Metal-Organic Frameworks Based Multifunctional Materials for Solar Cells: A Review
Abstract
:1. Introduction
2. Synthetic Methods of MOFs
2.1. Hydrothermal Technique
2.2. Solvothermal Method
2.3. Sol-Gel
2.4. Other Methods
3. Fundamentals of Solar Cells
4. MOFs for Dye-Sensitized Solar Cells
4.1. MOFs as Photoanodes
4.2. MOFs as Counter Electrodes
5. MOFs for Perovskite Solar Cells
5.1. MOFs as Interfacial Layers (IL)
5.2. MOFs as Charge Transfer Layers
6. MOFs for Organic Solar Cells
7. Conclusions and Outlook
- (1)
- The durability of solar cells is a critical factor in evaluating industrial application possibilities. Future research should periodically examine the applications of MOFs in PSCs under extreme conditions, e.g., high humidity.
- (2)
- Poor electron conductivity is one of the most significant barriers to MOF utilization in solar cells. This might be enhanced by rationally designing and manufacturing novelty kinds of MOFs. Combination MOFs with highly conductive materials or the development of conductive MOFs provide possible solutions for increasing the electrical conductivity of MOFs, allowing for their use in solar cells.
- (3)
- Metal compounds originating from MOFs are a novel selection that can potentially increase solar cell efficiency. Although these compounds lose the natural features of MOFs, their charge transport behavior may be enhanced. Furthermore, these materials often preserve adequate porosity and have a large surface area, implying a wide range of solar applications.
- (4)
- A thorough knowledge of the links between MOFs’ architectures, characteristics, and solar cell efficiency is required. This may allow for the development of more expected MOFs for photovoltaic utilization. Further research into the uses of 2-dimensional MOFs could provide potential results in solar cells.
- (5)
- The growth of MOFs on a conductive substrate is a challenging task by virtue of the lack of chemical linking. Therefore, finding a new process to prepare MOF thin films on a conductive substrate is necessary.
- (6)
- The conduction mechanism of MOF materials is a controversial problem. Therefore, insight studies combining simulation works and experimental studies need to be conducted to explore relationships between structures and power conversion efficiency, as well as a better knowledge of how MOFs operate in photovoltaic devices.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, P.; Teng, Y.; Zhu, J.; Bao, W.; Han, S.; Li, Y.; Zhao, Y.; Xie, H. Review on the synergistic effect between metal–organic frameworks and gas hydrates for CH4 storage and CO2 separation applications. Renew. Sustain. Energy Rev. 2022, 167, 112807. [Google Scholar] [CrossRef]
- Li, L.; Jung, H.S.; Lee, J.W.; Kang, Y.T. Review on applications of metal–organic frameworks for CO2 capture and the performance enhancement mechanisms. Renew. Sustain. Energy Rev. 2022, 162, 112441. [Google Scholar] [CrossRef]
- Parsaei, M.; Akhbari, K.; White, J. Modulating Carbon Dioxide Storage by Facile Synthesis of Nanoporous Pillared-Layered Metal–Organic Framework with Different Synthetic Routes. Inorg. Chem. 2022, 61, 3893–3902. [Google Scholar] [CrossRef] [PubMed]
- Hang, X.; Zhao, J.; Xue, Y.; Yang, R.; Pang, H. Synergistic effect of Co/Ni bimetallic metal–organic nanostructures for enhanced electrochemical energy storage. J. Colloid Interface Sci. 2022, 628, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Guo, K.; Hussain, I.; Fu, Y.; Zhang, F.; Zhu, W. Strategies for improving the photocatalytic performance of metal-organic frameworks for CO2 reduction: A review. J. Environ. Sci. 2023, 125, 290–308. [Google Scholar] [CrossRef] [PubMed]
- Tahir, M.; Ajiwokewu, B.; Bankole, A.A.; Ismail, O.; Al-Amodi, H.; Kumar, N. MOF based composites with engineering aspects and morphological developments for photocatalytic CO2 reduction and hydrogen production: A comprehensive review. J. Environ. Chem. Eng. 2023, 11, 109408. [Google Scholar] [CrossRef]
- Liang, J.; Yu, H.; Shi, J.; Li, B.; Wu, L.; Wang, M. Dislocated Bilayer MOF Enables High-Selectivity Photocatalytic Reduction of CO2 to CO. Adv. Mater. 2023, 35, 2209814. [Google Scholar] [CrossRef]
- Karmakar, S.; Barman, S.; Rahimi, F.A.; Biswas, S.; Nath, S.; Maji, T.K. Developing post-modified Ce-MOF as a photocatalyst: A detail mechanistic insight into CO2 reduction toward selective C2 product formation. Energy Environ. Sci. 2023, 16, 2187–2198. [Google Scholar] [CrossRef]
- Liu, J.-J.; Jiang, Z.-W.; Hsu, S.-W. Investigation of the Performance of Heterogeneous MOF-Silver Nanocube Nanocomposites as CO2 Reduction Photocatalysts by In Situ Raman Spectroscopy. ACS Appl. Mater. Interfaces 2023, 15, 6716–6725. [Google Scholar] [CrossRef]
- Abid, H.R.; Hanif, A.; Keshavarz, A.; Shang, J.; Iglauer, S. CO2, CH4, and H2 Adsorption Performance of the Metal–Organic Framework HKUST-1 by Modified Synthesis Strategies. Energy Fuels 2023, 37, 7260–7267. [Google Scholar] [CrossRef]
- Isikgor, F.H.; Zhumagali, S.; Merino, L.V.T.; De Bastiani, M.; McCulloch, I.; De Wolf, S. Molecular engineering of contact interfaces for high-performance perovskite solar cells. Nat. Rev. Mater. 2023, 8, 89–108. [Google Scholar] [CrossRef]
- Bati, A.S.; Zhong, Y.L.; Burn, P.L.; Nazeeruddin, M.K.; Shaw, P.E.; Batmunkh, M. Next-generation applications for integrated perovskite solar cells. Commun. Mater. 2023, 4, 2. [Google Scholar] [CrossRef]
- Bhattarai, S.; Hossain, M.K.; Pandey, R.; Madan, J.; Samajdar, D.; Rahman, M.F.; Ansari, M.Z.; Amami, M. Perovskite solar cells with dual light absorber layers for performance efficiency exceeding 30%. Energy Fuels 2023, 37, 10631–10641. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, X.; Liu, Y.; Wang, R.; Yang, Y.; Chen, J. A critical review of research progress for metal alloy materials in hydrogen evolution and oxygen evolution reaction. Environ. Sci. Pollut. Res. 2023, 30, 11302–11320. [Google Scholar] [CrossRef]
- Dogra, N.; Agrawal, P.; Pathak, S.; Saini, R.; Sharma, S. Hydrothermally synthesized MoSe2/ZnO composite with enhanced hydrogen evolution reaction. Int. J. Hydrogen Energy 2023, 48, 26210–26220. [Google Scholar] [CrossRef]
- Huang, Y.; Hu, Z.; Huang, L.-A.; Wang, Z.; Lin, Z.; Shen, S.; Zhong, W.; Pan, J. Phosphorus-modified cobalt single-atom catalysts loaded on crosslinked carbon nanosheets for efficient alkaline hydrogen evolution reaction. Nanoscale 2023, 15, 3550–3559. [Google Scholar] [CrossRef]
- Zeb, Z.; Huang, Y.; Chen, L.; Zhou, W.; Liao, M.; Jiang, Y.; Li, H.; Wang, L.; Wang, L.; Wang, H. Comprehensive overview of polyoxometalates for electrocatalytic hydrogen evolution reaction. Coord. Chem. Rev. 2023, 482, 215058. [Google Scholar] [CrossRef]
- Wu, C.; Sun, Y.; Wen, X.; Zhang, J.-Y.; Qiao, L.; Cheng, J.; Zhang, K.H. Adjusting oxygen vacancies in perovskite LaCoO3 by electrochemical activation to enhance the hydrogen evolution reaction activity in alkaline condition. J. Energy Chem. 2023, 76, 226–232. [Google Scholar] [CrossRef]
- Wang, B.; Yang, F.; Feng, L. Recent Advances in Co-Based Electrocatalysts for Hydrogen Evolution Reaction. Small 2023, 2302866. [Google Scholar] [CrossRef]
- Mohamed, M.; Gondal, M.; Hassan, M.; Khan, A.; Surrati, A.; Almessiere, M. Exceptional co-catalysts free SrTiO3 perovskite coupled CdSe nanohybrid catalyst by green pulsed laser ablation for electrochemical hydrogen evolution reaction. Chem. Eng. J. Adv. 2022, 11, 100344. [Google Scholar] [CrossRef]
- Duan, L.; Uddin, A. Progress in stability of organic solar cells. Adv. Sci. 2020, 7, 1903259. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, A.; Wang, J.-L. Machine learning for high performance organic solar cells: Current scenario and future prospects. Energy Environ. Sci. 2021, 14, 90–105. [Google Scholar] [CrossRef]
- Chatterjee, S.; Jinnai, S.; Ie, Y. Nonfullerene acceptors for P3HT-based organic solar cells. J. Mater. Chem. A 2021, 9, 18857–18886. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, G.; Yu, L.; Li, R.; Peng, Q. P3HT-based polymer solar cells with 8.25% efficiency enabled by a matched molecular acceptor and smart green-solvent processing technology. Adv. Sci. 2019, 31, 1906045. [Google Scholar] [CrossRef]
- Ghosekar, I.C.; Patil, G.C. Review on performance analysis of P3HT: PCBM-based bulk heterojunction organic solar cells. Semicond. Sci. Technol. 2021, 36, 045005. [Google Scholar] [CrossRef]
- Nguyen, V.-H.; Do, H.H.; Van Nguyen, T.; Singh, P.; Raizada, P.; Sharma, A.; Sana, S.S.; Grace, A.N.; Shokouhimehr, M.; Ahn, S.H. Perovskite oxide-based photocatalysts for solar-driven hydrogen production: Progress and perspectives. Sol. Energy 2020, 211, 584–599. [Google Scholar] [CrossRef]
- Labed, M.; Sengouga, N.; Meftah, A.; Meftah, A.; Rim, Y.S. Study on the improvement of the open-circuit voltage of NiOx/Si heterojunction solar cell. Opt. Mater. 2021, 120, 111453. [Google Scholar] [CrossRef]
- Park, H.; Park, I.J.; Lee, M.G.; Kwon, K.C.; Hong, S.-P.; Kim, D.H.; Lee, S.A.; Lee, T.H.; Kim, C.; Moon, C.W. Water splitting exceeding 17% solar-to-hydrogen conversion efficiency using solution-processed Ni-based electrocatalysts and perovskite/Si tandem solar cell. ACS Appl. Mater. Interfaces 2019, 11, 33835–33843. [Google Scholar] [CrossRef]
- Shen, H.; Walter, D.; Wu, Y.; Fong, K.C.; Jacobs, D.A.; Duong, T.; Peng, J.; Weber, K.; White, T.P.; Catchpole, K.R. Monolithic perovskite/Si tandem solar cells: Pathways to over 30% efficiency. Adv. Energy Mater. 2020, 10, 1902840. [Google Scholar] [CrossRef]
- Kim, C.U.; Jung, E.D.; Noh, Y.W.; Seo, S.K.; Choi, Y.; Park, H.; Song, M.H.; Choi, K.J. Strategy for large-scale monolithic Perovskite/Silicon tandem solar cell: A review of recent progress. EcoMat 2021, 3, e12084. [Google Scholar] [CrossRef]
- Wu, Y.; Zheng, P.; Peng, J.; Xu, M.; Chen, Y.; Surve, S.; Lu, T.; Bui, A.D.; Li, N.; Liang, W. 27.6% Perovskite/c-Si Tandem Solar Cells Using Industrial Fabricated TOPCon Device. Adv. Energy Mater. 2022, 12, 2200821. [Google Scholar] [CrossRef]
- Chen, B.; Yang, Z.; Jia, Q.; Ball, R.J.; Zhu, Y.; Xia, Y. Emerging applications of metal-organic frameworks and derivatives in solar cells: Recent advances and challenges. Mater. Sci. Eng. R Rep. 2023, 152, 100714. [Google Scholar] [CrossRef]
- Chueh, C.-C.; Chen, C.-I.; Su, Y.-A.; Konnerth, H.; Gu, Y.-J.; Kung, C.-W.; Wu, K.C.-W. Harnessing MOF materials in photovoltaic devices: Recent advances, challenges, and perspectives. J. Mater. Chem. A 2019, 7, 17079–17095. [Google Scholar] [CrossRef]
- Heo, D.Y.; Do, H.H.; Ahn, S.H.; Kim, S.Y. Metal-organic framework materials for perovskite solar cells. Polymers 2020, 12, 2061. [Google Scholar] [CrossRef]
- Butova, V.V.E.; Soldatov, M.A.; Guda, A.A.; Lomachenko, K.A.; Lamberti, C. Metal-organic frameworks: Structure, properties, methods of synthesis and characterization. Russ. Chem. Rev. 2016, 85, 280. [Google Scholar] [CrossRef]
- Li, J.-R.; Sculley, J.; Zhou, H.-C. Metal–organic frameworks for separations. Chem. Rev. 2012, 112, 869–932. [Google Scholar] [CrossRef]
- Green, M.A.; Dunlop, E.D.; Yoshita, M.; Kopidakis, N.; Bothe, K.; Siefer, G.; Hao, X. Solar cell efficiency tables (version 62). Prog. Photovolt. Res. Appl. 2023, 31, 651–663. [Google Scholar] [CrossRef]
- Do, H.H.; Cho, J.H.; Han, S.M.; Ahn, S.H.; Kim, S.Y. Metal–Organic-Framework-and MXene-Based Taste Sensors and Glucose Detection. Sensors 2021, 21, 7423. [Google Scholar] [CrossRef]
- Do, H.H.; Tekalgne, M.A.; Tran, V.A.; Van Le, Q.; Cho, J.H.; Ahn, S.H.; Kim, S.Y. MOF-derived Co/Co3O4/C hollow structural composite as an efficient electrocatalyst for hydrogen evolution reaction. Fuel 2022, 329, 125468. [Google Scholar] [CrossRef]
- Do, H.H.; Nguyen, T.H.C.; Van Nguyen, T.; Xia, C.; Nguyen, D.L.T.; Raizada, P.; Singh, P.; Nguyen, V.-H.; Ahn, S.H.; Kim, S.Y. Metal-organic-framework based catalyst for hydrogen production: Progress and perspectives. Int. J. Hydrogen Energy 2022, 47, 37552–37568. [Google Scholar] [CrossRef]
- Do, H.H.; Tekalgne, M.A.; Le, Q.V.; Cho, J.H.; Ahn, S.H.; Kim, S.Y. Hollow Ni/NiO/C composite derived from metal-organic frameworks as a high-efficiency electrocatalyst for the hydrogen evolution reaction. Nano Converg. 2023, 10, 6. [Google Scholar] [CrossRef] [PubMed]
- Rego, R.M.; Ajeya, K.V.; Jung, H.Y.; Kabiri, S.; Jafarian, M.; Kurkuri, M.D.; Kigga, M. Nanoarchitectonics of Bimetallic MOF@Lab-Grade Flexible Filter Papers: An Approach Towards Real-Time Water Decontamination and Circular Economy. Small 2023, 2302692. [Google Scholar] [CrossRef] [PubMed]
- Nadar, N.R.; Rego, R.M.; Kumar, G.D.; Rao, H.J.; Pai, R.K.; Kurkuri, M.D. Demystifying the influence of design parameters of nature-inspired materials for supercapacitors. J. Energy Storage 2023, 72, 108670. [Google Scholar] [CrossRef]
- Choe, J.H.; Kim, H.; Hong, C.S. MOF-74 type variants for CO2 capture. Mater. Chem. Front. 2021, 5, 5172–5185. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, R.B.; Wang, J.; Wang, B.; Liang, B.; Yildirim, T.; Zhang, J.; Zhou, W.; Chen, B. Optimization of the pore structures of MOFs for record high hydrogen volumetric working capacity. Adv. Mater. 2020, 32, 1907995. [Google Scholar] [CrossRef]
- Kim, J.H.; Park, H.W.; Koo, S.-J.; Lee, D.; Cho, E.; Kim, Y.-K.; Shin, M.; Choi, J.W.; Lee, H.J.; Song, M. High efficiency and stable solid-state fiber dye-sensitized solar cells obtained using TiO2 photoanodes enhanced with metal organic frameworks. J. Energy Chem. 2022, 67, 458–466. [Google Scholar] [CrossRef]
- Khajavian, R.; Mirzaei, M.; Alizadeh, H. Current status and future prospects of metal–organic frameworks at the interface of dye-sensitized solar cells. Dalton Trans. 2020, 49, 13936–13947. [Google Scholar] [CrossRef]
- Ramasubbu, V.; Kumar, P.R.; Mothi, E.M.; Karuppasamy, K.; Kim, H.-S.; Maiyalagan, T.; Shajan, X.S. Highly interconnected porous TiO2-Ni-MOF composite aerogel photoanodes for high power conversion efficiency in quasi-solid dye-sensitized solar cells. Appl. Surf. Sci. 2019, 496, 143646. [Google Scholar] [CrossRef]
- Dou, J.; Zhu, C.; Wang, H.; Han, Y.; Ma, S.; Niu, X.; Li, N.; Shi, C.; Qiu, Z.; Zhou, H. Synergistic effects of Eu-MOF on perovskite solar cells with improved stability. Adv. Mater. 2021, 33, 2102947. [Google Scholar] [CrossRef]
- Liang, X.; Zhou, X.; Ge, C.; Lin, H.; Satapathi, S.; Zhu, Q.; Hu, H. Advance and prospect of metal-organic frameworks for perovskite photovoltaic devices. Org. Electron. 2022, 106, 106546. [Google Scholar] [CrossRef]
- Llabrés i Xamena, F.X.; Corma, A.; Garcia, H. Applications for metal−organic frameworks (MOFs) as quantum dot semiconductors. J. Phys. Chem. C 2007, 111, 80–85. [Google Scholar] [CrossRef]
- Safaei, M.; Foroughi, M.M.; Ebrahimpoor, N.; Jahani, S.; Omidi, A.; Khatami, M. A review on metal-organic frameworks: Synthesis and applications. TrAC Trends Anal. Chem. 2019, 118, 401–425. [Google Scholar] [CrossRef]
- Al Amery, N.; Abid, H.R.; Al-Saadi, S.; Wang, S.; Liu, S. Facile directions for synthesis, modification and activation of MOFs. Mater. Today Chem. 2020, 17, 100343. [Google Scholar] [CrossRef]
- Sumida, K.; Liang, K.; Reboul, J.; Ibarra, I.A.; Furukawa, S.; Falcaro, P. Sol–gel processing of metal–organic frameworks. Chem. Mater. 2017, 29, 2626–2645. [Google Scholar] [CrossRef]
- Rubio-Martinez, M.; Avci-Camur, C.; Thornton, A.W.; Imaz, I.; Maspoch, D.; Hill, M.R. New synthetic routes towards MOF production at scale. Chem. Soc. Rev. 2017, 46, 3453–3480. [Google Scholar] [CrossRef]
- Ni, Z.; Masel, R.I. Rapid production of metal−organic frameworks via microwave-assisted solvothermal synthesis. J. Am. Chem. Soc. 2006, 128, 12394–12395. [Google Scholar] [CrossRef]
- Vakili, R.; Xu, S.; Al-Janabi, N.; Gorgojo, P.; Holmes, S.M.; Fan, X. Microwave-assisted synthesis of zirconium-based metal organic frameworks (MOFs): Optimization and gas adsorption. Microporous Mesoporous Mater. 2018, 260, 45–53. [Google Scholar] [CrossRef]
- Cole, J.M.; Pepe, G.; Al Bahri, O.K.; Cooper, C.B. Cosensitization in dye-sensitized solar cells. Chem. Rev. 2019, 119, 7279–7327. [Google Scholar] [CrossRef]
- Bhattarai, S.; Mhamdi, A.; Hossain, I.; Raoui, Y.; Pandey, R.; Madan, J.; Bouazizi, A.; Maiti, M.; Gogoi, D.; Sharma, A. A detailed review of perovskite solar cells: Introduction, working principle, modelling, fabrication techniques, future challenges. Micro Nanostruct. 2022, 172, 207450. [Google Scholar] [CrossRef]
- Marinova, N.; Valero, S.; Delgado, J.L. Organic and perovskite solar cells: Working principles, materials and interfaces. J. Colloid Interface Sci. 2017, 488, 373–389. [Google Scholar] [CrossRef]
- Lee, D.Y.; Lim, I.; Shin, C.Y.; Patil, S.A.; Lee, W.; Shrestha, N.K.; Lee, J.K.; Han, S.-H. Facile interfacial charge transfer across hole doped cobalt-based MOFs/TiO2 nano-hybrids making MOFs light harvesting active layers in solar cells. J. Mater. Chem. A 2015, 3, 22669–22676. [Google Scholar] [CrossRef]
- Spoerke, E.D.; Small, L.J.; Foster, M.E.; Wheeler, J.; Ullman, A.M.; Stavila, V.; Rodriguez, M.; Allendorf, M.D. MOF-sensitized solar cells enabled by a pillared porphyrin framework. J. Phys. Chem. C 2017, 121, 4816–4824. [Google Scholar] [CrossRef]
- Li, Y.; Pang, A.; Wang, C.; Wei, M. Metal–organic frameworks: Promising materials for improving the open circuit voltage of dye-sensitized solar cells. J. Mater. Chem. 2011, 21, 17259–17264. [Google Scholar] [CrossRef]
- Gu, A.; Xiang, W.; Wang, T.; Gu, S.; Zhao, X. Enhance photovoltaic performance of tris (2, 2′-bipyridine) cobalt (II)/(III) based dye-sensitized solar cells via modifying TiO2 surface with metal-organic frameworks. Sol. Energy 2017, 147, 126–132. [Google Scholar] [CrossRef]
- He, Y.; Zhang, Z.; Wang, W.; Fu, L. Metal organic frameworks derived high-performance photoanodes for DSSCs. J. Alloys Compd. 2020, 825, 154089. [Google Scholar] [CrossRef]
- He, Y.; Wang, W. ZIF-8 and three-dimensional graphene network assisted DSSCs with high performances. J. Solid State Chem. 2021, 296, 121992. [Google Scholar] [CrossRef]
- Kumar, P.R.; Ramasubbu, V.; Shajan, X.S.; Mothi, E. Porphyrin-sensitized quasi-solid solar cells with MOF composited titania aerogel photoanodes. Mater. Today Energy 2020, 18, 100511. [Google Scholar] [CrossRef]
- Chen, T.-Y.; Huang, Y.-J.; Li, C.-T.; Kung, C.-W.; Vittal, R.; Ho, K.-C. Metal-organic framework/sulfonated polythiophene on carbon cloth as a flexible counter electrode for dye-sensitized solar cells. Nano Energy 2017, 32, 19–27. [Google Scholar] [CrossRef]
- Ahmed, A.S.; Xiang, W.; Amiinu, I.S.; Zhao, X. Zeolitic-imidazolate-framework (ZIF-8)/PEDOT: PSS composite counter electrode for low cost and efficient dye-sensitized solar cells. New J. Chem. 2018, 42, 17303–17310. [Google Scholar] [CrossRef]
- Yang, A.-N.; Lin, J.T.; Li, C.-T. Electroactive and sustainable Cu-MOF/PEDOT composite electrocatalysts for multiple redox mediators and for high-performance dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2021, 13, 8435–8444. [Google Scholar] [CrossRef]
- Tian, Y.-B.; Wang, Y.-Y.; Chen, S.-M.; Gu, Z.-G.; Zhang, J. Epitaxial growth of highly transparent metal–porphyrin framework thin films for efficient bifacial dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2019, 12, 1078–1083. [Google Scholar] [CrossRef] [PubMed]
- Shen, D.; Pang, A.; Li, Y.; Dou, J.; Wei, M. Metal–organic frameworks at interfaces of hybrid perovskite solar cells for enhanced photovoltaic properties. Chem. Commun. 2018, 54, 1253–1256. [Google Scholar] [CrossRef] [PubMed]
- Ahmadian-Yazdi, M.-R.; Gholampour, N.; Eslamian, M. Interface engineering by employing zeolitic imidazolate framework-8 (ZIF-8) as the only scaffold in the architecture of perovskite solar cells. ACS Appl. Energy Mater. 2020, 3, 3134–3143. [Google Scholar] [CrossRef]
- Jin, Z.; Li, B.; Xu, Y.; Zhu, B.; Ding, G.; Wang, Y.; Yang, J.; Zhang, Q.; Rui, Y. Confinement of MACl guest in 2D ZIF-8 triggers interface and bulk passivation for efficient and UV-stable perovskite solar cells. J. Mater. Chem. C 2023, 11, 6730–6740. [Google Scholar] [CrossRef]
- Ryu, U.; Jee, S.; Park, J.-S.; Han, I.K.; Lee, J.H.; Park, M.; Choi, K.M. Nanocrystalline titanium metal–organic frameworks for highly efficient and flexible perovskite solar cells. ACS Nano 2018, 12, 4968–4975. [Google Scholar] [CrossRef]
- Nguyen, T.M.H.; Bark, C.W. Synthesis of cobalt-doped TiO2 based on metal–organic frameworks as an effective electron transport material in perovskite solar cells. ACS Omega 2020, 5, 2280–2286. [Google Scholar] [CrossRef]
- Andrade, V.A.G.; Martínez, W.O.H.; Redondo, F.; Guerrero, N.B.C.; Roncaroli, F.; Perez, M.D. Fe and Ti metal-organic frameworks: Towards tailored materials for photovoltaic applications. Appl. Mater. Today 2021, 22, 100915. [Google Scholar] [CrossRef]
- Li, M.; Wang, J.; Jiang, A.; Xia, D.; Du, X.; Dong, Y.; Wang, P.; Fan, R.; Yang, Y. Metal organic framework doped Spiro-OMeTAD with increased conductivity for improving perovskite solar cell performance. Solar Energy 2019, 188, 380–385. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Yang, Y.; Gai, S.; Dong, Y.; Qiu, L.; Xia, D.; Fan, X.; Wang, W.; Hu, B. New insight into the Lewis basic sites in metal–organic framework-doped hole transport materials for efficient and stable Perovskite solar cells. ACS Appl. Mater. Interfaces 2021, 13, 5235–5244. [Google Scholar] [CrossRef]
- Xing, W.; Ye, P.; Lu, J.; Wu, X.; Chen, Y.; Zhu, T.; Peng, A.; Huang, H. Tellurophene-based metal-organic framework nanosheets for high-performance organic solar cells. J. Power Sources 2018, 401, 13–19. [Google Scholar] [CrossRef]
- Sasitharan, K.; Bossanyi, D.G.; Vaenas, N.; Parnell, A.J.; Clark, J.; Iraqi, A.; Lidzey, D.G.; Foster, J.A. Metal–organic framework nanosheets for enhanced performance of organic photovoltaic cells. J. Mater. Chem. A 2020, 8, 6067–6075. [Google Scholar] [CrossRef]
Solar Cell Types | MOF-Based Materials | Jsc (mA cm−2) | Voc (V) | FF | η (%) | Ref. |
---|---|---|---|---|---|---|
DSSC | I2@ Co-NDC/TiO2 | 2.56 | 0.63 | 0.63 | 1.12 | [61] |
ZIF-8/TiO2 | 10.28 | 0.753 | 0.69 | 5.34 | [63] | |
ZIF-8/TiO2 | 14.39 | 0.897 | 0.73 | 9.42 | [64] | |
UiO-66-RGO/TiO2 | 18.6 | 0.678 | 0.608 | 7.67 | [65] | |
ZIF-8/3DGN/TiO2 | 20.9 | 0.681 | 0.616 | 8.77 | [66] | |
TiO2-Ni-MOF | 27.32 | 0.624 | 0.516 | 8.846 | [48] | |
Cu-MOF/TiO2 | 1.70 | 0.32 | 0.236 | 0.13 | [67] | |
MOF-525/s-PT | 16.14 | 0.80 | 0.70 | 8.91 | [68] | |
ZIF-8/PEDOT:PSS | 11.46 | 0.852 | 0.70 | 7.56 | [69] | |
Cu-MOF/PEDOT | 16.36 | 0.777 | 0.65 | 8.26 | [70] | |
Zn-TCPP-Pt | 12.95 | 0.69 | 0.61 | 5.48 | [71] | |
PSC | mp-TiO2/ZIF-8 | 22.82 | 1.02 | 0.73 | 16.99 | [72] |
c-TiO2/ZIF-8-10 | 21.8 | 1.23 | 0.59 | 16.8 | [73] | |
MACl@ZIF-8 | 24.07 | 1.16 | 0.791 | 22.10 | [74] | |
nTi-MOF/PCBM | 23.18 | 1.082 | 0.755 | 18.94 | [75] | |
Co-doped TiO2 | 24.078 | 1.027 | 0.64949 | 15.75 | [76] | |
NH2-MIL-125 (Ti) | 19.10 | 0.64 | 0.48 | 5.9 | [77] | |
In-based MOF | 24.3 | 1.0 | 0.70 | 17.0 | [78] | |
Zn-CBOB | 23.17 | 1.135 | 0.784 | 20.64 | [79] | |
OSC | ZnO/MOF-PEIE | 17.09 | 0.86 | 0.7069 | 10.39 | [80] |
P3HT-Zn2(ZnTCPP)-PCBM | 10.8 | 0.69 | 0.69 | 5.2 | [81] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Do, H.H.; Kim, S.Y. Metal-Organic Frameworks Based Multifunctional Materials for Solar Cells: A Review. Symmetry 2023, 15, 1830. https://doi.org/10.3390/sym15101830
Do HH, Kim SY. Metal-Organic Frameworks Based Multifunctional Materials for Solar Cells: A Review. Symmetry. 2023; 15(10):1830. https://doi.org/10.3390/sym15101830
Chicago/Turabian StyleDo, Ha Huu, and Soo Young Kim. 2023. "Metal-Organic Frameworks Based Multifunctional Materials for Solar Cells: A Review" Symmetry 15, no. 10: 1830. https://doi.org/10.3390/sym15101830
APA StyleDo, H. H., & Kim, S. Y. (2023). Metal-Organic Frameworks Based Multifunctional Materials for Solar Cells: A Review. Symmetry, 15(10), 1830. https://doi.org/10.3390/sym15101830