Symmetrical Solutions for Non-Local Fractional Integro-Differential Equations via Caputo–Katugampola Derivatives
Abstract
:1. Introduction
1.1. Significance of This Paper
1.2. Structurization of the Paper
2. Preliminaries
- 1.
- is bounded on the function space
- 2.
- 3.
3. Existence Result
- (H)
- Let be continuous nonlinearity terms, and there exist constants and , such that
- (H)
- The kernels and are continuous on , and there exist two positive constants, and , in , such that
- (H)
- is continuous on ħ;
- (H)
- is continuous on , and there exists a constant , such that
4. Approximate Solution
5. An Example
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science Publishers: Basel, Switzerland; Philadelphia, PA, USA, 1993; ISBN 9782881248641. [Google Scholar]
- Anderson, D.R.; Ulness, D.J. Properties of Katugampola fractional derivative with potential application in quantum mechanics. J. Math. Phys. 2015, 56, 063502. [Google Scholar] [CrossRef] [Green Version]
- Janaki, M.; Kanagarajan, K.; Elsayed, E.M. Existence criteria for Katugampola fractional type impulsive differential equations with inclusions. Math. Sci. Model. 2019, 2, 51–63. [Google Scholar]
- Janaki, M.; Kanagarajan, K.; Vivek, D. Analytic study on fractional implicit differential equations with impulses via Katugampola fractional Derivative. Int. J. Math. Appl. 2018, 6, 53–62. [Google Scholar]
- Vivek, D.; Elsayed, E.M.; Kanagarajan, K. Dynamics and stability results for impulsive type integro-differential equations with generalized fractional derivative. Math. Nat. Sci. 2019, 4, 1–12. [Google Scholar] [CrossRef]
- Vivek, D.; Kanagarajan, K.; Harikrishnan, S. Theory and analysis of impulsive type pantograph equations with Katugampola fractioanl derivative. J. Vabration Test. Syst. Dyn. 2018, 2, 9–20. [Google Scholar] [CrossRef]
- Wang, L.; Liu, G.; Xue, J.; Wong, K.-K. Channel Prediction Using Ordinary Differential Equations for MIMO Systems. IEEE Trans. Veh. Technol. 2023, 72, 2111–2119. [Google Scholar] [CrossRef]
- Li, X.; Dong, Z.Q.; Wang, L.P.; Niu, X.D.; Yamaguchi, H.; Li, D.C.; Yu, P. A magnetic field coupling fractional step lattice Boltzmann model for the complex interfacial behavior in magnetic multiphase flows. Appl. Math. Model. 2023, 117, 219–250. [Google Scholar] [CrossRef]
- Xie, X.; Wang, T.; Zhang, W. Existence of solutions for the (p, q)-Laplacian equation with nonlocal Choquard reaction. Appl. Math. Lett. 2023, 135, 108418. [Google Scholar] [CrossRef]
- Abood, B.N. Approximate solutions and existence of solution for a Caputo nonlocal fractional volterra fredholm integro-differential equation. Int. J. Appl. Math. 2020, 33, 1049. [Google Scholar] [CrossRef]
- Gambo, Y.Y.; Jarad, F.; Baleanu, D.; Abdeljawad, T. On Caputo modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2014, 2014, 10. [Google Scholar] [CrossRef] [Green Version]
- Hilfer, R. Threefold introduction to fractional derivatives. Anomalous Transp. Found. Appl. 2008, 17–73. [Google Scholar] [CrossRef]
- Adomian, G. A review of the decomposition method in applied mathematics. J. Math. Anal. Appl. 1988, 135, 501–544. [Google Scholar] [CrossRef] [Green Version]
- Suvinthra, M.; Balachandran, K.; Lizzy, R.M. Large deviations for stochastic fractional integrodifferential equations. AIMS Math. 2018, 2, 348–364. [Google Scholar] [CrossRef]
- Almarri, B.; Ali, A.H.; Al-Ghafri, K.S.; Almutairi, A.; Bazighifan, O.; Awrejcewicz, J. Symmetric and Non-Oscillatory Characteristics of the Neutral Differential Equations Solutions Related to p-Laplacian Operators. Symmetry 2022, 14, 566. [Google Scholar] [CrossRef]
- Almarri, B.; Ali, A.H.; Lopes, A.M.; Bazighifan, O. Nonlinear Differential Equations with Distributed Delay: Some New Oscillatory Solutions. Mathematics 2022, 10, 995. [Google Scholar] [CrossRef]
- Almarri, B.; Janaki, S.; Ganesan, V.; Ali, A.H.; Nonlaopon, K.; Bazighifan, O. Novel Oscillation Theorems and Symmetric Properties of Nonlinear Delay Differential Equations of Fourth-Order with a Middle Term. Symmetry 2022, 14, 585. [Google Scholar] [CrossRef]
- Bazighifan, O.; Ali, A.H.; Mofarreh, F.; Raffoul, Y.N. Extended Approach to the Asymptotic Behavior and Symmetric Solutions of Advanced Differential Equations. Symmetry 2022, 14, 686. [Google Scholar] [CrossRef]
- Khan, F.S.; Khalid, M.; Al-Moneef, A.A.; Ali, A.H.; Bazighifan, O. Freelance Model with Atangana–Baleanu Caputo Fractional Derivative. Symmetry 2022, 14, 2424. [Google Scholar] [CrossRef]
- Arshad, U.; Sultana, M.; Ali, A.H.; Bazighifan, O.; Al-moneef, A.A.; Nonlaopon, K. Numerical Solutions of Fractional-Order Electrical RLC Circuit Equations via Three Numerical Techniques. Mathematics 2022, 10, 3071. [Google Scholar] [CrossRef]
- Sultana, M.; Arshad, U.; Ali, A.H.; Bazighifan, O.; Al-Moneef, A.A.; Nonlaopon, K. New Efficient Computations with Symmetrical and Dynamic Analysis for Solving Higher-Order Fractional Partial Differential Equations. Symmetry 2022, 14, 1653. [Google Scholar] [CrossRef]
- Bazighifan, O.; Kumam, P. Oscillation Theorems for Advanced Differential Equations with p-Laplacian Like Operators. Mathematics 2020, 8, 821. [Google Scholar] [CrossRef]
- Bazighifan, O.; Alotaibi, H.; Mousa, A.A.A. Neutral Delay Differential Equations: Oscillation Conditions for the Solutions. Symmetry 2021, 13, 101. [Google Scholar] [CrossRef]
- Adomian, G.; Rach, R. Inversion of nonlinear stochastic operators. J. Math. Anal. Appl. 1983, 91, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Adomian, G.; Sarafyan, D. Numerical solution of differential equations in the deterministie limit of stochastic theory. Appl. Math. Comput. 1981, 8, 111–119. [Google Scholar]
- Duan, J.S.; Rach, R.; Baleanu, D.; Wazwaz, A.M. A review of the Adomian decomposition method and its applications to fractional differential equations. Commun. Frac. Calc. 2012, 3, 73–99. [Google Scholar]
- Mittal, R.; Nigam, R. Solution of fractional integro-differential equations by Adomian decomposition method. Int. J. Appl. Math. Mech. 2008, 4, 87–94. [Google Scholar]
- Rach, R. On the Adomian decomposition method and comparisons with Picard’s method. J. Math. Anal. Appl. 1987, 128, 480–483. [Google Scholar] [CrossRef] [Green Version]
- Wazwaz, A.M. A reliable modification of Adomian decomposition method. Appl. Math. Comput. 1999, 102, 77–86. [Google Scholar] [CrossRef]
- Ismail, H.N.A.; Youssef, I.K.; Rageh, T.M. Modification on Adomian decomposition method for solving fractional Riccati differential equation. Int. Adv. Res. J. Sci. Technol. 2017, 4, 1–10. [Google Scholar]
- Redhwan, S.S.; Shaikh, S.; Mohammed, A.B.D.O. Caputo-Katugampola-type implicit fractional differential equation with anti-periodic boundary conditions. Results Nonlinear Anal. 2022, 5, 12–28. [Google Scholar] [CrossRef]
- Redhwan, S.S.; Shaikh, S.L.; Abdo, M.S. Implicit fractional differential equation with anti-periodic boundary condition involving Caputo-Katugampola type. Aims Math 2020, 5, 3714–3730. [Google Scholar] [CrossRef]
- Redhwan, S.S.; Shaikh, S.L.; Abdo, M.S. Theory of Nonlinear Caputo-Katugampola Fractional Differential Equations. arXiv 2020, arXiv:1911.08884. [Google Scholar]
- Abood, B.N.; Redhwan, S.S.; Abdo, M.S. Analytical and approximate solutions for generalized fractional quadratic integral equation. Nonlinear Funct. Anal. Appl. 2021, 26, 497–512. [Google Scholar]
- Abdul-Hassan, N.Y.; Ali, A.H.; Park, C. A New Fifth-Order Iterative Method Free from Second Derivative for Solving Nonlinear Equations. J. Appl. Math. Comput. 2022, 68, 2877–2886. [Google Scholar] [CrossRef]
- Katugampola, U.N. New approach to a generalized fractional integral. Appl. Math. Comput. 2011, 3, 860–865. [Google Scholar] [CrossRef] [Green Version]
- Katugampola, U.N. A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 2014, 6, 1–15. [Google Scholar]
- Almeida, R. A Gronwall inequality for a general Caputo fractional operator. arXiv 2017, arXiv:1705.10079. [Google Scholar] [CrossRef] [Green Version]
- Smart, D.R. Fixed Point Theorems; Cambridge University Press: Cambridge, UK, 1980; Volume 66. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Ghafri, K.S.; Alabdala, A.T.; Redhwan, S.S.; Bazighifan, O.; Ali, A.H.; Iambor, L.F. Symmetrical Solutions for Non-Local Fractional Integro-Differential Equations via Caputo–Katugampola Derivatives. Symmetry 2023, 15, 662. https://doi.org/10.3390/sym15030662
Al-Ghafri KS, Alabdala AT, Redhwan SS, Bazighifan O, Ali AH, Iambor LF. Symmetrical Solutions for Non-Local Fractional Integro-Differential Equations via Caputo–Katugampola Derivatives. Symmetry. 2023; 15(3):662. https://doi.org/10.3390/sym15030662
Chicago/Turabian StyleAl-Ghafri, Khalil S., Awad T. Alabdala, Saleh S. Redhwan, Omar Bazighifan, Ali Hasan Ali, and Loredana Florentina Iambor. 2023. "Symmetrical Solutions for Non-Local Fractional Integro-Differential Equations via Caputo–Katugampola Derivatives" Symmetry 15, no. 3: 662. https://doi.org/10.3390/sym15030662
APA StyleAl-Ghafri, K. S., Alabdala, A. T., Redhwan, S. S., Bazighifan, O., Ali, A. H., & Iambor, L. F. (2023). Symmetrical Solutions for Non-Local Fractional Integro-Differential Equations via Caputo–Katugampola Derivatives. Symmetry, 15(3), 662. https://doi.org/10.3390/sym15030662