High-Dimensional Periodic Framelet with Only One Symmetric Generator
Abstract
:1. Introduction
2. Preliminary
- (i)
- Both and are Bessel sequences for
- (ii)
- For any , .
3. Construction of High-Dimensional Periodic Frames
- (a)
- ;
- (b)
- ;
- (c)
- and , where ,We define as
4. Optimal Frame Bounds
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mallat, S. A Wavelet Tour of Signal Processing; Academic Press: San Diego, CA, USA, 2008. [Google Scholar]
- Walter, G.G. Wavelet and other Orthogonal Systems with Applications; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Bajwa, W.U.; Pezeshki, A. Finite Frames for Sparse Signal Processing. In Finite Frames: Theory and Applications; Casazza, P., Kutyniok, G., Eds.; Birkhauser: Boston, MA, USA, 2012. [Google Scholar]
- Christensen, O. Frames and Pseudo-Inverses. J. Math. Anal. Appl. 1995, 195, 401. [Google Scholar] [CrossRef]
- Christensen, O. An Introduction to Frames and Riesz Bases; Birkhauser: Boston, CA, USA, 2003. [Google Scholar]
- Qin, Y.; Wang, J.; Mao, Y. Dense Framelets with Two Generators and their Application in Mechanical Fault Diagnosis. Mech. Syst. Sig. Process. 2013, 40, 483–498. [Google Scholar] [CrossRef]
- Antolin, A.S.; Zalik, R.A. Compactly Supported Parseval Framelets with Symmetry associated to E(2)d(Z) Matrices. Appl. Math. Comput. 2018, 325, 179–190. [Google Scholar]
- Daubechies, I.; Han, B.; Ron, A.; Shen, Z. Framelets: MRA-based Constructions of Wavelet Frames. Appl. Comput. Harmon. Anal. 2003, 14, 1–46. [Google Scholar] [CrossRef]
- Ri, C.; Paek, Y. Causal FIR symmetric paraunitary matrix extension and construction of symmetric tight M-dilated framelets. Appl. Comput. Harmon. Anal. 2021, 51, 437–460. [Google Scholar]
- Shi, Y.; Song, J.; Hua, X. Poissonian image deblurring method by non-local total variation and framelet regularization constraint. Comput. Electr. Eng. 2017, 62, 319–329. [Google Scholar]
- Benedetto, J.J.; Li, S. The theory of Multiresolution Analysis Frames and Applications to Filter Banks. Appl. Comp. Harmon. Anal. 1998, 5, 389–427. [Google Scholar]
- Benedetto, J.J.; Treiber, O.M. Wavelet Frame: Multiresolution Analysis and Extension Principle. In Wavelet Transforms and Time-Frequency Signal Analysis; Debnath, L., Ed.; Birkhauser: Boston, CA, USA, 2000. [Google Scholar]
- Kim, H.O.; Lim, J.K. On Frame Wavelets associated with Frame Multiresolution Analysis. Appl. Comput. Harmon. Anal. 2001, 10, 61–70. [Google Scholar] [CrossRef]
- Mu, L.; Zhang, Z.; Zhang, P. On the Higher-dimensional Wavelet Frames. Appl. Comput. Harmon. Anal. 2004, 16, 44–59. [Google Scholar]
- Zhang, Z. Characterization of Frequency Domains of Bandlimited Frame Multiresolution Analysis. Mathematics 2021, 9, 1050. [Google Scholar] [CrossRef]
- Zhang, Z.; Saito, N. Existence Theorem and Minimal Cardinality of UEP framelets and MEP bi-Framelets. Appl Comput. Harmon. Anal. 2013, 34, 297–307. [Google Scholar] [CrossRef]
- Zhang, Z. Framelet Sets and associated Scaling Sets. Mathematics 2021, 9, 2824. [Google Scholar] [CrossRef]
- Zhang, Z.; Jorgenson, P.E.T. Frame Theory in Data Science; Springer: Heidelberg, Germnay, 2023. [Google Scholar]
- Krivoshein, A.V. From frame-like wavelets to wavelet frames keeping approximation properties and symmetry. Appl. Math. Comput. 2019, 344–345, 204–218. [Google Scholar] [CrossRef]
- Dutta, P.; Ghoshal, D.; Lala, A. Enhanced symmetry of the p-adic wavelets. Phys. Lett. 2018, 783, 421–427. [Google Scholar] [CrossRef]
- Diao, C.; Han, B.; Lu, R. Generalized matrix spectral factorization with symmetry and applications to symmetric quasi-tight framelets. Appl. Comput. Harmon. Anal. 2023, 65, 67–111. [Google Scholar] [CrossRef]
- Goh, S.S.; Han, B.; Shen, Z. Tight periodic wavelet frames and approximation orders. Appl. Comput. Harmon. Anal. 2011, 31, 228–248. [Google Scholar] [CrossRef]
- Lebedeva, E.A.; Prestin, J. Periodic wavelet frames and time-frequency localization. Appl. Comput. Harmon. Anal. 2014, 37, 347–359. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z. High-Dimensional Periodic Framelet with Only One Symmetric Generator. Symmetry 2023, 15, 1895. https://doi.org/10.3390/sym15101895
Zhang Z. High-Dimensional Periodic Framelet with Only One Symmetric Generator. Symmetry. 2023; 15(10):1895. https://doi.org/10.3390/sym15101895
Chicago/Turabian StyleZhang, Zhihua. 2023. "High-Dimensional Periodic Framelet with Only One Symmetric Generator" Symmetry 15, no. 10: 1895. https://doi.org/10.3390/sym15101895
APA StyleZhang, Z. (2023). High-Dimensional Periodic Framelet with Only One Symmetric Generator. Symmetry, 15(10), 1895. https://doi.org/10.3390/sym15101895