Proposed Theorems on the Lifts of Kenmotsu Manifolds Admitting a Non-Symmetric Non-Metric Connection (NSNMC) in the Tangent Bundle
Abstract
:1. Introduction
2. Preliminaries
2.1. Vertical and Complete Lifts
2.2. Kenmotsu Manifolds
3. Kenmotsu Manifolds in the Tangent Bundle
4. Lifts of NSNMC on Kenmotsu Manifolds in the Tangent Bundle
5. Lifts of Curvature Tensor of NSNMC on Kenmotsu Manifolds in the Tangent Bundle
6. Lifts of the Ricci Semi-Symmetric Kenmotsu Manifold in the Tangent Bundle
7. Example
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yano, K.; Kobayashi, S. Prolongations of tensor fields and connections to tangent bundles I general theory. J. Math. Soc. Jpn. 1966, 18, 194–210. [Google Scholar] [CrossRef]
- Yano, K.; Ishihara, S. Tangent and Cotangent Bundles: Differential Geometry; Marcel Dekker, Inc.: New York, NY, USA, 1973. [Google Scholar]
- Tani, M. Prolongations of hypersurfaces to tangent bundles. Kodai Math. Semin. Rep. 1969, 21, 85–96. [Google Scholar] [CrossRef]
- Pandey, P.; Chaturvedi, B.B. On a Kaehler manifold equipped with lift of quarter symmetric non-metric connection. Facta Univ. Ser. Math. Inform. 2018, 33, 539–546. [Google Scholar]
- Khan, M.N.I. Liftings from a para-Sasakian manifold to its tangent bundles. Filomat 2023, 37, 6727–6740. [Google Scholar]
- Khan, M.N.I.; De, U.C.; Velimirovic, L.S. Lifts of a quarter-symmetric metric connection from a Sasakian manifold to its tangent bundle. Mathematics 2023, 11, 53. [Google Scholar] [CrossRef]
- Khan, M.N.I.; Mofarreh, F.; Haseeb, A. Tangent bundles of P-Sasakian manifolds endowed with a quarter-symmetric metric connection. Symmetry 2023, 15, 753. [Google Scholar] [CrossRef]
- Kumar, R.; Colney, L.; Khan, M.N.I. Lifts of a semi-symmetric non-metric connection (SSNMC) from statistical manifolds to the tangent bundle. Results Nonlinear Anal. 2023, 6, 50–65. [Google Scholar]
- Kenmotsu, K. A class of almost contact Riemannian manifolds. Tohoku Math. J. 1971, 24, 93–103. [Google Scholar] [CrossRef]
- Sinha, B.B.; Pandey, A.K. Curvatures on Kenmotsu manifold. Indian J. Pure Appl. Math. 1991, 22, 23–28. [Google Scholar]
- Cihan, O.; De, U.C. On the quasi-conformal curvature tensor of a Kenmotsu manifolds. Math. Pannonica 2006, 17, 221–228. [Google Scholar]
- Friedman, A.; Schouten, J.A. Uber die Geometrie der halbsymmetrischen Ubertragungen. Math. Zeitschr. 1924, 21, 211–223. [Google Scholar] [CrossRef]
- Hayden, H.A. Sub-Spaces of a Space with Torsion. Proc. London Math. Soc. 1932, 34, 27–50. [Google Scholar] [CrossRef]
- Beyendi, S.; Aktan, N.; Sivridag, A.I. Almost α-cosymplectic f-manifolds endowed with a semi-symmetric non-metric connection connection. Honam Math. J. 2020, 42, 175–185. [Google Scholar]
- Beyendi, S.; Aktan, N.; Sivridag, A.I. On semi-invariant submanifolds of almost α-cosymplectic f-manifolds admitting a semi-symmetric non-metric connection connection. Palest. J. Math. 2020, 9, 801–810. [Google Scholar]
- Chaubey, S.K. On semi-symmetric non-metric connection. Prog. Math. 2007, 41–42, 11–20. [Google Scholar]
- Chaubey, S.K.; Kanaujia, P.R.; Yadav, S.K. Projective curvature tensor of Riemannian manifolds admitting a projective semi-symmetric connection. Univers. J. Math. Appl. 2020, 3, 78–85. [Google Scholar] [CrossRef]
- Golab, S. On semi-symmetric and quarter-symmetric linear connections. Tensor NS 1975, 29, 249–254. [Google Scholar]
- Kumar, K.T.P.; Bagewadi, C.S.; Venkatesha. On projective ϕ symmetric K-contact manifold admitting quarter-symmetric metric connection. Differ. Geom. Dyn. Syst. 2011, 13, 128–137. [Google Scholar]
- Kumar, R.; Colney, L.; Shenawy, S.; Turki, N.B. Tangent Bundles Endowed with Quarter-Symmetric Non-Metric Connection (QSNMC) in a Lorentzian Para-Sasakian Manifold. Mathematics 2023, 11, 4163. [Google Scholar] [CrossRef]
- Mishra, R.S.; Pandey, S.N. On quarter-symmetric metric F-connections. Tensor NS 1980, 34, 1–7. [Google Scholar]
- Pandey, S.K.; Chaubey, S.K.; Prasad, R. Sasakian Manifolds with admitting a non-symmetric non-metric connection. Palest. J. Math. 2020, 9, 698–710. [Google Scholar]
- Rastogi, S.C. On quarter-symmetric metric connection. CR Acad. Sci. Bulgar. 1978, 31, 811–814. [Google Scholar]
- Siddiqi, M.D. η-Ricci solitons in 3-dimensional normal contact metric manifolds. Bull. Transilv. Univ. Bras. Ser. lii Math. Inform. Phys. 2018, 11, 215–234. [Google Scholar]
- Yano, K.; Imai, T. Quarter-symmetric metric connections and their curvature tensor. Tensor NS 1982, 38, 13–18. [Google Scholar]
- Tripathi, M.M. A new connection in a Riemannian manifold. Int. Electron. J. Geom. 2008, 1, 128–137. [Google Scholar]
- Yano, K. On semi-symmetric metric connections. Rev. Roum. Math. Pures Appl. 1970, 15, 1579–1586. [Google Scholar]
- Yildirim, M. Semi-symmetric non-metric connections on statistical manifolds. J. Geom. Phys. 2022, 176, 104505. [Google Scholar] [CrossRef]
- Yoldaş, H.İ.; Haseeb, A.; Mofarreh, F. Certain Curvature Conditions on Kenmotsu Manifolds and *-η-Ricci Solitons. Axioms 2023, 12, 140. [Google Scholar] [CrossRef]
- Yoldaş, H.İ.; Meriç, Ş.E.; Yaşar, E. On generic submanifold of Sasakian manifold with concurrent vector field. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019, 68, 1983–1994. [Google Scholar] [CrossRef]
- Sengupta, J.; De, U.C.; Binh, T.Q. On a type of semi-symmetric non-metric connection on a Riemannnian manifold. Indian J. Pure Appl. Math. 2000, 31, 1659–1670. [Google Scholar]
- Singh, A.; Mishra, C.K.; Kumar, L.; Patel, S. Characterization of Kenmotsu Manifolds Admitting a Non-Symmetric Non-Metric Connection. J. Int. Acad. Phys. Sci. 2022, 26, 265–274. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, R.; Colney, L.; Khan, M.N.I. Proposed Theorems on the Lifts of Kenmotsu Manifolds Admitting a Non-Symmetric Non-Metric Connection (NSNMC) in the Tangent Bundle. Symmetry 2023, 15, 2037. https://doi.org/10.3390/sym15112037
Kumar R, Colney L, Khan MNI. Proposed Theorems on the Lifts of Kenmotsu Manifolds Admitting a Non-Symmetric Non-Metric Connection (NSNMC) in the Tangent Bundle. Symmetry. 2023; 15(11):2037. https://doi.org/10.3390/sym15112037
Chicago/Turabian StyleKumar, Rajesh, Lalnunenga Colney, and Mohammad Nazrul Islam Khan. 2023. "Proposed Theorems on the Lifts of Kenmotsu Manifolds Admitting a Non-Symmetric Non-Metric Connection (NSNMC) in the Tangent Bundle" Symmetry 15, no. 11: 2037. https://doi.org/10.3390/sym15112037
APA StyleKumar, R., Colney, L., & Khan, M. N. I. (2023). Proposed Theorems on the Lifts of Kenmotsu Manifolds Admitting a Non-Symmetric Non-Metric Connection (NSNMC) in the Tangent Bundle. Symmetry, 15(11), 2037. https://doi.org/10.3390/sym15112037