version]
- Yousefi, S.A. Numerical solution of Abel’s integral equation by using Legendre wavelets. Appl. Math. Comput. 2006, 175, 574–580. [Google Scholar] [CrossRef]
- Yang, C. An efficient numerical method for solving Abel integral equation. Appl. Math. Comput. 2014, 227, 656–661. [Google Scholar] [CrossRef]
- Loonker, D.; Banerji, P.K. On the solution of distributional Abel Integral equation by distributional Sumudu transform. Int. J. Math. Math. Sci. 2011, 2011, 480528. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.; Gondal, M.A. A reliable treatment of Abel’s second kind singular integral equations. Appl. Math. Lett. 2012, 25, 1666–1670. [Google Scholar] [CrossRef] [Green Version]
- Jaabar, S.M.; Hussain, A.H. Solving Volterra integral equation by using a new transformation. J. Interdiscip. Math. 2021, 24, 735–741. [Google Scholar] [CrossRef]
- Ali, S.; Ullah, A.; Nonlaopon, K.; Akgül, A. Analysis of Kink behaviour of KdV-mKdV equation under Caputo fractional operator with non-singular kernel. Symmetry 2022, 14, 2316. [Google Scholar] [CrossRef]
- Fang, J.; Nadeem, M.; Habib, M.; Akgül, A. Numerical investigation of nonlinear shock wave equations with fractional order in propagating disturbance. Symmetry 2022, 14, 1179. [Google Scholar] [CrossRef]
- Sadiq, G.; Ali, A.; Ahmad, S.; Nonlaopon, K.; Akgül, A. Bright soliton behaviours of fractal fractional nonlinear good Boussinesq equation with nonsingular kernels. Symmetry 2022, 14, 2113. [Google Scholar] [CrossRef]
- Al-Omari, S. Distributional and tempered distributional diffraction Fresnel transforms and their extension to Boehmian spaces. Ital. J. Pure Appl. Math. 2013, 30, 179–194. [Google Scholar]
- Loonker, D.; Banerji, P. On distributional Abel integral equation for distributional Elzaki transform. J. Indian Math. Soc. 2014, 81, 87–96. [Google Scholar]
- Al-Omari, S. On the distributional Mellin transformation and its extension to Boehmian spaces. Int. J. Contemp. Math. Sci. 2011, 6, 801–810. [Google Scholar]
- Al-Omari, S. Generalized functions for double Sumudu transformation. Int. J. Algebra 2012, 6, 139–146. [Google Scholar]
- Al-Omari, S. On the application of natural transforms. Int. J. Pure Appl. Math. 2013, 85, 729–744. [Google Scholar] [CrossRef] [Green Version]
- Kim, H. The intrinsic structure and properties of Laplace-typed integral transforms. Math. Probl. Eng. 2017, 2017, 1762729. [Google Scholar] [CrossRef] [Green Version]
- Kim, H. The solution of Laguerre’s equation by using G-transform. Int. J. Appl. Eng. Res. 2017, 12, 16083–16086. [Google Scholar]
- Sattaso, S.; Nonlaopon, K.; Kim, H. Further properties of Laplace-typed integral transforms. Dyn. Syst. Appl. 2019, 28, 195–215. [Google Scholar]
- Kim, H.; Sattaso, S.; Nonlaopon, K.; Kaewnimit, K. An application of generalized Laplace transform in PDEs. Adv. Dyn. Syst. Appl. 2019, 14, 257–265. [Google Scholar] [CrossRef]
- Prasertsang, P.; Sattaso, S.; Nonlaopon, K.; Kim, H. Analytical study for certain ordinary differential equations with variable coefficients via Gα-transform. Eur. J. Pure Appl. Math. 2021, 14, 1184–1199. [Google Scholar] [CrossRef]
- Nuruddeen, R.I.; Akbar, Y.; Kim, H. On the application of Gα integral transform to nonlinear dynamical models with non-integer order derivatives. AIMS Math. 2022, 7, 17859–17878. [Google Scholar] [CrossRef]
- Estrada, R.; Kanwal, R.P. Singular Integral Equations; Birkhauser: Basel, Switzerland, 2012. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sattaso, S.; Nonlaopon, K.; Kim, H.; Al-Omari, S. Certain Solutions of Abel’s Integral Equations on Distribution Spaces via Distributional Gα-Transform. Symmetry 2023, 15, 53. https://doi.org/10.3390/sym15010053
Sattaso S, Nonlaopon K, Kim H, Al-Omari S. Certain Solutions of Abel’s Integral Equations on Distribution Spaces via Distributional Gα-Transform. Symmetry. 2023; 15(1):53. https://doi.org/10.3390/sym15010053
Chicago/Turabian StyleSattaso, Supaknaree, Kamsing Nonlaopon, Hwajoon Kim, and Shrideh Al-Omari. 2023. "Certain Solutions of Abel’s Integral Equations on Distribution Spaces via Distributional Gα-Transform" Symmetry 15, no. 1: 53. https://doi.org/10.3390/sym15010053
APA StyleSattaso, S., Nonlaopon, K., Kim, H., & Al-Omari, S. (2023). Certain Solutions of Abel’s Integral Equations on Distribution Spaces via Distributional Gα-Transform. Symmetry, 15(1), 53. https://doi.org/10.3390/sym15010053