On Some Generalizations of Cauchy–Schwarz Inequalities and Their Applications
Abstract
:1. Introduction and Preliminaries
2. Inequalities about
3. Some Inequalities about to the –Numerical Radius
4. On Inequalities about the –Numerical Radius of Block Matrices
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Furuta, T. Invitation to Linear Operators; CRC Press Taylor & Francis Group: London, UK; New York, NY, USA, 2017. [Google Scholar]
- Kittaneh, F. A numerical radius inequalitiy and an estimate for the numerical radius of the Frobenius companion matrix. Studia Math. 2003, 158, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Kittaneh, F. Numerical radius inequalities for Hilbert space operators. Studia Math. 2005, 168, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Dragomir, S.S. Power inequalities for the numerical radius of a product of two operators in Hilbert spaces. Sarajevo J. Math. 2009, 5, 269–278. [Google Scholar]
- Kittaneh, F.; Moradi, H.R. Cauchy–Schwarz type inequalities and applications to numerical radius inequalities. Math. Inequal. Appl. 2020, 23, 1117–1125. [Google Scholar] [CrossRef]
- Dragomir, S.S. Some inequalities for the Euclidean operator radius of two operators in Hilbert spaces. Linear Algebra Appl. 2006, 419, 256–264. [Google Scholar] [CrossRef]
- Omidvar, M.E.; Moradi, H.R. Better bounds on the numerical radii of Hilbert space operators. Linear Algebra Appl. 2020, 604, 265–277. [Google Scholar] [CrossRef]
- Arias, M.L.; Corach, G.; Gonzalez, M.C. Metric properties of projections in semi-Hilbertian spaces. Integral Equ. Oper. Theory 2008, 62, 11–28. [Google Scholar] [CrossRef]
- Gustafson, K.E.; Rao, D.K.M. Numerical Range: The Field of Values of Linear Operators and Matrices; Springer: New York, NY, USA, 1997. [Google Scholar]
- Goldberg, M.; Tadmor, E. On the numerical radius and its applicationsz. Linear Algebra Appl. 1982, 42, 263–284. [Google Scholar] [CrossRef] [Green Version]
- Abu-Omar, A.; Kittaneh, F. A generalization of the numerical radius. Linear Algebra Appl. 2019, 569, 323–334. [Google Scholar] [CrossRef]
- Aldalabih, A.; Kittaneh, F. Hilbert-Schmidt numerical radius inequalities for operator matrices. Linear Algebra Appl. 2019, 581, 72–84. [Google Scholar] [CrossRef]
- Saddi, A. A-Normal operators in Semi-Hilbertian spaces. Aust. J. Math. Anal. Appl. 2012, 9, 1–12. [Google Scholar]
- Baklouti, H.; Feki, K.; Sid Ahmed, O.A.M. Joint numerical ranges of operators in semi-Hilbertian spaces. Linear Algebra Appl. 2018, 555, 266–284. [Google Scholar] [CrossRef]
- Bhunia, P.; Paul, K.; Nayak, R.K. On inequalities for A-numerical radius of operators. Electron. J. Linear Algebra 2020, 36, 143–157. [Google Scholar]
- Conde, C.; Feki, K. On some inequalities for the generalized joint numerical radius of semi-Hilbert space operators. Ric. Mat. 2021. [Google Scholar] [CrossRef]
- Conde, C.; Feki, K. Some numerical radius inequality for several semi-Hilbert space operators. Linear Multilinear Algebra 2022. [Google Scholar] [CrossRef]
- Feki, K. Spectral radius of semi-Hilbertian space operators and its applications. Ann. Funct. Anal. 2020, 11, 929–946. [Google Scholar] [CrossRef] [Green Version]
- Rout, N.C.; Sahoo, S.; Mishra, D. On A-numerical radius inequalities for 2 × 2 operator matrices. Linear Multilinear Algebra 2020. [Google Scholar] [CrossRef]
- Douglas, R.G. On majorization, factorization and range inclusion of operators in Hilbert space. Proc. Am. Math. Soc. 1966, 17, 413–416. [Google Scholar] [CrossRef]
- Feki, K. A note on the A-numerical radius of operators in semi-Hilbert spaces. Arch. Math. 2020, 115, 535–544. [Google Scholar] [CrossRef]
- Arias, M.L.; Corach, G.; Gonzalez, M.C. Partial isometries in semi-Hilbertian spaces. Linear Algebra Appl. 2008, 428, 1460–1475. [Google Scholar] [CrossRef] [Green Version]
- Arias, M.L.; Corach, G.; Gonzalez, M.C. Lifting properties in operator ranges. Acta Sci. Math. 2009, 75, 635–653. [Google Scholar]
- Altwaijry, N.; Feki, K.; Minculete, N. Further Inequalities for theWeighted Numerical Radius of Operators. Mathematics 2022, 10, 3576. [Google Scholar] [CrossRef]
- Feki, K. Some numerical radius inequalities for semi-Hilbertian space operators. J. Korean Math. Soc. 2021, 58, 1385–1405. [Google Scholar]
- Alomari, M.W. On Cauchy—Schwarz type inequalities and applications to numerical radius inequalities. Ric. Mat. 2022. [Google Scholar] [CrossRef]
- Mitrinović, D.S.; Pečarić, J.; Fink, A.M. Classical and New Inequalities in Analysis; Kluwer Academic Publishers: Dordreht, The Netherland, 1993. [Google Scholar]
- Buzano, M.L. Generalizzazione della diseguaglianza di Cauchy-Schwarz (Italian). Rend. Sem. Mat. Univ. E Politech. Torino 1974, 31, 405–409. [Google Scholar]
- Minculete, N.; Pfeifer, C.; Voicu, N. Inequalities from Lorentz-Finsler norms. Math. Inequal. Appl. 2021, 24, 373–398. [Google Scholar] [CrossRef]
- Feki, K.; Sahoo, S. Further inequalities for the A-numerical radius of certain 2 × 2 operator matrices. Georgian Math. J. 2022. [Google Scholar] [CrossRef]
- Bhunia, P.; Feki, K.; Paul, K. A-Numerical radius orthogonality and parallelism of semi-Hilbertian space operators and their applications. Bull. Iran. Math. Soc. 2021, 47, 435–457. [Google Scholar] [CrossRef]
- Xu, Q.; Ye, Z.; Zamani, A. Some upper bounds for the A-numerical radius of 2 × 2 block matrices. Adv. Oper. Theory 2021, 6, 1. [Google Scholar] [CrossRef]
- Bani-Domi, W.; Kittaneh, F. Refined and generalized numerical radius inequalities for 2 × 2 operator matrices. Linear Algebra Appl. 2021, 624, 364–386. [Google Scholar] [CrossRef]
- Bhuniac, P.; Paul, K. Some improvements of numerical radius inequalities of operators and operator matrices. Linear Multilinear Algebra 2022, 70, 1995–2013. [Google Scholar] [CrossRef]
- Abu-Omar, A.; Kittaneh, F. Generalized spectral radius and norm inequalities for Hilbert space operators. Int. J. Math. 2015, 26, 1550097. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altwaijry, N.; Feki, K.; Minculete, N. On Some Generalizations of Cauchy–Schwarz Inequalities and Their Applications. Symmetry 2023, 15, 304. https://doi.org/10.3390/sym15020304
Altwaijry N, Feki K, Minculete N. On Some Generalizations of Cauchy–Schwarz Inequalities and Their Applications. Symmetry. 2023; 15(2):304. https://doi.org/10.3390/sym15020304
Chicago/Turabian StyleAltwaijry, Najla, Kais Feki, and Nicuşor Minculete. 2023. "On Some Generalizations of Cauchy–Schwarz Inequalities and Their Applications" Symmetry 15, no. 2: 304. https://doi.org/10.3390/sym15020304
APA StyleAltwaijry, N., Feki, K., & Minculete, N. (2023). On Some Generalizations of Cauchy–Schwarz Inequalities and Their Applications. Symmetry, 15(2), 304. https://doi.org/10.3390/sym15020304