Solutions of Magnetohydrodynamics Equation through Symmetries
Abstract
1. Introduction
2. Preliminaries
3. Lie Symmetries of the Magnetohydrodynamics Equation
4. Reduction to an Ordinary Differential Equation
5. Particular Cases of Equation (28)
5.1. Case 1 (Gambier.B 19)
5.2. Case 2 (Gambier.B 29)
5.3. Case 3 (Gambier.B 30)
5.4. Case 4 (Second Painlevé Transcendent)
5.5. Case 5 (Kummer–Schwarz Equation)
5.6. Case 6 (Duffing Equation)
6. General Cases of Equation (29)
6.1. Case 7 Gambier.B 28
6.2. Case 8 Gambier.B 27
7. The Case f = 0, g = 0
7.1. Case 6a
7.2. Case 6b
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fleischer, J.; Diamond, P.H. Compressible Alfven turbulence in one dimension. Phys. Rev. E 1998, 58, R2709. [Google Scholar] [CrossRef]
- Politano, H.; Pouquet, A. Model of intermittency in magnetohydrodynamic turbulence. Phys. Rev. E 1995, 52, 636. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Bhattacharjee, J.K.; Ramaswamy, S. Mean magnetic field and noise cross-correlation in magnetohydrodynamic turbulence: Results from a one-dimensional model. Eur. J. B Condens. Matter Complex Syst. 1999, 9, 725–730. [Google Scholar] [CrossRef]
- Basu, A.; Sain, A.; Dhar, S.K.; Pandit, R. Multiscaling in models of magnetohydrodynamic turbulence. Phys. Rev. Lett. 1998, 81, 2687. [Google Scholar] [CrossRef]
- Bhattacharjee, J.K. Randomly stirred fluids, mode coupling theories and the turbulent Prandtl number. J. Phys. A Math. Gen. 1988, 21, L551. [Google Scholar] [CrossRef]
- Camargo, S.J.; Tasso, H. Renormalization group in magnetohydrodynamic turbulence. Phys. Fluids B Plasma Phys. 1992, 4, 1199–1212. [Google Scholar] [CrossRef]
- Forster, D.; Nelson, D.R.; Stephen, M.J. Large-distance and long-time properties of a randomly stirred fluid. Phys. Rev. A 1977, 16, 732. [Google Scholar] [CrossRef]
- Lahiri, R.; Ramaswamy, S. Are steadily moving crystals unstable? Phys. Rev. Lett. 1997, 79, 1150. [Google Scholar] [CrossRef]
- Yakhot, V.; Orszag, S.A. Renormalization group analysis of turbulence. I. Basic theory. J. Sci. Comput. 1986, 1, 3–51. [Google Scholar] [CrossRef]
- Fuchs, J.C. Symmetry groups and similarity solutions of MHD equations. J. Math. Phys. 1991, 32, 1703–1708. [Google Scholar] [CrossRef]
- Nucci, M.C. Group analysis for MHD equations. Atti Sem. Mat. Fis. Univ. Modena 1984, 33, 21–34. [Google Scholar]
- Gross, J. Invariante L Sungen der Eindimensionalen Nichtstationa ren Realen MHD-Gleichungen; Technische Universita t Carolo-Wilhelmina zu Braunschweig: Braunschweig, Germany, 1983. [Google Scholar]
- Grundland, A.M.; Lalague, L. Lie subgroups of symmetry groups of fluid dynamics and magnetohydro-dynamics equations. Can. Phys. 1995, 73, 463–477. [Google Scholar] [CrossRef]
- Goedbloed, J.; Lifschitz, A. Stationary symmetric magnetohydrodynamic flows. Phys. Plasmas 1997, 4, 3544–3564. [Google Scholar] [CrossRef]
- Knobloch, E. Symmetry and instability in rotating hydrodynamic and magnetohydrodynamic flows. Phys. Fluids 1996, 8, 1446–1454. [Google Scholar] [CrossRef]
- Kraichnan, R.H. Inertial-range spectrum of hydromagnetic turbulence. Phys. Fluids 1965, 8, 1385–1387. [Google Scholar] [CrossRef]
- She, Z.S.; Leveque, E. Universal scaling laws in fully developed turbulence. Phys. Rev. Lett. 1994, 72, 336. [Google Scholar] [CrossRef]
- Gambier, B. Sur les equations differentielles du second ordre et du premier degre dont l’integrale generale est a points critiques fixes. Acta Math. 1910, 33, 1–55. [Google Scholar] [CrossRef]
- Meleshko, S.V. Methods for Constructing Exact Solutions of Partial Differential Equations; Springer Science: New York, NY, USA, 2005. [Google Scholar]
- Dimas, S.; Tsoubelis, D. A new Mathematica-based program for solving overdetermined systems of PDEs. In Proceedings of the 8th International Mathematica Symposium, Avignon, France, 19–23 June 2006. [Google Scholar]
- Polyanin, A.D.; Zaitsev, V.F. Handbook of Nonlinear Equations of Mathematical Physics. Exact Solutions; Fizmatlit: Moscow, Russia, 2002. (In Russian) [Google Scholar]
- Dimas, S.; Tsoubelis, D. SYM: A new symmetry-finding package for Mathematica. In Proceedings of the 10th International Conference in Modern Group Analysis; University of Cyprus: Nicosia, Cyprus, 2004; pp. 64–70. [Google Scholar]
- Ince, E.L. Ordinary Differential Equations; Longmans, Green & Co.: London, UK, 1927. [Google Scholar]
- Dimas, S. Partial differential equations, algebraic computing and nonlinear systems. Ph.D. Thesis, University of Patras, Patras, Greece, 2008. [Google Scholar]
- Bluman, G.W.; Kumei, S. Symmetries and Differential Equations; Springer: New York, NY, USA, 1989. [Google Scholar]
- Andriopoulos, K.; Leach, P.G.L. An interpretation of the presence of both positive and negative nongeneric resonances in the singularity analysis. Phys. Lett. A 2006, 359, 199–203. [Google Scholar] [CrossRef]
- Andriopoulos, K.; Leach, P.G.L. Singularity analysis for autonomous and nonautonomous differential equations. Appl. Discret. Math. 2011, 5, 230–239. [Google Scholar] [CrossRef]
- Andriopoulos, K.; Leach, P.G.L. The occurrence of a triple-1 resonance in the standard singularity. Nuovo C. Della Societa Ital. Fis. B Gen. Phys. Relativ. Astron. Math. Phys. Methods 2009, 124, 1–11. [Google Scholar]
- Andriopoulos, K.; Leach, P.G.L. Symmetry and singularity properties of second-order ordinary differential equation of Lie’s Type III. J. Math. Anal. Appl. 2007, 328, 860–875. [Google Scholar] [CrossRef][Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinuvasan, R.; Halder, A.K.; Seshadri, R.; Paliathanasis, A.; Leach, P.G.L. Solutions of Magnetohydrodynamics Equation through Symmetries. Symmetry 2023, 15, 1908. https://doi.org/10.3390/sym15101908
Sinuvasan R, Halder AK, Seshadri R, Paliathanasis A, Leach PGL. Solutions of Magnetohydrodynamics Equation through Symmetries. Symmetry. 2023; 15(10):1908. https://doi.org/10.3390/sym15101908
Chicago/Turabian StyleSinuvasan, Rangasamy, Amlan K. Halder, Rajeswari Seshadri, Andronikos Paliathanasis, and Peter G. L. Leach. 2023. "Solutions of Magnetohydrodynamics Equation through Symmetries" Symmetry 15, no. 10: 1908. https://doi.org/10.3390/sym15101908
APA StyleSinuvasan, R., Halder, A. K., Seshadri, R., Paliathanasis, A., & Leach, P. G. L. (2023). Solutions of Magnetohydrodynamics Equation through Symmetries. Symmetry, 15(10), 1908. https://doi.org/10.3390/sym15101908