Gravity as a Quantum Field Theory
Abstract
:1. Introduction
2. Gravity as an Effective Field Theory
2.1. The Chiral Models
2.2. Gravity
2.3. The Leading Corrections to the Newtonian Potential
3. Gravity as a Gauge Theory in Higgs Phase
3.1. Superconductors
3.2. Electroweak Theory
3.3. Gravity in Arbitrary Frames
3.4. Metric-Affine Gravity
4. UV Completion
5. Deeper Questions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jantzen, R.T.; Carini, P.; Bini, D. The Many faces of gravitoelectromagnetism. Ann. Phys. 1992, 215, 1–50. [Google Scholar] [CrossRef]
- Mashhoon, B. Gravitoelectromagnetism: A Brief review. arXiv 2003, arXiv:gr-qc/0311030. [Google Scholar]
- O’Raifeartaigh, L. The Dawning of Gauge Theory; Princeton University Press: Princeton, NJ, USA, 1997. [Google Scholar]
- Feynman, R.P.; Morinigo, F.B.; Wagner, W.G.; Hatfield, B. Feynman Lectures on Gravitation; Westview Press: Boulder, CO, USA, 2003. [Google Scholar]
- Deser, S. Selfinteraction and gauge invariance. Gen. Relativ. Gravit. 1970, 1, 9–18. [Google Scholar] [CrossRef]
- Donoghue, J.F.; Ivanov, M.M.; Shkerin, A. EPFL Lectures on General Relativity as a Quantum Field Theory. arXiv 2017, arXiv:1702.00319. [Google Scholar]
- Burgess, C.P. Quantum gravity in everyday life: General relativity as an effective field theory. Living Rev. Relativ. 2004, 7, 5. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity; Wiley: Hoboken, NJ, USA, 1972. [Google Scholar]
- Percacci, R. An Introduction to Covariant Quantum Gravity and Asymptotic Safety; World Scientific: Singapore, 2017. [Google Scholar]
- Reuter, M.; Saueressig, F. Quantum Gravity and the Functional Renormalization Group; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Litim, D.F.; Sannino, F. Asymptotic safety guaranteed. J. High Energy Phys. 2014, 2014, 178. [Google Scholar] [CrossRef]
- Weinberg, S. Note on the torsion tensor. Phys. Today 2007, 60, 16. [Google Scholar] [CrossRef]
- Hehl, F.W.; McCrea, J.D.; Mielke, E.W.; Ne’eman, Y. Metric affine gauge theory of gravity: Field equations, Noether identities, world spinors, and breaking of dilation invariance. Phys. Rep. 1995, 258, 1–171. [Google Scholar] [CrossRef]
- Weinberg, S. Phenomenological Lagrangians. Physica A 1979, 96, 327–340. [Google Scholar] [CrossRef]
- Gasser, J.; Leutwyler, H. Chiral Perturbation Theory to One Loop. Ann. Phys. 1984, 158, 142–210. [Google Scholar] [CrossRef]
- Isham, C.J.; Salam, A.; Strathdee, J.A. Nonlinear realizations of space-time symmetries. Scalar and tensor gravity. Ann. Phys. 1971, 62, 98–119. [Google Scholar] [CrossRef]
- Gielen, S.; de León Ardón, R.; Percacci, R. Gravity with more or less gauging. Class. Quantum Gravity 2018, 35, 195009. [Google Scholar] [CrossRef] [Green Version]
- Donoghue, J.F. Leading quantum correction to the Newtonian potential. Phys. Rev. Lett. 1994, 72, 2996. [Google Scholar] [CrossRef] [PubMed]
- Bjerrum-Bohr, N.E.J.; Donoghue, J.F.; Holstein, B.R. Quantum gravitational corrections to the nonrelativistic scattering potential of two masses. Phys. Rev. D 2003, 67, 084033, Erratum in Phys. Rev. D 2005, 71, 069903. [Google Scholar] [CrossRef]
- Khriplovich, I.B.; Kirilin, G.G. Quantum long range interactions in general relativity. J. Exp. Theor. Phys. 2004, 98, 1063–1072. [Google Scholar] [CrossRef]
- Bjerrum-Bohr, N.E.J.; Donoghue, J.F.; Vanhove, P. On-shell Techniques and Universal Results in Quantum Gravity. J. High Energy Phys. 2014, 2014, 111. [Google Scholar] [CrossRef]
- Dalvit, D.A.R.; Mazzitelli, F.D. Geodesics, gravitons and the gauge fixing problem. Phys. Rev. D 1997, 56, 7779–7787. [Google Scholar] [CrossRef]
- Iwasaki, Y. Quantum theory of gravitation vs. classical theory. - fourth-order potential. Prog. Theor. Phys. 1971, 46, 1587–1609. [Google Scholar] [CrossRef]
- Bjerrum-Bohr, N.E.J.; Donoghue, J.F.; Holstein, B.R. Quantum corrections to the Schwarzschild and Kerr metrics. Phys. Rev. D 2003, 68, 084005, Erratum in Phys. Rev. D 2005, 71, 069904. [Google Scholar] [CrossRef]
- Donoghue, J.F.; Holstein, B.R.; Garbrecht, B.; Konstandin, T. Quantum corrections to the Reissner-Nordstrom and Kerr-Newman metrics. Phys. Lett. B 2002, 529, 132–142. [Google Scholar] [CrossRef]
- Holstein, B.R.; Donoghue, J.F. Classical physics and quantum loops. Phys. Rev. Lett. 2004, 93, 201602. [Google Scholar] [CrossRef] [PubMed]
- Bjerrum-Bohr, N.E.J. Leading quantum gravitational corrections to scalar QED. Phys. Rev. D 2002, 66, 084023. [Google Scholar] [CrossRef] [Green Version]
- Faller, S. Effective Field Theory of Gravity: Leading Quantum Gravitational Corrections to Newtons and Coulombs Law. Phys. Rev. D 2008, 77, 124039. [Google Scholar] [CrossRef]
- Weinberg, S. Superconductivity for Particular Theorists. Prog. Theor. Phys. Suppl. 1986, 86, 43–53. [Google Scholar] [CrossRef]
- Appelquist, T.; Bernard, C.W. Strongly Interacting Higgs Bosons. Phys. Rev. D 1980, 22, 200. [Google Scholar] [CrossRef]
- Longhitano, A.C. Heavy Higgs Bosons in the Weinberg-Salam Model. Phys. Rev. D 1980, 22, 1166. [Google Scholar] [CrossRef]
- Stueckelberg, E.C.G. Interaction energy in electrodynamics and in the field theory of nuclear forces. Helv. Phys. Acta 1938, 11, 225–244. [Google Scholar]
- Floreanini, R.; Percacci, R. Canonical Algebra of Gl(4) Invariant Gravity. Class. Quantum Gravity 1990, 7, 975. [Google Scholar] [CrossRef]
- Percacci, R. The Higgs phenomenon in quantum gravity. Nucl. Phys. B 1991, B353, 271–290. [Google Scholar] [CrossRef]
- Baldazzi, A.; Melichev, O.; Percacci, R. Metric-Affine Gravity as an effective field theory. Ann. Phys. 2022, 438, 168757. [Google Scholar] [CrossRef]
- Kirsch, I. A Higgs mechanism for gravity. Phys. Rev. D 2005, 72, 024001. [Google Scholar] [CrossRef]
- Leclerc, M. The Higgs sector of gravitational gauge theories. Ann. Phys. 2006, 321, 708–743. [Google Scholar] [CrossRef]
- Ghilencea, D.M. Standard Model in Weyl conformal geometry. Eur. Phys. J. C 2022, 82, 23. [Google Scholar] [CrossRef]
- Sezgin, E.; van Nieuwenhuizen, P. New Ghost Free Gravity Lagrangians with Propagating Torsion. Phys. Rev. D 1980, 21, 3269–3280. [Google Scholar] [CrossRef]
- Lin, Y.C.; Hobson, M.P.; Lasenby, A.N. Ghost and tachyon free Poincaré gauge theories: A systematic approach. Phys. Rev. D 2019, 99, 064001. [Google Scholar] [CrossRef]
- Percacci, R.; Sezgin, E. New class of ghost- and tachyon-free metric affine gravities. Phys. Rev. D 2020, 101, 084040. [Google Scholar] [CrossRef]
- Marzo, C. Ghost and Tachyon Free Propagation up to spin-3 in Lorentz Invariant Field Theories. Phys. Rev. D 2022, 105, 065017. [Google Scholar] [CrossRef]
- Marzo, C. Radiatively stable ghost and tachyon freedom in Metric Affine Gravity. Phys. Rev. D 2022, 106, 024045. [Google Scholar] [CrossRef]
- Stelle, K.S. Renormalization of Higher Derivative Quantum Gravity. Phys. Rev. D 1977, 16, 953–969. [Google Scholar] [CrossRef]
- Avramidi, I.; Barvinsky, A.O. Asymptotic Freedom In Higher Derivative Quantum Gravity. Phys. Lett. B 1985, 159, 269–274. [Google Scholar] [CrossRef]
- Holdom, B.; Ren, J. QCD analogy for quantum gravity. Phys. Rev. D 2016, 93, 124030. [Google Scholar] [CrossRef]
- Tomboulis, E.T. Unitarity in Higher Derivative Quantum Gravity. Phys. Rev. Lett. 1984, 52, 1173–1176. [Google Scholar] [CrossRef]
- Mannheim, P.D. Solution to the ghost problem in fourth order derivative theories. Found. Phys. 2007, 37, 532–571. [Google Scholar] [CrossRef] [Green Version]
- Salvio, A.; Strumia, A. Agravity. J. High Energy Phys. 2014, 2014, 80. [Google Scholar] [CrossRef]
- Anselmi, D.; Piva, M. The Ultraviolet Behavior of Quantum Gravity. J. High Energy Phys. 2018, 2018, 27. [Google Scholar] [CrossRef]
- Anselmi, D.; Piva, M. Quantum Gravity, Fakeons And Microcausality. J. High Energy Phys. 2018, 2018, 21. [Google Scholar] [CrossRef]
- Donoghue, J.F.; Menezes, G. Unitarity, stability and loops of unstable ghosts. Phys. Rev. D 2019, 100, 105006. [Google Scholar] [CrossRef]
- Donoghue, J.F.; Menezes, G. Ostrogradsky instability can be overcome by quantum physics. Phys. Rev. D 2021, 104, 045010. [Google Scholar] [CrossRef]
- Holdom, B. Ultra-Planckian scattering from a QFT for gravity. Phys. Rev. D 2022, 105, 046008. [Google Scholar] [CrossRef]
- Holdom, B. Photon-photon scattering from a UV-complete gravity QFT. J. High Energy Phys. 2022, 2022, 133. [Google Scholar] [CrossRef]
- Kurkov, M.A.; Lizzi, F.; Vassilevich, D. High energy bosons do not propagate. Phys. Lett. B 2014, 731, 311–315. [Google Scholar] [CrossRef]
- Weinberg, S. Critical phenomena for field theorists. In Understanding the Fundamental Constituents of Matter; Springer: Boston, MA, USA, 1978. [Google Scholar]
- Weinberg, S. Ultraviolet divergences in quantum theories of gravitation. In General Relativity: An Einstein Centenary Survey; Hawking, S.W., Israel, W., Eds.; Cambridge University Press: Cambridge, UK, 1979; pp. 790–831. [Google Scholar]
- Hamber, H.W. Quantum Gravity on the Lattice. Gen. Relativ. Gravit. 2009, 41, 817–876. [Google Scholar] [CrossRef]
- Ambjorn, J.; Goerlich, A.; Jurkiewicz, J.; Loll, R. Nonperturbative Quantum Gravity. Phys. Rep. 2012, 519, 127–210. [Google Scholar] [CrossRef] [Green Version]
- Wetterich, C. Exact Evolution Equation For The Effective Potential. Phys. Lett. B 1993, 301, 90–94. [Google Scholar] [CrossRef]
- Morris, T.R. Derivative expansion of the exact renormalization group. Phys. Lett. B 1994, 329, 241–248. [Google Scholar] [CrossRef]
- Balog, I.; Chaté, H.; Delamotte, B.; Marohnic, M.; Wschebor, N. Convergence of Nonperturbative Approximations to the Renormalization Group. Phys. Rev. Lett. 2019, 123, 240604. [Google Scholar] [CrossRef]
- Canet, L.; Delamotte, B.; Wschebor, N. Fully developed isotropic turbulence: Nonperturbative renormalization group formalism and fixed point solution. Phys. Rev. E 2016, 93, 063101. [Google Scholar] [CrossRef]
- Cyrol, A.K.; Mitter, M.; Pawlowski, J.M.; Strodthoff, N. Nonperturbative quark, gluon, and meson correlators of unquenched QCD. Phys. Rev. D 2018, 97, 054006. [Google Scholar] [CrossRef]
- Reuter, M. Nonperturbative evolution equation for quantum gravity. Phys. Rev. D 1998, 57, 971–985. [Google Scholar] [CrossRef]
- Falls, K.; Litim, D.F.; Nikolakopoulos, K.; Rahmede, C. Further evidence for asymptotic safety of quantum gravity. Phys. Rev. D 2016, 93, 104022. [Google Scholar] [CrossRef]
- Morris, T.R.; Stulga, D. The functional f(R) approximation. arXiv 2022, arXiv:2210.11356. [Google Scholar]
- Pawlowski, J.M.; Reichert, M. Quantum Gravity: A Fluctuating Point of View. Front. Phys. 2021, 8, 551848. [Google Scholar] [CrossRef]
- Bonanno, A.; Eichhorn, A.; Gies, H.; Pawlowski, J.M.; Percacci, R.; Reuter, M.; Saueressig, F.; Vacca, G.P. Critical reflections on asymptotically safe gravity. Front. Phys. 2020, 8, 269. [Google Scholar] [CrossRef]
- Anber, M.M.; Donoghue, J.F. On the running of the gravitational constant. Phys. Rev. D 2012, 85, 104016. [Google Scholar] [CrossRef] [Green Version]
- Donoghue, J.F. A Critique of the Asymptotic Safety Program. Front. Phys. 2020, 8, 56. [Google Scholar] [CrossRef]
- Bonanno, A.; Denz, T.; Pawlowski, J.M.; Reichert, M. Reconstructing the graviton. SciPost Phys. 2022, 12, 001. [Google Scholar] [CrossRef]
- Wetterich, C. Quantum scale symmetry. arXiv 2019, arXiv:1901.04741. [Google Scholar]
- Morris, T.R.; Percacci, R. Trace anomaly and infrared cutoffs. Phys. Rev. D 2019, 99, 105007. [Google Scholar] [CrossRef]
- Baldazzi, A.; Falls, K. Essential Quantum Einstein Gravity. Universe 2021, 7, 294. [Google Scholar] [CrossRef]
- Anselmi, D. Absence of higher derivatives in the renormalization of propagators in quantum field theories with infinitely many couplings. Class. Quantum Gravity 2003, 20, 2355–2378. [Google Scholar] [CrossRef]
- Baldazzi, A.; Percacci, R.; Skrinjar, V. Wicked metrics. Class. Quantum Gravity 2019, 36, 105008. [Google Scholar] [CrossRef]
- Baldazzi, A.; Percacci, R.; Skrinjar, V. Quantum fields without Wick rotation. Symmetry 2019, 11, 373. [Google Scholar] [CrossRef]
- Bridle, I.H.; Dietz, J.A.; Morris, T.R. The local potential approximation in the background field formalism. J. High Energy Phys. 2014, 2014, 93. [Google Scholar] [CrossRef]
- Dietz, J.A.; Morris, T.R. Background independent exact renormalization group for conformally reduced gravity. J. High Energy Phys. 2015, 2015, 118. [Google Scholar] [CrossRef]
- Percacci, R.; Vacca, G.P. The background scale Ward identity in quantum gravity. Eur. Phys. J. C 2017, 77, 52. [Google Scholar] [CrossRef] [Green Version]
- Nieto, C.M.; Percacci, R.; Skrinjar, V. Split Weyl transformations in quantum gravity. Phys. Rev. D 2017, 96, 106019. [Google Scholar] [CrossRef]
- Baldazzi, A.; Percacci, R.; Zambelli, L. Functional renormalization and the scheme. Phys. Rev. D 2021, 103, 076012. [Google Scholar] [CrossRef]
- Baldazzi, A.; Percacci, R.; Zambelli, L. Limit of vanishing regulator in the functional renormalization group. Phys. Rev. D 2021, 104, 076026. [Google Scholar] [CrossRef]
- Becker, D.; Reuter, M. En route to Background Independence: Broken split-symmetry, and how to restore it with bi-metric average actions. Ann. Phys. 2014, 350, 225–301. [Google Scholar] [CrossRef]
- Donà, P.; Eichhorn, A.; Percacci, R. Matter matters in asymptotically safe quantum gravity. Phys. Rev. D 2014, 89, 084035. [Google Scholar] [CrossRef]
- Eichhorn, A. Quantum-gravity-induced matter self-interactions in the asymptotic-safety scenario. Phys. Rev. D 2012, 86, 105021. [Google Scholar] [CrossRef]
- Shaposhnikov, M.; Wetterich, C. Asymptotic safety of gravity and the Higgs boson mass. Phys. Lett. B 2010, 683, 196–200. [Google Scholar] [CrossRef]
- Eichhorn, A.; Held, A. Top mass from asymptotic safety. Phys. Lett. B 2018, 777, 217–221. [Google Scholar] [CrossRef]
- Alkofer, R.; Eichhorn, A.; Held, A.; Nieto, C.M.; Percacci, R.; Schröfl, M. Quark masses and mixings in minimally parameterized UV completions of the Standard Model. Ann. Phys. 2020, 421, 168282. [Google Scholar] [CrossRef]
- Konopka, T.; Markopoulou, F.; Severini, S. Quantum Graphity: A Model of emergent locality. Phys. Rev. D 2008, 77, 104029. [Google Scholar] [CrossRef] [Green Version]
- Trugenberger, C.A. Quantum Gravity as an Information Network: Self-Organization of a 4D Universe. Phys. Rev. D 2015, 92, 084014. [Google Scholar] [CrossRef]
- Kelly, C.; Trugenberger, C.A.; Biancalana, F. Self-Assembly of Geometric Space from Random Graphs. Class. Quantum Gravity 2019, 36, 125012. [Google Scholar] [CrossRef]
- Percacci, R. The Renormalization group, systems of units and the hierarchy problem. J. Phys. A 2007, 40, 4895. [Google Scholar] [CrossRef]
- Percacci, R.; Vacca, G.P. Asymptotic Safety, Emergence and Minimal Length. Class. Quantum Gravity 2010, 27, 245026. [Google Scholar] [CrossRef]
- Floreanini, R.; Percacci, R.; Spallucci, E. Why is the metric nondegenerate? In Proceedings of the 6th Marcel Grossmann Meeting, Kyoto, Japan, 23–29 June 1991. [Google Scholar]
- Nesti, F.; Percacci, R. Graviweak Unification. J. Phys. A 2008, 41, 075405. [Google Scholar] [CrossRef]
- Nesti, F.; Percacci, R. Chirality in unified theories of gravity. Phys. Rev. D 2010, 81, 025010. [Google Scholar] [CrossRef]
- Krasnov, K.; Percacci, R. Gravity and Unification: A review. Class. Quantum Gravity 2018, 35, 143001. [Google Scholar] [CrossRef]
- Floreanini, R.; Percacci, R. Mean Field Quantum Gravity. Phys. Rev. D 1992, 46, 1566–1579. [Google Scholar] [CrossRef]
- Floreanini, R.; Percacci, R. Average effective potential for the conformal factor. Nucl. Phys. B 1995, 436, 141–160. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Percacci, R. Gravity as a Quantum Field Theory. Symmetry 2023, 15, 449. https://doi.org/10.3390/sym15020449
Percacci R. Gravity as a Quantum Field Theory. Symmetry. 2023; 15(2):449. https://doi.org/10.3390/sym15020449
Chicago/Turabian StylePercacci, Roberto. 2023. "Gravity as a Quantum Field Theory" Symmetry 15, no. 2: 449. https://doi.org/10.3390/sym15020449
APA StylePercacci, R. (2023). Gravity as a Quantum Field Theory. Symmetry, 15(2), 449. https://doi.org/10.3390/sym15020449