IRS-Assisted Hybrid Secret Key Generation
Abstract
:1. Introduction
2. Conventional IRS-Assisted SK Generation and Quantization
2.1. System Model for an IRS-Assisted SK Generation
2.2. Conventional Quantization Methods
3. Proposed Methods
3.1. SK Generation Protocol
3.2. Compact Phase Quantization Method
3.3. Examples of 4 to 32 Level PQ
Algorithm 1 Proposed PQ. |
|
4. Secrecy Performance
4.1. Performance Measures
4.2. Simulation Results and Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SK | Secret key |
LOS | Line-of-sight |
IoT | Internet of Things |
IRS | Intelligent reflecting surface |
CSI | Channel state information |
PQ | Phase quantization |
TDD | Time-division duplex |
AWGN | Additive white Gaussian noise |
AVQ | Absolute value-based quantization |
DVQ | Difference value-based quantization |
Probability density function | |
PSK | Phase shift keying |
LS | Least square |
SNR | Signal-to-noise ratio |
References
- Maurer, U.M. Secret key agreement by public discussion from common information. IEEE Trans. Inf. Theory 1993, 39, 733–742. [Google Scholar] [CrossRef]
- Matthé, M.; Chorti, A. Analysis of the mutual information of channel phase observations in line-of-sight scenarios. Entropy 2023, 25, 1038. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Zhang, R. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network. IEEE Commun. Mag. Jan. 2019, 58, 106–112. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Beamforming optimization for wireless network aided by intelligent reflecting surface with discrete phase shifts. IEEE Trans. Commun. 2019, 68, 1838–1851. [Google Scholar] [CrossRef]
- Ji, Z.; Yeoh, P.L.; Chen, G.; Pan, C.; Zhang, Y.; He, Z.; Yin, H.; Li, Y. Random shifting intelligent reflecting surface for OTP encrypted data transmission. IEEE Wirel. Commun. Lett. 2021, 10, 1192–1196. [Google Scholar] [CrossRef]
- Hu, X.; Jin, L.; Huang, K.; Sun, X.; Zhou, Y.; Qu, J. Intelligent reflecting surface-assisted secret key generation with discrete phase shifts in static environment. IEEE Wirel. Commun. Lett. 2021, 10, 1867–1870. [Google Scholar] [CrossRef]
- Ji, Z.; Yeoh, P.L.; Zhang, D.; Chen, G.; Zhang, Y.; He, Z.; Yin, H. Secret key generation for intelligent reflecting surface assisted wireless communication networks. IEEE Trans. Veh. Technol. 2021, 70, 1030–1034. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, M.; Xu, J.; Gong, S.; Hoang, D.T.; Niyato, D. Boosting secret key generation for IRS-assisted symbiotic radio communications. In Proceedings of the 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland, 25–28 April 2021; pp. 1–6. [Google Scholar]
- Lu, X.; Lei, J.; Shi, Y.; Li, W. Intelligent reflecting surface assisted secret key generation. IEEE Signal Process. Lett. 2021, 28, 1036–1040. [Google Scholar] [CrossRef]
- Zhang, J.; Rajendran, S.; Sun, Z.; Woods, R.; Hanzo, L. Physical layer security for the Internet of Things: Authentication and key generation. IEEE Wirel. Commun. 2019, 26, 92–98. [Google Scholar] [CrossRef]
- Ye, C.; Reznik, A.; Shah, Y. Extracting secrecy from jointly Gaussian random variables. In Proceedings of the 2006 IEEE International Symposium on Information Theory, Seattle, WA, USA, 9–14 July 2006; pp. 2593–2597. [Google Scholar]
- Zeng, K.; Wu, D.; Chan, A.; Mohapatra, P. Exploiting multiple-antenna diversity for shared secret key generation in wireless networks. In Proceedings of the 2010 Proceedings IEEE INFOCOM, San Diego, CA, USA, 14–19 March 2010; pp. 1–9. [Google Scholar]
- Sayeed, A.; Perrig, A. Secure wireless communications: Secret keys through multipath. In Proceedings of the 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, Las Vegas, NV, USA, 31 March–4 April 2008; pp. 3013–3016. [Google Scholar]
- Shehadeh, Y.E.H.; Alfandi, O.; Tout, K.; Hogrefe, D. Intelligent mechanisms for key generation from multipath wireless channels. In Proceedings of the 2011 Wireless Telecommunications Symposium (WTS), New York, NY, USA, 13–15 April 2011; pp. 1–6. [Google Scholar]
- Wang, Q.; Su, H.; Ren, K.; Kim, K. Fast and scalable secret key generation exploiting channel phase randomness in wireless networks. In Proceedings of the 2011 Proceedings IEEE INFOCOM, Shanghai, China, 10–15 April 2011; pp. 1422–1430. [Google Scholar]
- Xiao, S.; Guo, Y.; Huang, K.; Jin, L. Cooperative group secret key generation based on secure network coding. IEEE Commun. Lett. 2018, 22, 1466–1469. [Google Scholar] [CrossRef]
- Aldaghri, N.; Mahdavifar, H. Physical layer secret key generation in static environments. IEEE Trans. Inf. Forensics Secur. 2020, 15, 2692–2705. [Google Scholar]
- Lu, T.; Chen, L.; Zhang, J.; Cao, K.; Hu, A. Reconfigurable intelligent surface assisted secret key generation in quasi-static environments. IEEE Commun. Lett. 2021, 26, 244–248. [Google Scholar]
- Zhang, M.; Kim, S.; Kim, Y. Universal soft decision demodulator for M-ary adaptive modulation systems. In Proceedings of the 2012 18th Asia-Pacific Conference on Communications (APCC), Jeju, Republic of Korea, 15–17 October 2012; pp. 574–578. [Google Scholar]
- Zhang, M.; Kim, S. Universal soft demodulation schemes for M-ary phase shift keying and quadrature amplitude modulation. IET Commun. 2016, 10, 316–326. [Google Scholar]
- Rottenberg, F.; Nguyen, T.; Dricot, J.-M.; Horlin, F.; Louveaux, J. CSI-based versus RSS-based secret-key generation under correlated eavesdropping. IEEE Trans. Commun. 2021, 69, 1868–1881. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Zhuang, Z.; Kim, S. IRS-Assisted Hybrid Secret Key Generation. Symmetry 2023, 15, 1906. https://doi.org/10.3390/sym15101906
Zhang M, Zhuang Z, Kim S. IRS-Assisted Hybrid Secret Key Generation. Symmetry. 2023; 15(10):1906. https://doi.org/10.3390/sym15101906
Chicago/Turabian StyleZhang, Meixiang, Ziyue Zhuang, and Sooyoung Kim. 2023. "IRS-Assisted Hybrid Secret Key Generation" Symmetry 15, no. 10: 1906. https://doi.org/10.3390/sym15101906
APA StyleZhang, M., Zhuang, Z., & Kim, S. (2023). IRS-Assisted Hybrid Secret Key Generation. Symmetry, 15(10), 1906. https://doi.org/10.3390/sym15101906