A Survey on Resource Management for Cloud Native Mobile Computing: Opportunities and Challenges
Abstract
:1. Introduction
- (1)
- We review the latest developments in cloud native technology combined with mobile communication resource allocation.
- (2)
- We categorize the existing literature from various perspectives, including core networks, service applications, and different technologies.
- (3)
- We will compare and analyze recent works and discuss their strengths and weaknesses one by one.
- (4)
- We discuss open issues and challenges in resource allocation for cloud native combined with 5G and unify crucial future research directions.
2. Resource Management of Cloud Native Mobile Computing with RAN
2.1. Resource Management for NFV
2.1.1. The Main Challenges with NFV
2.1.2. The Conventional Solutions NFV
2.2. Resource Management for Network Slicing
2.2.1. The Main Challenges with Network Slicing
2.2.2. The Conventional Solutions Network Slicing
3. Resource Management of Cloud Native Mobile Computing with Software
3.1. Resource Management for Container
3.1.1. The Main Challenges with Container
3.1.2. The Conventional Solutions for Container
3.2. Resource Management for Software Architecture
3.2.1. The Main Challenges with Software Architecture
3.2.2. The Conventional Solutions for Software Architecture
4. The Challenge and Future Trends
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, Y.; Gui, G.; Gacanin, H.; Adachi, F. A survey on resource allocation for 5G heterogeneous networks: Current research, future trends, and challenges. IEEE Commun. Surv. Tutorials 2021, 23, 668–695. [Google Scholar] [CrossRef]
- Tang, Y.; Dananjayan, S.; Hou, C.; Guo, Q.; Luo, S.; He, Y. A survey on the 5G network and its impact on agriculture: Challenges and opportunities. Comput. Electron. Agric. 2021, 180, 105895. [Google Scholar] [CrossRef]
- Dangi, R.; Lalwani, P.; Choudhary, G.; You, I.; Pau, G. Study and investigation on 5G technology: A systematic review. Sensors 2021, 22, 26. [Google Scholar] [CrossRef]
- Siriwardhana, Y.; Porambage, P.; Liyanage, M.; Ylianttila, M. A survey on mobile augmented reality with 5G mobile edge computing: Architectures, applications, and technical aspects. IEEE Commun. Surv. Tutorials 2021, 23, 1160–1192. [Google Scholar] [CrossRef]
- Cisco, U. Cisco Annual Internet Report (2018–2023) white Paper; Cisco: San Jose, CA, USA, 2020. [Google Scholar]
- Yastrebova, A.; Kirichek, R.; Koucheryavy, Y.; Borodin, A.; Koucheryavy, A. Future Networks 2030: Architecture & Requirements. In Proceedings of the 2018 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Moscow, Russia, 5–9 November 2018; pp. 1–8. [Google Scholar]
- Yoo, C.S. Cloud computing: Architectural and policy implications. Rev. Ind. Organ. 2011, 38, 405–421. [Google Scholar] [CrossRef] [Green Version]
- Parikh, S.M. A survey on cloud computing resource allocation techniques. In Proceedings of the 2013 Nirma University International Conference on Engineering (NUiCONE), Ahmedabad, Gujrat, India, 28–30 November 2013; pp. 1–5. [Google Scholar]
- Kumar, P.; Kumar, R. Issues and challenges of load balancing techniques in cloud computing: A survey. Acm Comput. Surv. (CSUR) 2019, 51, 1–35. [Google Scholar] [CrossRef]
- Afzal, S.; Kavitha, G. Load balancing in cloud computing–A hierarchical taxonomical classification. J. Cloud Comput. 2019, 8, 22. [Google Scholar] [CrossRef] [Green Version]
- Gill, S.S.; Garraghan, P.; Stankovski, V.; Casale, G.; Thulasiram, R.K.; Ghosh, S.K.; Ramamohanarao, K.; Buyya, R. Holistic resource management for sustainable and reliable cloud computing: An innovative solution to global challenge. J. Syst. Softw. 2019, 155, 104–129. [Google Scholar] [CrossRef]
- Madni, S.H.H.; Latiff, M.S.A.; Coulibaly, Y.; Abdulhamid, S.M. Recent advancements in resource allocation techniques for cloud computing environment: A systematic review. Clust. Comput. 2017, 20, 2489–2533. [Google Scholar] [CrossRef]
- Xu, M.; Toosi, A.N.; Buyya, R. A self-adaptive approach for managing applications and harnessing renewable energy for sustainable cloud computing. IEEE Trans. Sustain. Comput. 2020, 6, 544–558. [Google Scholar] [CrossRef]
- Tuli, S.; Ilager, S.; Ramamohanarao, K.; Buyya, R. Dynamic scheduling for stochastic edge-cloud computing environments using a3c learning and residual recurrent neural networks. IEEE Trans. Mob. Comput. 2020, 21, 940–954. [Google Scholar] [CrossRef]
- Marahatta, A.; Pirbhulal, S.; Zhang, F.; Parizi, R.M.; Choo, K.K.R.; Liu, Z. Classification-based and energy-efficient dynamic task scheduling scheme for virtualized cloud data center. IEEE Trans. Cloud Comput. 2019, 9, 1376–1390. [Google Scholar] [CrossRef]
- Awaysheh, F.M.; Aladwan, M.N.; Alazab, M.; Alawadi, S.; Cabaleiro, J.C.; Pena, T.F. Security by design for big data frameworks over cloud computing. IEEE Trans. Eng. Manag. 2021, 69, 3676–3693. [Google Scholar] [CrossRef]
- Alouffi, B.; Hasnain, M.; Alharbi, A.; Alosaimi, W.; Alyami, H.; Ayaz, M. A systematic literature review on cloud computing security: Threats and mitigation strategies. IEEE Access 2021, 9, 57792–57807. [Google Scholar] [CrossRef]
- Nhlabatsi, A.; Hong, J.B.; Kim, D.S.; Fernandez, R.; Hussein, A.; Fetais, N.; Khan, K.M. Threat-specific security risk evaluation in the cloud. IEEE Trans. Cloud Comput. 2018, 9, 793–806. [Google Scholar] [CrossRef]
- Varshney, P.; Simmhan, Y. Characterizing application scheduling on edge, fog, and cloud computing resources. Softw. Pract. Exp. 2020, 50, 558–595. [Google Scholar] [CrossRef] [Green Version]
- Jena, U.; Das, P.; Kabat, M. Hybridization of meta-heuristic algorithm for load balancing in cloud computing environment. J. King Saud-Univ.-Comput. Inf. Sci. 2020, 34, 2332–2342. [Google Scholar] [CrossRef]
- Shafiq, D.A.; Jhanjhi, N.Z.; Abdullah, A.; Alzain, M.A. A load balancing algorithm for the data centres to optimize cloud computing applications. IEEE Access 2021, 9, 41731–41744. [Google Scholar] [CrossRef]
- Abbasi, M.; Yaghoobikia, M.; Rafiee, M.; Jolfaei, A.; Khosravi, M.R. Efficient resource management and workload allocation in fog–cloud computing paradigm in IoT using learning classifier systems. Comput. Commun. 2020, 153, 217–228. [Google Scholar] [CrossRef]
- Duan, K.; Fong, S.; Siu, S.W.; Song, W.; Guan, S.S.U. Adaptive incremental genetic algorithm for task scheduling in cloud environments. Symmetry 2018, 10, 168. [Google Scholar] [CrossRef] [Green Version]
- Xue, C.; Lin, C.; Hu, J. Scalability analysis of request scheduling in cloud computing. Tsinghua Sci. Technol. 2019, 24, 249–261. [Google Scholar] [CrossRef]
- Mustafa, S.; Nazir, B.; Hayat, A.; Madani, S.A. Resource management in cloud computing: Taxonomy, prospects, and challenges. Comput. Electr. Eng. 2015, 47, 186–203. [Google Scholar] [CrossRef]
- Shuja, J.; Gani, A.; Bilal, K.; Khan, A.U.R.; Madani, S.A.; Khan, S.U.; Zomaya, A.Y. A survey of mobile device virtualization: Taxonomy and state of the art. Acm Comput. Surv. (CSUR) 2016, 49, 1–36. [Google Scholar] [CrossRef]
- Peng, M.; Wang, C.; Li, J.; Xiang, H.; Lau, V. Recent advances in underlay heterogeneous networks: Interference control, resource allocation, and self-organization. IEEE Commun. Surv. Tutorials 2015, 17, 700–729. [Google Scholar] [CrossRef]
- Gatti, R.; Shankar, S.; Murthy, K. Effects of bidirectional resource allocation schemes for advanced long-term evolution system in heterogeneous networks. Int. J. Commun. Netw. Distrib. Syst. 2021, 27, 241–258. [Google Scholar] [CrossRef]
- Zhang, J.; Xia, W.; Yan, F.; Shen, L. Joint computation offloading and resource allocation optimization in heterogeneous networks with mobile edge computing. IEEE Access 2018, 6, 19324–19337. [Google Scholar] [CrossRef]
- Khalili, A.; Akhlaghi, S.; Tabassum, H.; Ng, D.W.K. Joint user association and resource allocation in the uplink of heterogeneous networks. IEEE Wirel. Commun. Lett. 2020, 9, 804–808. [Google Scholar] [CrossRef] [Green Version]
- Cho, H.H.; Lai, C.F.; Shih, T.K.; Chao, H.C. Learning-based Data Envelopment Analysis for External Cloud Resource Allocation. ACM/Springer Mob. Netw. Appl. (MONET) 2016, 21, 846–855. [Google Scholar] [CrossRef]
- Khan, W.U.; Li, X.; Ihsan, A.; Ali, Z.; Elhalawany, B.M.; Sidhu, G.A.S. Energy efficiency maximization for beyond 5G NOMA-enabled heterogeneous networks. Peer-to-Peer Netw. Appl. 2021, 14, 3250–3264. [Google Scholar] [CrossRef]
- Shuvo, M.S.A.; Munna, M.A.R.; Sarker, S.; Adhikary, T.; Razzaque, M.A.; Hassan, M.M.; Aloi, G.; Fortino, G. Energy-efficient scheduling of small cells in 5G: A meta-heuristic approach. J. Netw. Comput. Appl. 2021, 178, 102986. [Google Scholar] [CrossRef]
- Giannopoulos, A.; Spantideas, S.; Kapsalis, N.; Karkazis, P.; Trakadas, P. Deep reinforcement learning for energy-efficient multi-channel transmissions in 5G cognitive hetnets: Centralized, decentralized and transfer learning based solutions. IEEE Access 2021, 9, 129358–129374. [Google Scholar] [CrossRef]
- Park, J.H.; Rathore, S.; Singh, S.K.; Salim, M.M.; Azzaoui, A.; Kim, T.W.; Pan, Y.; Park, J.H. A comprehensive survey on core technologies and services for 5G security: Taxonomies, issues, and solutions. Hum.-Centric Comput. Inf. Sci 2021, 11, 22. [Google Scholar]
- Lal, N.; Tiwari, S.M.; Khare, D.; Saxena, M. Prospects for handling 5G network security: Challenges, recommendations and future directions. J. Phys. Conf. Ser. 2021, 1714, 012052. [Google Scholar] [CrossRef]
- Sullivan, S.; Brighente, A.; Kumar, S.; Conti, M. 5G security challenges and solutions: A review by OSI layers. IEEE Access 2021, 9, 116294–116314. [Google Scholar] [CrossRef]
- Gannon, D.; Barga, R.; Sundaresan, N. Cloud-native applications. IEEE Cloud Comput. 2017, 4, 16–21. [Google Scholar] [CrossRef] [Green Version]
- Arouk, O.; Nikaein, N. 5g cloud-native: Network management & automation. In Proceedings of the NOMS 2020-2020 IEEE/IFIP Network Operations and Management Symposium, Budapest, Hungary, 20–24 April 2020; pp. 1–2. [Google Scholar]
- Ziegler, V.; Viswanathan, H.; Flinck, H.; Hoffmann, M.; Räisänen, V.; Hätönen, K. 6G architecture to connect the worlds. IEEE Access 2020, 8, 173508–173520. [Google Scholar] [CrossRef]
- Kukliński, S.; Tomaszewski, L.; Kołakowski, R.; Chemouil, P. 6G-LEGO: A framework for 6G network slices. J. Commun. Netw. 2021, 23, 442–453. [Google Scholar] [CrossRef]
- Zhang, S. An overview of network slicing for 5G. IEEE Wirel. Commun. 2019, 26, 111–117. [Google Scholar] [CrossRef]
- Nokia. Dynamic End-to-End Network Slicing for 5G; White Paper: Espoo, Finland, 2016. [Google Scholar]
- ETSI, G. Network functions virtualisation (nfv): Architectural framework. ETsI Gs NFV 2013, 2, V1. [Google Scholar]
- Zhang, Y. Network Function Virtualization: Concepts and Applicability in 5G Networks; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Duan, Q. Intelligent and autonomous management in cloud-native future networks—A survey on related standards from an architectural perspective. Future Internet 2021, 13, 42. [Google Scholar] [CrossRef]
- Brown, G. Designing Cloud-Native 5G Core Networks. February 2017. Heavy Reading. Available online: https://www.scribd.com/document/358153029/Nokia-5g-Core-White-Paper (accessed on 14 February 2023).
- Thönes, J. Microservices. IEEE Softw. 2015, 32, 116. [Google Scholar] [CrossRef]
- Balalaie, A.; Heydarnoori, A.; Jamshidi, P. Microservices architecture enables devops: Migration to a cloud-native architecture. IEEE Softw. 2016, 33, 42–52. [Google Scholar] [CrossRef] [Green Version]
- Jamshidi, P.; Pahl, C.; Mendonça, N.C.; Lewis, J.; Tilkov, S. Microservices: The journey so far and challenges ahead. IEEE Softw. 2018, 35, 24–35. [Google Scholar] [CrossRef] [Green Version]
- Linthicum, D.S. Cloud-native applications and cloud migration: The good, the bad, and the points between. IEEE Cloud Comput. 2017, 4, 12–14. [Google Scholar] [CrossRef]
- Osmani, L.; Kauppinen, T.; Komu, M.; Tarkoma, S. Multi-cloud connectivity for kubernetes in 5g networks. IEEE Commun. Mag. 2021, 59, 42–47. [Google Scholar] [CrossRef]
- Dutta, S.; Taleb, T.; Ksentini, A. QoE-aware elasticity support in cloud-native 5G systems. In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 22–27 May 2016; pp. 1–6. [Google Scholar]
- Imadali, S.; Bousselmi, A. Cloud native 5g virtual network functions: Design principles and use cases. In Proceedings of the 2018 IEEE 8th International Symposium on Cloud and Service Computing (SC2), Paris, France, 19–22 November 2018; pp. 91–96. [Google Scholar]
- Kim, J.; Lee, J.; Kim, T.; Pack, S. Deep reinforcement learning based cloud-native network function placement in private 5g networks. In Proceedings of the 2020 IEEE Globecom Workshops (GC Wkshps. IEEE), Taipei, Taiwan, 7–11 December 2020; pp. 1–6. [Google Scholar]
- Kim, J.; Lee, J.; Kim, T.; Pack, S. Deep Q-Network-based Cloud-Native Network Function Placement in Edge Cloud-Enabled Non-Public Networks. IEEE Trans. Netw. Serv. Manag. 2022, 1. [Google Scholar] [CrossRef]
- Xiang, Z.; Höweler, M.; You, D.; Reisslein, M.; Fitzek, F.H. X-MAN: A non-intrusive power manager for energy-adaptive cloud-native network functions. IEEE Trans. Netw. Serv. Manag. 2021, 19, 1017–1035. [Google Scholar] [CrossRef]
- Shah, S.D.A.; Gregory, M.A.; Li, S. Cloud-native network slicing using software defined networking based multi-access edge computing: A survey. IEEE Access 2021, 9, 10903–10924. [Google Scholar] [CrossRef]
- Qiang, W.; Chunming, W.; Xincheng, Y.; Qiumei, C. Intrinsic security and self-adaptive cooperative protection enabling cloud native network slicing. IEEE Trans. Netw. Serv. Manag. 2021, 18, 1287–1304. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, R.; Yan, X.; Wu, C.; Lu, R. Intrinsic Security: A Robust Framework for Cloud-Native Network Slicing via a Proactive Defense Paradigm. IEEE Wirel. Commun. 2022, 29, 146–153. [Google Scholar] [CrossRef]
- Lee, J.B.; Yoo, T.H.; Lee, E.H.; Hwang, B.H.; Ahn, S.W.; Cho, C.H. High-performance software load balancer for cloud-native architecture. IEEE Access 2021, 9, 123704–123716. [Google Scholar] [CrossRef]
- Sharma, S.; Miller, R.; Francini, A. A cloud-native approach to 5G network slicing. IEEE Commun. Mag. 2017, 55, 120–127. [Google Scholar] [CrossRef]
- Bolla, R.; Bruschi, R.; Burow, K.; Davoli, F.; Ghrairi, Z.; Gouvas, P.; Lombardo, C.; Pajo, J.F.; Zafeiropoulos, A. From cloud-native to 5g-ready vertical applications: An industry 4.0 use case. In Proceedings of the 2021 IEEE 22nd International Conference on High Performance Switching and Routing (HPSR), Paris, France, 7–10 June 2021; pp. 1–6. [Google Scholar]
- Abbas, K.; Khan, T.A.; Afaq, M.; Song, W.C. Network slice lifecycle management for 5g mobile networks: An intent-based networking approach. IEEE Access 2021, 9, 80128–80146. [Google Scholar] [CrossRef]
- Leconte, M.; Paschos, G.S.; Mertikopoulos, P.; Kozat, U.C. A resource allocation framework for network slicing. In Proceedings of the IEEE INFOCOM 2018-IEEE Conference on Computer Communications, Honolulu, HI, USA, 16–19 April 2018; pp. 2177–2185. [Google Scholar]
- Mudvari, A.; Makris, N.; Tassiulas, L. ML-driven scaling of 5G Cloud-Native RANs. In Proceedings of the 2021 IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 7–11 December 2021; pp. 1–6. [Google Scholar]
- Schmidt, R.; Nikaein, N. RAN engine: Service-oriented RAN through containerized micro-services. IEEE Trans. Netw. Serv. Manag. 2021, 18, 469–481. [Google Scholar] [CrossRef]
- Boudi, A.; Bagaa, M.; Pöyhönen, P.; Taleb, T.; Flinck, H. AI-based resource management in beyond 5G cloud native environment. IEEE Netw. 2021, 35, 128–135. [Google Scholar] [CrossRef]
- Wu, Y.; Dai, H.N.; Wang, H.; Xiong, Z.; Guo, S. A survey of intelligent network slicing management for industrial IoT: Integrated approaches for smart transportation, smart energy, and smart factory. IEEE Commun. Surv. Tutorials 2022, 24, 1175–1211. [Google Scholar] [CrossRef]
- Mekki, M.; Arora, S.; Ksentini, A. A Scalable Monitoring Framework for Network Slicing in 5G and Beyond Mobile Networks. IEEE Trans. Netw. Serv. Manag. 2021, 19, 413–423. [Google Scholar] [CrossRef]
- Bektas, C.; Monhof, S.; Kurtz, F.; Wietfeld, C. Towards 5G: An empirical evaluation of software-defined end-to-end network slicing. In Proceedings of the 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–6. [Google Scholar]
- Mao, Y.; Fu, Y.; Gu, S.; Vhaduri, S.; Cheng, L.; Liu, Q. Resource management schemes for cloud-native platforms with computing containers of docker and kubernetes. arXiv 2020, arXiv:2010.10350. [Google Scholar]
- Saha, P.; Beltre, A.; Uminski, P.; Govindaraju, M. Evaluation of docker containers for scientific workloads in the cloud. In Proceedings of the Practice and Experience on Advanced Research Computing, Pittsburgh, PA, USA, 22–26 July 2018; pp. 1–8. [Google Scholar]
- Podolskiy, V.; Mayo, M.; Koay, A.; Gerndt, M.; Patros, P. Maintaining SLOs of cloud-native applications via self-adaptive resource sharing. In Proceedings of the 2019 IEEE 13th International Conference on Self-Adaptive and Self-Organizing Systems (SASO), Umea, Sweden, 16–20 June 2019; pp. 72–81. [Google Scholar]
- Bankston, R.; Guo, J. Performance of container network technologies in cloud environments. In Proceedings of the 2018 IEEE International Conference on Electro/Information Technology (EIT), Rochester, MI, USA, 3–5 May 2018; pp. 277–283. [Google Scholar]
- Wang, P.; Xu, J.; Ma, M.; Lin, W.; Pan, D.; Wang, Y.; Chen, P. Cloudranger: Root cause identification for cloud native systems. In Proceedings of the 2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID), Washington, DC, USA, 1–4 May 2018; pp. 492–502. [Google Scholar]
- Amogh, P.; Veeramachaneni, G.; Rangisetti, A.K.; Tamma, B.R.; Franklin, A.A. A cloud native solution for dynamic auto scaling of MME in LTE. In Proceedings of the 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, QC, Canada, 8–13 October 2017; pp. 1–7. [Google Scholar]
- Kosińska, J.; Zieliński, K. Autonomic management framework for cloud-native applications. J. Grid Comput. 2020, 18, 779–796. [Google Scholar] [CrossRef]
- Aderaldo, C.M.; Mendonça, N.C.; Schmerl, B.; Garlan, D. Kubow: An architecture-based self-adaptation service for cloud native applications. In Proceedings of the 13th European Conference on Software Architecture, Paris, France, 9–13 September 2019; Volume 2, pp. 42–45. [Google Scholar]
- Wu, L.; Tordsson, J.; Elmroth, E.; Kao, O. Microrca: Root cause localization of performance issues in microservices. In Proceedings of the NOMS 2020-2020 IEEE/IFIP Network Operations and Management Symposium, Budapest, Hungary, 20–24 April 2020; pp. 1–9. [Google Scholar]
- Buchaca, D.; Berral, J.L.; Wang, C.; Youssef, A. Proactive container auto-scaling for cloud native machine learning services. In Proceedings of the 2020 IEEE 13th International Conference on Cloud Computing (CLOUD), Virtual Event, 18–24 October 2020; pp. 475–479. [Google Scholar]
- Henning, S.; Hasselbring, W. A configurable method for benchmarking scalability of cloud-native applications. Empir. Softw. Eng. 2022, 27, 1–42. [Google Scholar] [CrossRef]
- Barrachina-Muñoz, S.; Payaró, M.; Mangues-Bafalluy, J. Cloud-native 5G experimental platform with over-the-air transmissions and end-to-end monitoring. In Proceedings of the 2022 13th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), Porto, Portugal, 20–22 July 2022; pp. 692–697. [Google Scholar]
- Jayalakshmi, S.; Bharanidharan, G.; Jayalakshmi, S. Energy Efficient Next-Gen of Virtualization for Cloud-native Applications in Modern Data Centres. In Proceedings of the 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, 7–9 October 2020; pp. 203–210. [Google Scholar]
- Dion, J.; Lallet, J.; Beaulieu, L.; Savelli, P.; Bertin, P. Cloud Native Hardware Accelerated 5G virtualized Radio Access Network. In Proceedings of the 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Helsinki, Finland, 13–16 September 2021; pp. 1061–1066. [Google Scholar]
- Shin, J.S.; Kim, J. SmartX Multi-Sec: A Visibility-Centric Multi-Tiered Security Framework for Multi-Site Cloud-Native Edge Clusters. IEEE Access 2021, 9, 134208–134222. [Google Scholar] [CrossRef]
Ref. | Year | Proposed Method | Tools | Problem |
---|---|---|---|---|
[53] | 2016 | Autonomic scaling | Ubuntu- 14.04.03 LTS | Optimal resource utilization and resource scaling decisions |
[54] | 2018 | 5GaaS service architecture and 5G CN-VNF framework | OAI | Review current NFV management solutions |
[55] | 2020 | DQN based algorithm | Not described | Minimize back-haul control traffic cost |
[56] | 2022 | DQN based algorithm | Not described | Minimize back-haul control traffic cost, CNF launching costs, and CNF operating costs |
[57] | 2022 | Monitoring energy-adaptive network functions framework | Ubuntu- 20.04 LTS Cisco TRex Docker XDP-Tools Turbostat | Reducing power consumption |
[58] | 2021 | Envisions a cloud native 5G microservices architecture | Kubernetes | Cloud native 5G core study and design |
[59] | 2021 | Intrinsic Cloud Security framework | DPDK | Security |
[60] | 2022 | Intrinsic Cloud Security framework with heterogeneous resource pool management | Not described | Security |
[61] | 2021 | Automate the load balancer deployment | DPDK Cisco TRex | Load balancer deployment |
Ref. | Year | Proposed Method | Tools | Problem |
---|---|---|---|---|
[62] | 2017 | A cloud native approach to network slicing | Linux VMs Djiango Nginx PostgreSQL OpenStack Apache projects | Lifecycle management |
[63] | 2021 | Validates the MATILDA platform | MATILDA | Lifecycle management |
[64] | 2021 | Uses LSTM RNN model to predict future resource utilization | OpenStack OAI IBN tool | Lifecycle management |
[65] | 2018 | Alternating direction method of multipliers algorithm | Not described | Resource allocation |
[66] | 2021 | Uses LSTM RNN model to predict network load in the future | OAI Kubernetes | Resource allocation for RAN |
[67] | 2021 | Designs a service-oriented RAN architecture | OAI Mosaic5G | Resource allocation for RAN |
[68] | 2021 | DRL algorithm | Kubernetes | Resource allocation and minimize slice migration overhead |
[69] | 2022 | A network slicing management architecture for IIoT applications | Not described | Network slicing management |
[70] | 2021 | Uses components of the slice collection agents in a new framework | OAI Openshift Kubernetes | Network slices monitoring |
[71] | 2018 | Proposes a management and orchestration controller for slice creation | NextEPC CommAgility- SmallCellSTACK- eNodeB | Service guarantees |
Ref. | Year | Proposed Method | Tools | Problem |
---|---|---|---|---|
[72] | 2020 | Monitoring system and analyze completion times | Docker and Kubernetes | Performance analysis and container strategies |
[73] | 2018 | Quantized MPI | Docker and Singularity | Performance analysis |
[74] | 2019 | Self-adaptive resource sharing | Kubernetes | Vertical container expansion |
[75] | 2018 | Use iperf3 for analysis | AWS | Containers and performance |
[76] | 2018 | CloudRanger | IBM Bluemix | Error detection |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.-Y.; Chen, C.-Y.; Chen, J.-Y.; Chao, H.-C. A Survey on Resource Management for Cloud Native Mobile Computing: Opportunities and Challenges. Symmetry 2023, 15, 538. https://doi.org/10.3390/sym15020538
Huang S-Y, Chen C-Y, Chen J-Y, Chao H-C. A Survey on Resource Management for Cloud Native Mobile Computing: Opportunities and Challenges. Symmetry. 2023; 15(2):538. https://doi.org/10.3390/sym15020538
Chicago/Turabian StyleHuang, Shih-Yun, Cheng-Yu Chen, Jen-Yeu Chen, and Han-Chieh Chao. 2023. "A Survey on Resource Management for Cloud Native Mobile Computing: Opportunities and Challenges" Symmetry 15, no. 2: 538. https://doi.org/10.3390/sym15020538
APA StyleHuang, S. -Y., Chen, C. -Y., Chen, J. -Y., & Chao, H. -C. (2023). A Survey on Resource Management for Cloud Native Mobile Computing: Opportunities and Challenges. Symmetry, 15(2), 538. https://doi.org/10.3390/sym15020538