An Adaptive Mesh Refinement–Rotated Lattice Boltzmann Flux Solver for Numerical Simulation of Two and Three-Dimensional Compressible Flows with Complex Shock Structures
Abstract
:1. Introduction
2. Methodology
2.1. Governing Equations
2.2. LBFS with D1Q4 Model
2.3. The Rotated LBFS
2.4. Block-Structured Adaptive Mesh Refinement
3. Numerical Validations and Applications
3.1. Shock Tube Problem
3.2. Two-Dimensional Four-Wave Riemannian Problem
3.2.1. Interaction of Rarefaction Waves
3.2.2. Interaction of Contact Discontinuities and Shock Waves
3.3. Three-Dimensional Problems
3.3.1. Explosion in a Box
3.3.2. Vorticity Generated by a Shock
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- McDonald, P.W. The computation of transonic flow through two-dimensional gas turbine cascades. In Proceedings of the ASME 1971 International Gas Turbine Conference and Products Show, Houston, TX, USA, 28 March–1 April 1971. [Google Scholar] [CrossRef]
- Roe, P.L. Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 1997, 135, 250–258. [Google Scholar] [CrossRef]
- Kitamura, K.; Shima, E.; Nakamura, Y.; Roe, P.L. Evaluation of Euler fluxes for hypersonic heating computations. AIAA J. 2010, 48, 763–776. [Google Scholar] [CrossRef]
- Quirk, J.J. A contribution to the great Riemann solver debate. In Upwind and High-Resolution Schemes; Yousuff, H.M., Leer, B., Rosendale, J., Eds.; Springer: Heidelberg/Berlin, Germany, 1997; pp. 550–569. [Google Scholar] [CrossRef]
- Quirk, J.J. A contribution to the great Riemann solver debate. Int. J. Numer. Methods Fluids 1994, 18, 555–574. [Google Scholar] [CrossRef]
- Kermani, M.; Plett, E. Modified entropy correction formula for the Roe Scheme. In Proceedings of the 39th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 8–11 January 2001. [Google Scholar] [CrossRef]
- Kim, S.-S.; Kim, C.; Rho, O.H.; Hong, S.-K. Cures for the shock instability: Development of a shock-stable Roe Scheme. J. Comput. Phys. 2003, 185, 342–374. [Google Scholar] [CrossRef]
- Chen, S.-S.; Yan, C.; Lin, B.-X.; Li, Y.-S. A new robust carbuncle-free roe scheme for strong shock. J. Sci. Comput. 2018, 77, 1250–1277. [Google Scholar] [CrossRef]
- Fleischmann, N.; Adami, S.; Hu, X.Y.; Adams, N.A. A low dissipation method to cure the grid-aligned shock instability. J. Comput. Phys. 2020, 401, 109004. [Google Scholar] [CrossRef]
- Ren, X.-D.; Gu, C.-W.; Li, X.-S. Role of the momentum interpolation mechanism of the Roe scheme in shock instability. Int. J. Numer. Methods Fluids 2015, 84, 335–351. [Google Scholar] [CrossRef]
- Ren, Y.-X. A robust shock-capturing scheme based on rotated Riemann solvers. Comput. Fluids 2003, 32, 1379–1403. [Google Scholar] [CrossRef]
- Nishikawa, H.; Kitamura, K. Very simple, carbuncle-free, boundary-layer-resolving, rotated-hybrid Riemann solvers. J. Comput. Phys. 2008, 227, 2560–2581. [Google Scholar] [CrossRef]
- Benzi, R.; Succi, S.; Vergassola, M. The lattice Boltzmann equation: Theory and applications. Phys. Rep. 1992, 222, 145–197. [Google Scholar] [CrossRef]
- Guo, Z.; Shu, C. Lattice Boltzmann method and its applications in engineering. In Advances in Computational Fluid Dynamics; World Scientific: Singapore, 2013. [Google Scholar] [CrossRef]
- Hu, S.; Yan, G.; Shi, W. A lattice Boltzmann model for compressible perfect gas. Acta Mech. Sin. 1997, 13, 218–226. [Google Scholar]
- Yan, G.; Chen, Y.; Hu, S. Simple lattice Boltzmann model for simulating flows with shock wave. Phys. Rev. E 1999, 59, 454–459. [Google Scholar] [CrossRef]
- Kataoka, T.; Tsutahara, M. Lattice Boltzmann method for the compressible Euler equations. Phys. Rev. E 2004, 69, 056702. [Google Scholar] [CrossRef] [PubMed]
- Sun, C. Lattice-Boltzmann models for high speed flows. Phys. Rev. E 1998, 58, 7283–7287. [Google Scholar] [CrossRef]
- Sun, C. Simulations of compressible flows with strong shocks by an adaptive lattice Boltzmann model. J. Comput. Phys. 2000, 161, 70–84. [Google Scholar] [CrossRef]
- Sun, C.; Hsu, A.T. Three-dimensional lattice Boltzmann model for compressible flows. Phys. Rev. E 2003, 68, 016303. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; He, Y.L.; Wang, Y.; Tang, G.H. Three-dimensional non-free-parameter lattice-Boltzmann model and its application to inviscid compressible flows. Phys. Lett. A 2009, 373, 2101–2108. [Google Scholar] [CrossRef]
- Zhong, C.; Li, K.; Sun, J.; Zhuo, C. Compressible flow simulation around airfoil based on lattice Boltzmann method. Trans. Nanjing Univ. Aeronaut. Astronaut. 2009, 26, 206–211. [Google Scholar]
- Qu, K.; Shu, C.; Chew, Y.T. Alternative method to construct equilibrium distribution functions in lattice-Boltzmann method simulation of inviscid compressible flows at high Mach number. Phys. Rev. E 2007, 75, 036706. [Google Scholar] [CrossRef] [PubMed]
- Qu, K.; Shu, C.; Chew, Y.T. Simulation of shock-wave propagation with finite volume lattice Boltzmann method. Int. J. Mod. Phys. C 2007, 18, 447–454. [Google Scholar] [CrossRef]
- Ji, C.Z.; Shu, C.; Zhao, N. A lattice Boltzmann method-based flux solver and its application to solve shock tube problem. Mod. Phys. Lett. B 2009, 23, 313–316. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, L.; Shu, C. From lattice Boltzmann method to lattice Boltzmann flux solver. Entropy 2015, 17, 7713–7735. [Google Scholar] [CrossRef]
- Yang, L.M.; Shu, C.; Wu, J. Development and comparative studies of three non-free parameter lattice Boltzmann models for simulation of compressible flows. Adv. Appl. Math. Mech. 2012, 4, 454–472. [Google Scholar] [CrossRef]
- Yang, L.M.; Shu, C.; Wu, J. A moment conservation-based non-free parameter compressible lattice Boltzmann model and its application for Flux Evaluation at cell interface. Comput. Fluids 2013, 79, 190–199. [Google Scholar] [CrossRef]
- Shu, C.; Wang, Y.; Yang, L.M.; Wu, J. Lattice Boltzmann flux solver: An efficient approach for numerical simulation of fluid flows. Trans. Nanjing Univ. Aeronaut. Astronaut. 2014, 31, 1–15. [Google Scholar]
- Yang, L.M.; Shu, C.; Wu, J. A hybrid lattice Boltzmann flux solver for simulation of viscous compressible flows. Adv. Appl. Math. Mech. 2016, 8, 887–910. [Google Scholar] [CrossRef]
- Chen, J.; Yang, D.; Chen, Q.; Sun, J.; Wang, Y. A rotated lattice boltzmann flux solver with improved stability for the simulation of compressible flows with intense shock waves at high Mach number. Comput. Math. Appl. 2023, 132, 18–31. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.; Yang, D.; Chen, Q.; Sun, J. Development of three-dimensional rotated lattice boltzmann flux solver for the simulation of high-speed compressible flows. Comput. Fluids 2023, 265, 105992. [Google Scholar] [CrossRef]
- Hasert, M.; Masilamani, K.; Zimny, S.; Klimach, H.; Qi, J.; Bernsdorf, J.; Roller, S. Complex fluid simulations with the parallel tree-based Lattice Boltzmann solver Musubi. J. Comput. Sci. 2014, 5, 784–794. [Google Scholar] [CrossRef]
- Burstedde, C.; Johannes, H. Coarse mesh partitioning for tree-based Amr. SIAM J. Sci. Comput. 2017, 39, C364–C392. [Google Scholar] [CrossRef]
- Schornbaum, F.; Rüde, U. Extreme-scale block-structured adaptive mesh refinement. SIAM J. Sci. Comput. 2017, 40, 06829. [Google Scholar] [CrossRef]
- Zhang, W.; Almgren, A.; Beckner, V.; Bell, J.; Blaschke, J.; Chan, C.; Day, M.S.; Friesen, B.; Gott, K.; Graves, D.T.; et al. AMReX: A framework for block-structured adaptive mesh refinement. J. Open Source Softw. 2019, 4, 1370. [Google Scholar] [CrossRef]
- Deiterding, R. AMROC–Block-Structured Adaptive Mesh Refinement in Object-Oriented C++. Available online: http://amroc.sourceforge.net (accessed on 11 September 2023).
- Deiterding, R. Construction and application of an AMR algorithm for distributed memory computers. In Adaptive Mesh Refinement-Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2005; pp. 361–372. [Google Scholar] [CrossRef]
- Deiterding, R. Block-structured adaptive mesh refinement-theory, implementation and application. ESAIM Proc. 2011, 34, 97–150. [Google Scholar] [CrossRef]
- Deiterding, R. Parallel Adaptive Simulation of Multi-Dimensional Detonation Structures. Ph.D. Thesis, Brandenburgische Technische Universität, Cottbus, Germany, 2003. [Google Scholar]
- Van, L.B. Flux-vector splitting for the Euler equations. In Proceedings of the Eighth International Conference on Numerical Methods in Fluid Dynamics, St. Louis, MO, USA, 7–11 June 1982; pp. 507–512. [Google Scholar] [CrossRef]
- Berger, M.J.; Colella, P. Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 1989, 82, 64–84. [Google Scholar] [CrossRef]
- Kröner, D.; Ohlberger, M. A posteriori error estimates for upwind finite volume schemes for nonlinear conservation laws in Multi Dimensions. Math. Comput. 1999, 69, 25–40. [Google Scholar] [CrossRef]
- Berger, M.J. Adaptive Mesh Refinement for Hyperbolic Differential Equations. Ph.D. Thesis, Stanford University, Stanford, CA, USA, August 1982. [Google Scholar]
- Berger, M.J.; Oliger, J. Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 1984, 53, 484–512. [Google Scholar] [CrossRef]
- Sod, G.A. A survey of several finite difference methods for systems of Nonlinear hyperbolic conservation laws. J. Comput. Phys. 1978, 27, 1–31. [Google Scholar] [CrossRef]
- Zhang, T.; Zheng, Y. Conjecture on the structure of solutions of the Riemann problem for two-dimensional gas dynamics systems. SIAM J. Math. Anal. 1990, 21, 593–630. [Google Scholar] [CrossRef]
- Schulz-Rinne, C.W.; Collins, J.P.; Glaz, H.M. Numerical solution of the Riemann problem for two-dimensional gas dynamics. SIAM J. Sci. Comput. 1993, 14, 1394–1414. [Google Scholar] [CrossRef]
- Lax, P.D.; Liu, X.-D. Solution of two-dimensional Riemann problems of gas dynamics by positive schemes. SIAM J. Comput. 1998, 19, 319–340. [Google Scholar] [CrossRef]
- Kurganov, A.; Tadmor, E. Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers. Numer. Methods Partial Differ. Equ. 2002, 18, 584–608. [Google Scholar] [CrossRef]
- Han, E.; Li, J.Q.; Tang, H.Z. Accuracy of the adaptive GRP scheme and the simulation of 2-D Riemann problem for compressible Euler equations. Commun. Comput. Phys. 2011, 10, 577–609. [Google Scholar] [CrossRef]
- Deiterding, R. Available online: http://amroc.sourceforge.net/examples/euler/3d/html/box3d_n.htm (accessed on 11 September 2023).
- Langseth, J.O.; Leveque, R.J. A wave propagation method for three-dimensional hyperbolic conservation laws. J. Comput. Phys. 2000, 165, 126–166. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Chen, J.; Zhang, J.; Wang, L.; Wang, Y. An Adaptive Mesh Refinement–Rotated Lattice Boltzmann Flux Solver for Numerical Simulation of Two and Three-Dimensional Compressible Flows with Complex Shock Structures. Symmetry 2023, 15, 1909. https://doi.org/10.3390/sym15101909
Huang X, Chen J, Zhang J, Wang L, Wang Y. An Adaptive Mesh Refinement–Rotated Lattice Boltzmann Flux Solver for Numerical Simulation of Two and Three-Dimensional Compressible Flows with Complex Shock Structures. Symmetry. 2023; 15(10):1909. https://doi.org/10.3390/sym15101909
Chicago/Turabian StyleHuang, Xiaoyingjie, Jiabao Chen, Jun Zhang, Long Wang, and Yan Wang. 2023. "An Adaptive Mesh Refinement–Rotated Lattice Boltzmann Flux Solver for Numerical Simulation of Two and Three-Dimensional Compressible Flows with Complex Shock Structures" Symmetry 15, no. 10: 1909. https://doi.org/10.3390/sym15101909
APA StyleHuang, X., Chen, J., Zhang, J., Wang, L., & Wang, Y. (2023). An Adaptive Mesh Refinement–Rotated Lattice Boltzmann Flux Solver for Numerical Simulation of Two and Three-Dimensional Compressible Flows with Complex Shock Structures. Symmetry, 15(10), 1909. https://doi.org/10.3390/sym15101909