Synthesis, Molecular, and Supramolecular Structures of Two Azide-Bridged Cd(II) and Cu(II) Coordination Polymers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of [Cd(2A4Pic)2(N3)2]n; (1)
2.2. Synthesis of [Cu(Qu-6-COO)(N3)(H2O)]n; (2)
2.3. Hirshfeld and DFT Calculations
3. Results and Discussion
3.1. X-ray Crystal Structure Description of 1
3.2. X-ray Crystal Structure Description of 2
3.3. Hirshfeld Analysis of Molecular Packing
3.4. The Atoms in Molecules (AIM) Analysis
3.5. Natural Population Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mir, M.H.; Koh, L.L.; Tan, G.K.; Vittal, J.J. Single-crystal to single-crystal photochemical structural transformations of interpenetrated 3D coordination polymers by [2 + 2] cycloaddition reactions. Angew. Chem. Int. Ed. 2010, 49, 390–393. [Google Scholar] [CrossRef] [PubMed]
- Das, L.K.; Gómez-García, C.J.; Ghosh, A. Influence of the central metal ion in controlling the self-assembly and magnetic properties of 2D coordination polymers derived from [(NiL)2M]2+ nodes (M = Ni, Zn and Cd) (H2L = salen-type di-Schiff base) and dicyanamide spacers. Dalton Trans. 2015, 44, 1292–1302. [Google Scholar] [CrossRef] [PubMed]
- Das, L.K.; Diaz, C.; Ghosh, A. Antiferromagnetic mixed-valence Cu(I)–Cu(II) two-dimensional coordination polymers constructed by double oximato bridged Cu(II) dimers and CuISCN based one-dimensional anionic chains. Cryst. Growth Des. 2015, 15, 3939–3949. [Google Scholar] [CrossRef]
- Yamada, T.; Otsubo, K.; Makiura, R.; Kitagawa, H. Designer coordination polymers: Dimensional crossover architectures and proton conduction. Chem. Soc. Rev. 2013, 42, 6655–6669. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, Y.; He, Y.; Xu, Z.; Zhao, X.; Han, Y. Synthesis of several novel coordination complexes: Ion exchange, magnetic and photocatalytic studies. New J. Chem. 2017, 41, 1046–1056. [Google Scholar] [CrossRef]
- Mondal, M.; Jana, S.; Drew, M.G.; Ghosh, A. Application of two Cu(II)-azido based 1D coordination polymers in optoelectronic device: Structural characterization and experimental studies. Polymer 2020, 204, 122815. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, Y.; Gong, Q.; Li, Z.; Li, J. MOFs for CO2 capture and separation from flue gas mixtures: The effect of multifunctional sites on their adsorption capacity and selectivity. Chem. Commun. 2013, 49, 653–661. [Google Scholar] [CrossRef]
- Zeng, L.W.; Hu, K.Q.; Mei, L.; Li, F.Z.; Huang, Z.W.; An, S.W.; Chai, Z.F.; Shi, W.Q. Structural diversity of bipyridinium-based uranyl coordination polymers: Synthesis, characterization, and ion-exchange application. Inorg. Chem. 2019, 58, 14075–14084. [Google Scholar] [CrossRef]
- Farrusseng, D. (Ed.) Metal-Organic Frameworks: Applications from Catalysis to Gas Storage; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Ganguly, S.; Kar, P.; Chakraborty, M.; Ghosh, A. The first alternating MnII–MnIII 1D chain: Structure, magnetic properties and catalytic oxidase activities. New J. Chem. 2018, 42, 9517–9529. [Google Scholar] [CrossRef]
- Kundu, T.; Mitra, S.; Patra, P.; Goswami, A.; Díaz Díaz, D.; Banerjee, R. Mechanical downsizing of a gadolinium(III)-based metal–organic framework for anticancer drug delivery. Chem. Eur. J. 2014, 20, 10514–10518. [Google Scholar] [CrossRef]
- Kar, P.; Guha, P.M.; Drew, M.G.; Ishida, T.; Ghosh, A. Spin-canted antiferromagnetic phase transitions in alternating phenoxo-and carboxylato-bridged MnIII-salen complexes. Eur. J. Inorg. Chem. 2011, 2011, 2075–2085. [Google Scholar] [CrossRef]
- Dutta, B.; Jana, R.; Bhanja, A.K.; Ray, P.P.; Sinha, C.; Mir, M.H. Supramolecular aggregate of cadmium(II)-based one-dimensional coordination polymer for device fabrication and sensor application. Inorg. Chem. 2019, 58, 2686–2694. [Google Scholar] [CrossRef]
- Ghorai, P.; Dey, A.; Brandão, P.; Benmansour, S.; Gómez García, C.J.; Ray, P.P.; Saha, A. Multifunctional Ni(II)-based metamagnetic coordination polymers for electronic device fabrication. Inorg. Chem. 2020, 59, 8749–8761. [Google Scholar] [CrossRef]
- Liu, J.Q.; Luo, Z.D.; Pan, Y.; Singh, A.K.; Trivedi, M.; Kumar, A. Recent developments in luminescent coordination polymers: Designing strategies, sensing application and theoretical evidences. Coord. Chem. Rev. 2020, 406, 213145. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, W.; Hu, Z.; Wang, G.; Uvdal, K. Coordination polymers for energy transfer: Preparations, properties, sensing applications, and perspectives. Coord. Chem. Rev. 2015, 284, 206–235. [Google Scholar] [CrossRef]
- Xie, Z.; Ma, L.; deKrafft, K.E.; Jin, A.; Lin, W. Porous phosphorescent coordination polymers for oxygen sensing. J. Am. Chem. Soc. 2010, 132, 922–923. [Google Scholar] [CrossRef]
- Alsharabasy, A.M.; Pandit, A.; Farràs, P. Recent advances in the design and sensing applications of hemin/coordination polymer-based nanocomposites. Adv. Mater. 2021, 33, 2003883. [Google Scholar] [CrossRef]
- Stavila, V.; Talin, A.A.; Allendorf, M.D. MOF-based electronic and opto-electronic devices. Chem. Soc. Rev. 2014, 43, 5994–6010. [Google Scholar] [CrossRef] [Green Version]
- Dhakshinamoorthy, A.; Garcia, H. Catalysis by metal nanoparticles embedded on metal–organic frameworks. Chem. Soc. Rev. 2012, 41, 5262–5284. [Google Scholar] [CrossRef]
- Allendorf, M.D.; Bauer, C.A.; Bhakta, R.K.; Houk, R.J.T. Luminescent metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1330–1352. [Google Scholar] [CrossRef]
- Roy, S.; Halder, S.; Drew, M.G.; Ray, P.P.; Chattopadhyay, S. Fabrication of an active electronic device using a hetero-bimetallic coordination polymer. ACS Omega 2018, 3, 12788–12796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Y.; Li, B.; O’Keeffe, M.; Chen, B. Multifunctional metal–organic frameworks constructed from meta-benzenedicarboxylate units. Chem. Soc. Rev. 2014, 43, 5618–5656. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.M.; Kim, H.Y.; Hwang, I.H.; Bae, J.M.; Kim, C.; Yo, C.H.; Kim, Y.; Kim, S.J. CdII MOFs constructed using succinate and bipyridyl ligands: Photoluminescence and heterogeneous catalytic activity. Bull. Korean Chem. Soc. 2014, 35, 1777–1783. [Google Scholar] [CrossRef] [Green Version]
- Escuer, A.; Aromí, G. Azide as a bridging ligand and magnetic coupler in transition metal clusters. Eur. J. Inorg. Chem. 2006, 2006, 4721–4736. [Google Scholar] [CrossRef]
- Zeng, Y.F.; Hu, X.; Liu, F.C.; Bu, X.H. Azido-mediated systems showing different magnetic behaviors. Chem. Soc. Rev. 2009, 38, 469–480. [Google Scholar] [CrossRef]
- Adhikary, C.; Koner, S. Structural and magnetic studies on copper(II) azido complexes. Coord. Chem. Rev. 2010, 254, 2933–2958. [Google Scholar] [CrossRef]
- Zheng, Y.Z.; Zheng, Z.; Chen, X.M. A symbol approach for classification of molecule-based magnetic materials exemplified by coordination polymers of metal carboxylates. Coord. Chem. Rev. 2014, 258, 1–15. [Google Scholar] [CrossRef]
- Kurmoo, M. Magnetic metal—Organic frameworks. Chem. Soc. Rev. 2009, 38, 1353–1379. [Google Scholar] [CrossRef]
- Escuer, A.; Esteban, J.; Perlepes, S.P.; Stamatatos, T.C. The bridging azido ligand as a central “player” in high-nuclearity 3D-metal cluster chemistry. Coord. Chem. Rev. 2014, 275, 87–129. [Google Scholar] [CrossRef]
- Yue, Q.; Gao, E.Q. Azide and carboxylate as simultaneous coupler for magnetic coordination polymers. Coord. Chem. Rev. 2019, 382, 1–31. [Google Scholar] [CrossRef]
- Bhowmik, P.; Biswas, S.; Chattopadhyay, S.; Diaz, C.; Gómez-García, C.J.; Ghosh, A. Synthesis, crystal structure and magnetic properties of two alternating double μ1,1 and μ1,3 azido bridged Cu(II) and Ni(II) chains. Dalton Trans. 2014, 43, 12414–12421. [Google Scholar] [CrossRef]
- Mukherjee, S.; Mukherjee, P.S. CuII–azide polynuclear complexes of Cu4 building clusters with Schiff-base co-ligands: Synthesis, structures, magnetic behavior and DFT studies. Dalton Trans. 2013, 42, 4019–4030. [Google Scholar] [CrossRef]
- Mautner, F.A.; Fischer, R.C.; Williams, B.R.; Massoud, S.S.; Salem, N.M. Hexanuclear cadmium(II) cluster constructed from tris (2-methylpyridyl) amine (TPA) and azides. Crystals 2020, 10, 317. [Google Scholar] [CrossRef] [Green Version]
- Mautner, F.A.; Fischer, R.C.; Reichmann, K.; Gullett, E.; Ashkar, K.; Massoud, S.S. Synthesis and characterization of 1D and 2D cadmium(II)-2,2′-bipyridine-N,N′-dioxide coordination polymers bridged by pseudohalides. J. Mol. Struct. 2019, 1175, 797–803. [Google Scholar] [CrossRef]
- Boonmak, J.; Nakano, M.; Chaichit, N.; Pakawatchai, C.; Youngme, S. Spin canting and metamagnetism in 2D and 3D cobalt(II) coordination networks with alternating double end-on and double end-to-end azido bridges. Inorg. Chem. 2011, 50, 7324–7333. [Google Scholar] [CrossRef]
- Mautner, F.A.; Louka, F.R.; Hofer, J.; Spell, M.; Lefèvre, A.; Guilbeau, A.E.; Massoud, S.S. One-dimensional cadmium polymers with alternative di (EO/EE) and di(EO/EO/EO/EE) bridged azide bonding modes. Cryst. Growth Des. 2013, 13, 4518–4525. [Google Scholar] [CrossRef]
- Massoud, S.S.; Louka, F.R.; Obaid, Y.K.; Vicente, R.; Ribas, J.; Fischer, R.C.; Mautner, F.A. Metal ions directing the geometry and nuclearity of azido-metal (II) complexes derived from bis (2-(3, 5-dimethyl-1 H-pyrazol-1-yl) ethyl) amine. Dalton Trans. 2013, 42, 3968–3978. [Google Scholar] [CrossRef]
- Lazari, G.; Stamatatos, T.C.; Raptopoulou, C.P.; Psycharis, V.; Pissas, M.; Perlepes, S.P.; Boudalis, A.K. A metamagnetic 2D copper (II)-azide complex with 1D ferromagnetism and a hysteretic spin-flop transition. Dalton Trans. 2009, 17, 3215–3221. [Google Scholar] [CrossRef]
- You, Y.S.; Yoon, J.H.; Kim, H.C.; Hong, C.S. Chiral azide-bridged two-dimensional Cu(II) compounds showing a field-induced spin–flop transition. Chem. Commun. 2005, 32, 4116–4118. [Google Scholar] [CrossRef]
- Gao, E.Q.; Bai, S.Q.; Wang, C.F.; Yue, Y.F.; Yan, C.H. Structural and magnetic properties of three one-dimensional azido-bridged copper(II) and manganese(II) coordination polymers. Inorg. Chem. 2003, 42, 8456–8464. [Google Scholar] [CrossRef]
- Sun, D.; Han, L.L.; Yuan, S.; Deng, Y.K.; Xu, M.Z.; Sun, D.F. Four new Cd(II) coordination polymers with mixed multidentate N-donors and biphenyl-based polycarboxylate ligands: Syntheses, structures, and photoluminescent properties. Cryst. Growth Des. 2013, 13, 377–385. [Google Scholar] [CrossRef]
- Wei, G.; Shen, Y.F.; Li, Y.R.; Huang, X.C. Synthesis, crystal structure, and photoluminescent properties of ternary Cd(II)/triazolate/chloride system. Inorg. Chem. 2010, 49, 9191–9199. [Google Scholar] [CrossRef] [PubMed]
- Du, M.; Jiang, X.J.; Zhao, X.J. Direction of unusual mixed-ligand metal–organic frameworks: A new type of 3-D polythreading involving 1-D and 2-D structural motifs and a 2-fold interpenetrating porous network. Chem. Commun. 2005, 44, 5521–5523. [Google Scholar] [CrossRef]
- Chen, F.; Wu, M.F.; Liu, G.N.; Wang, M.S.; Zheng, F.K.; Yang, C.; Xu, Z.N.; Liu, Z.F.; Guo, G.C.; Huang, J.S. Zinc(II) and cadmium(II) coordination polymers based on 3-(5H-Tetrazolyl)benzoate ligand with different coordination modes: Hydrothermal syntheses, crystal structures and ligand-centered luminescence. Eur. J. Inorg. Chem. 2010, 2010, 4982–4991. [Google Scholar] [CrossRef]
- Huang, F.P.; Zhang, Q.; Yu, Q.; Bian, H.D.; Liang, H.; Yan, S.P.; Liao, D.Z.; Cheng, P. Coordination assemblies of CoII/NiII/ZnII/CdII with succinic acid and bent connectors: Structural diversity and spin-canted antiferromagnetism. Cryst. Growth Des. 2012, 12, 1890–1898. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, N.; Zhou, J.; Chang, T.; Fang, C.; Shangguan, D. A turn-on fluorescent sensor for zinc and cadmium ions based on perylene tetracarboxylic diimide. Analyst. 2013, 138, 901–906. [Google Scholar] [CrossRef]
- Majumdar, D.; Dey, S.; Sreejith, S.S.; Biswas, J.K.; Mondal, M.; Shukla, P.; Das, S.; Pal, T.; Das, D.; Bankura, K.; et al. Syntheses, crystal structures and photophysical aspects of azido-bridged tetranuclear cadmium(II) complexes: DFT/TD-DFT, thermal, antibacterial and anti-biofilm properties. J. Mol. Struct. 2019, 1179, 694–708. [Google Scholar] [CrossRef]
- Majumder, S.; Mandal, L.; Mohanta, S. Syntheses, structures, and steady state and time resolved photophysical properties of a tetraiminodiphenol macrocyclic ligand and its dinuclear zinc(II)/cadmium(II) complexes with coordinating and noncoordinating anions. Inorg. Chem. 2012, 51, 8739–8749. [Google Scholar] [CrossRef]
- Liu, X.; Hamon, J.R. Recent developments in penta-, hexa- and heptadentate Schiff base ligands and their metal complexes. Coord. Chem. Rev. 2019, 389, 94–118. [Google Scholar] [CrossRef]
- Ma, Y.; Cheng, A.L.; Tang, B.; Gao, E.Q. Copper(II) coordination polymers with azide and bipyridine-based zwitterionic carboxylate ligands: Structures and magnetism. Dalton Trans. 2014, 43, 13957–13964. [Google Scholar] [CrossRef]
- Sheldrick, G. SADABS, Program for Empirical Absorption Correction of Area Detector Data; University of Gottingen: Gottingen, Germany, 1996. [Google Scholar]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Spackman, M.A.; Jayatilaka, D. Hirshfeld surface analysis. Cryst. Eng. Comm. 2009, 11, 19–32. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. GAUSSIAN 09; Revision A02; Gaussian Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Glendening, E.D.; Reed, A.E.; Carpenter, J.E.; Weinhold, F. NBO Version 3.1, CI; University of Wisconsin: Madison, MI, USA, 1998. [Google Scholar]
- Adamo, C.; Barone, V. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models. J. Chem. Phys. 1998, 108, 664–675. [Google Scholar] [CrossRef]
- Feller, D. The role of databases in support of computational chemistry calculations. J. Comp. Chem. 1996, 17, 1571–1586. [Google Scholar] [CrossRef]
- Schuchardt, K.L.; Didier, B.T.; Elsethagen, T.; Sun, L.; Gurumoorthi, V.; Chase, J.; Li, J.; Windus, T.L. Basis set exchange: A community database for computational sciences. J. Chem. Inf. Model. 2007, 47, 1045–1052. [Google Scholar] [CrossRef] [Green Version]
- Bader, R.F.W. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, UK, 1990. [Google Scholar]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comp. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Goher, M.A.S.; Mautner, F.A.; Gatterer, K.; Abu-Youssef, M.A.M.; Badr, A.M.A.; Sodin, B.; Gspan, C. Four [Cd(L)2(N3)2]n 1D systems with different azide bridging sequences: Synthesis, spectral and structural characterization. J. Mol. Struct. 2008, 876, 199–205. [Google Scholar] [CrossRef]
- Mautner, F.A.; Scherzer, M.; Berger, C.; Fischer, R.C.; Vicente, R.; Massoud, S.S. Synthesis and characterization of three new 1-D polymeric [M2(4-azidopyridine)4(μ1,1-N3)2(μ1,3-N3)2]n (M = Ni, Co, Cd) complexes. Polyhedron 2015, 85, 329–336. [Google Scholar] [CrossRef]
- Louka, F.R.; Massoud, S.S.; Haq, T.K.; Koikawa, M.; Mikuriya, M.; Omote, M.; Fischer, R.C.; Mautner, F.A. Synthesis, structural characterization and magnetic properties of one-dimensional Cu(II)-azido coordination polymers. Polyhedron 2017, 138, 177–184. [Google Scholar] [CrossRef]
- Zhou, J.-H.; Cheng, R.-M.; Song, Y.; Li, Y.-Z.; Yu, Z.; Chen, X.-T.; You, X.-Z. Syntheses, structures and magnetic properties of two new water bridged dinuclear nickel(II) complexes containing derivatives of 1,2,4-triazole and pivalate ligands. Polyhedron 2006, 25, 2426–2432. [Google Scholar] [CrossRef]
- Soliman, S.M.; Albering, J.H.; Sholkamy, E.N.; El-Faham, A. Mono- and penta-nuclear self-assembled silver(I) complexes of pyrazolyl s-triazine ligand; synthesis, structure and antimicrobial studies. Appl. Organomet. Chem. 2020, 24, e5603. [Google Scholar] [CrossRef]
- Bohórquez, H.J.; Boyd, R.J.; Matta, C.F. Molecular model with quantum mechanical bonding information. J. Phys. Chem. A. 2011, 115, 12991–12997. [Google Scholar] [CrossRef] [PubMed]
- Bader, R.F. A quantum theory of molecular structure and its applications. Chem. Rev. 1991, 91, 893–928. [Google Scholar] [CrossRef]
- Bhadane, S.A.; Lande, D.N.; Gejji, S.P. Understanding binding of cyano-adamantyl derivatives to pillar [6] arene macrocycle from density functional theory. J. Phys. Chem. A 2016, 120, 8738–8749. [Google Scholar] [CrossRef]
- Marana, N.L.; Casassa, S.M.; Sambrano, J.R. Adsorption of NH3 with different coverages on single-walled ZnO nanotube: DFT and QTAIM study. J. Phys. Chem. C 2017, 121, 8109–8119. [Google Scholar] [CrossRef]
- Akman, F.; Issaoui, N.; Kazachenko, A.S. Intermolecular hydrogen bond interactions in the thiourea/water complexes (Thio-(H2O)n)(n = 1, …, 5): X-ray, DFT, NBO, AIM, and RDG analyses. J. Mol. Model. 2020, 26, 1–16. [Google Scholar] [CrossRef]
- Venkataramanan, N.S.; Suvitha, A.; Kawazoe, Y. Unravelling the nature of binding of cubane and substituted cubanes within cucurbiturils: A DFT and NCI study. J. Mol. Liq. 2018, 260, 18–29. [Google Scholar] [CrossRef]
- Nimmermark, A.; Öhrström, L.; Reedijk, J. Metal-ligand bond lengths and strengths: Are they correlated? A detailed CSD analysis. Z. Krist. 2013, 228, 311–317. [Google Scholar] [CrossRef] [Green Version]
- Reed, A.E.; Weinstock, R.B.; Weinhold, F. Natural population analysis. J. Chem. Phys. 1985, 83, 735–746. [Google Scholar] [CrossRef]
Complex | 1 | 2 |
---|---|---|
Empirical formula | C12 H16 Cd N10 | C10 H8 Cu N4 O3 |
F.Wt | 412.75 g/mol | 295.74 g/mol |
T | 100(2) K | 100(2) K |
λ | 0.71073 Å | 0.71073 Å |
Crystal system | Monoclinic | Monoclinic |
Space group | P21/c | P21/c |
Unit cell dimensions (Å, °) | a = 8.9157(3) | a = 8.0773(5) |
b = 3.69130(10) | b = 6.4187(3) | |
c = 23.1784(7) | c = 20.9267(12) | |
β = 90.0980(10) | β = 96.499(2) | |
V (Å3) | 762.81(4) | 1077.99(10) |
Z | 2 | 4 |
ρcalc (g/cm3) | 1.797 | 1.822 |
μ(Mo Kα) (mm−1) | 1.448 | 2.032 |
Θ-range (°) | 2.88 to 26.43 | 2.54 to 23.35 |
No. Reflns | 7030 | 10351 |
Indep. reflns | 1543 [R(int) = 0.0248] | 1542 [R(int) = 0.0775] |
%Completeness to Θ | 97.80 | 98.80 |
GOOF (F2) | 1.098 | 1.050 |
Final R [I > 2sigma(I)] | R1 = 0.0166, wR2 = 0.0387 | R1 = 0.0367, wR2 = 0.0770 |
R (all data) | R1 = 0.0190, wR2 = 0.0398 | R1 = 0.0721, wR2 = 0.0925 |
CCDC | 2207079 | 2207080 |
Bond | Distance | Bond | Distance |
---|---|---|---|
Cd1-N4 | 2.3305(15) | Cd1-N1 1 | 2.4198(15) |
Cd1-N1 | 2.3496(15) | ||
Bonds | Angle | Bonds | Angle |
N1-Cd1-N1 2 | 180.00(8) | N4-Cd1-N1 1 | 92.79(5) |
N41-Cd1-N4 | 180 | N4-Cd1-N1 3 | 87.21(5) |
N4-Cd1-N1 | 91.80(5) | N1-Cd1-N1 1 | 78.59(5) |
N4-Cd1-N1 2 | 88.20(5) | N1-Cd1-N1 4 | 101.41(5) |
Bond | Distance | Bond | Distance |
---|---|---|---|
Cu1-O2 | 1.945(3) | Cu1-N1 1 | 1.995(4) |
Cu1-O3 | 1.946(3) | Cu1-O1 | 2.374(4) |
Cu1-N1 | 1.988(4) | Cu1 2-O1 | 2.771(3) |
Bonds | Angle | Bonds | Angle |
O2-Cu1-O3 | 178.22(14) | N1-Cu1-N1 1 | 166.14(12) |
O2-Cu1-N1 | 86.97(15) | O2-Cu1-O1 | 83.93(13) |
O3-Cu1-N1 | 91.46(15) | O3-Cu1-O1 | 95.69(13) |
O2-Cu1-N1 1 | 91.34(15) | N1-Cu1-O1 | 105.02(15) |
O3-Cu1-N1 1 | 90.39(15) | N11-Cu1-O1 | 88.46(15) |
Contact | Distance | Contact | Distance |
---|---|---|---|
C10…C3 | 3.327(7) | N4…H2 | 1.827 |
C6…C8 | 3.320(7) | N2…H10 | 2.586 |
C5…C8 | 3.396(7) | N3…H1 | 2.121 |
Cu1-N1 | 1.995(4) | N2…O2 | 2.828(5) |
Cu1-O2 | 1.945(3) | N2…O3 | 2.857(5) |
Cu1-O1 | 2.771(3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altowyan, M.S.; Fathalla, E.M.; Albering, J.H.; Barakat, A.; Abu-Youssef, M.A.M.; Soliman, S.M.; Badr, A.M.A. Synthesis, Molecular, and Supramolecular Structures of Two Azide-Bridged Cd(II) and Cu(II) Coordination Polymers. Symmetry 2023, 15, 619. https://doi.org/10.3390/sym15030619
Altowyan MS, Fathalla EM, Albering JH, Barakat A, Abu-Youssef MAM, Soliman SM, Badr AMA. Synthesis, Molecular, and Supramolecular Structures of Two Azide-Bridged Cd(II) and Cu(II) Coordination Polymers. Symmetry. 2023; 15(3):619. https://doi.org/10.3390/sym15030619
Chicago/Turabian StyleAltowyan, Mezna Saleh, Eman M. Fathalla, Jörg H. Albering, Assem Barakat, Morsy A. M. Abu-Youssef, Saied M. Soliman, and Ahmed M. A. Badr. 2023. "Synthesis, Molecular, and Supramolecular Structures of Two Azide-Bridged Cd(II) and Cu(II) Coordination Polymers" Symmetry 15, no. 3: 619. https://doi.org/10.3390/sym15030619
APA StyleAltowyan, M. S., Fathalla, E. M., Albering, J. H., Barakat, A., Abu-Youssef, M. A. M., Soliman, S. M., & Badr, A. M. A. (2023). Synthesis, Molecular, and Supramolecular Structures of Two Azide-Bridged Cd(II) and Cu(II) Coordination Polymers. Symmetry, 15(3), 619. https://doi.org/10.3390/sym15030619