Next Article in Journal
A Fast Circle Detection Algorithm Based on Circular Arc Feature Screening
Next Article in Special Issue
A Fractional-Order Density-Dependent Mathematical Model to Find the Better Strain of Wolbachia
Previous Article in Journal
Effects of Dipole-Dipole Interaction and Time-Dependent Coupling on the Evolution of Entanglement and Quantum Coherence for Superconducting Qubits in a Nonlinear Field System
Previous Article in Special Issue
Symmetrical Solutions for Non-Local Fractional Integro-Differential Equations via Caputo–Katugampola Derivatives
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On s-Convexity of Dual Simpson Type Integral Inequalities

1
Laboratory of Analysis and Control of Differential Equations “ACED”, Faculty MISM, Department of Mathematics, University of 8 May 1945 Guelma, P.O. Box 401, Guelma 24000, Algeria
2
Mathematics Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
3
Department of Mathematics, Faculty of Science, University of Ha’il, Ha’il 55425, Saudi Arabia
*
Author to whom correspondence should be addressed.
Symmetry 2023, 15(3), 733; https://doi.org/10.3390/sym15030733
Submission received: 10 February 2023 / Revised: 25 February 2023 / Accepted: 13 March 2023 / Published: 15 March 2023
(This article belongs to the Special Issue Fractional-Order Systems and Its Applications in Engineering)

Abstract

:
Integral inequalities are a powerful tool for estimating errors of quadrature formulas. In this study, some symmetric dual Simpson type integral inequalities for the classes of s-convex, bounded and Lipschitzian functions are proposed. The obtained results are based on a new identity and the use of some standard techniques such as Hölder as well as power mean inequalities. We give at the end some applications to the estimation of quadrature rules and to particular means.

1. Introduction

The concept of convexity and its variants plays a fundamental and important role in the development of various fields of science and engineering in a direct or indirect way. This concept has a closed relationship in the development of the theory of inequalities, which is an important tool in the study of some qualitative properties of solutions for differential and integral equations as well as in numerical analysis for estimating the errors in quadrature formulas. Noting that the most used methods for evaluating the integrals by a numerical approach is that of Newton–Cotes, which comprises a group of formulas involving a certain numbers of equally spaced points.
Definition 1
([1]). A function Λ : I R is said to be convex, if
Λ ( i e + ( 1 i ) k ) i Λ ( e ) + ( 1 i ) Λ ( k )
holds for all e , k I and all i [ 0 , 1 ] .
Bakula et al. [2], studied the following general form of three point Newton–Cotes formula via weighted Montgomery identities:
e f w j j d j = C χ χ + e + f χ + 1 2 C χ e + f 2 + R w , , χ ,
where e < f and χ e , e + f 2 , R w , , χ is the remainder term and C χ is an arbitrary real function defined on e , e + f 2 and gives the following results:
e f w j j d j C χ χ + e + f χ + 1 2 C χ e + f 2 g n χ 2 B α + 1 , n 1 L α + n n 2 ! C x χ e α + n + f χ α + n + 1 2 C χ f e 2 α + n ,
where
g n χ = C χ n 1 i = 0 i + 1 f i ! x f 1 W j j f i d j + e + f χ f 1 W j j f i d j n 1 i = 0 i + 1 e i ! e χ 1 W j j e i d j + a e + f χ 1 W j j e i d j + 1 2 C χ n 1 i = 0 i + 1 f i ! e + f 2 f 1 W j j f i d j n 1 i = 0 i + 1 f i ! e e + f 2 1 W j j e i d j ,
With W χ = e χ w j d j for all x e , f and W f = 1 . Additionally,
a b w j j d j C χ χ + e + f χ + 1 2 C χ e + f 2 r n χ 2 B α + 1 , n 1 L f e α + n + 1 n 2 ! × C χ χ e α + n + 1 + f χ α + n + 1 + 1 2 C χ f e 2 α + n + 1 ,
where
r n χ = C χ n 1 i = 0 1 i i + 1 f f i + 1 e x e i + 2 + f x i + 2 i ! i + 2 f e + 1 2 C χ n 1 i = 0 1 i i + 1 f i + 1 e f e i + 2 i ! i + 2 2 i + 2 .
Obviously, if C 3 e + f 4 = 2 3 , then identity (1) gives the weighted version of the dual Simpson inequality. Moreover, if we choose w j = 1 f e , we obtain the classical dual Simpson type inequality for functions whose n t h derivatives are α -L-Hölderians.
In [3], Pečarić and Vukelić used the Euler-type identities and gave some estimates of the general dual Simpson quadrature formula for functions as well as first derivatives are of bounded variation on [ 0 , 1 ] , L-Lipschitzian and R-integrable as follows.
In the case where is L-Lipschitzian on [ 0 , 1 ] , we have
0 1 j d j 1 2 u v u 1 4 v 1 2 + u 3 4 2 u + v 8 2 u v L .
If is L-Lipschitzian on [ 0 , 1 ] , then
0 1 j d j 1 2 u v u 1 4 v 1 2 + u 3 4 2 u 2 3 v + 2 u v + u v 5 v 2 u v + 2 v 2 v + 3 2 u v 48 2 u v v + 2 u v 2 u + v + 2 2 u v L .
If is a continuous function of bounded variation on [ 0 , 1 ] , then
0 1 j d j 1 2 u v u 1 4 v 1 2 + u 3 4 2 u + v 4 2 u v 0 1 f .
If is a continuous function of bounded variation [ 0 , 1 ] , then
0 1 j d j 1 2 u v u 1 4 v 1 2 + u 3 4 2 u + 3 v + 2 u 5 v 64 2 u v 0 1 .
By taking u = 2 and v = 1 , inequalities (2)–(5) will be reduced to the classical dual Simpson inequality, of which the general form is as follows:
1 3 2 3 e + f 4 e + f 2 + 2 e + 3 f 4 1 f e e f j d j 7 f e 4 23040 4 ,
where is a four-times continuously differentiable function on e , f , and 4 = sup x e , f 4 x , (see [4,5,6]).
In [7], Dragomir gave the following Simpson inequality for mapping of bounded variation:
1 6 e + 4 e + f 2 + f 1 f e e f j d j 1 3 f e f e ,
where f e n is the total variation of function .
Pečarić and Varošanec [8] discussed the Simpson inequality for derivatives of bounded variation
1 6 e + 4 e + f 2 + f 1 f e e f j d j c n f e n f e n ,
where n 0 , 1 , 2 , 3 with c 0 = 1 3 , c 1 = 1 24 , c 2 = 1 324 , c 3 = 1 1152 and f e n is the total variation of function n .
Regarding some papers dealing with three-point Newton–Cotes, we refer readers to [9,10,11,12,13,14] and references therein.
In this paper, by adopting a novel approach, we establish some dual Simpson-type inequalities for functions whose first derivatives are s-convex. The cases where the first derivatives are bounded as well as Lipschitzian functions are also discussed. Applications of the results are given.

2. Main Results

We recall that a non-negative function Λ : I 0 , R is said to be s-convex in the second sense for some fixed s 0 , 1 , if
Λ ( i e + ( 1 i ) k ) i s Λ ( e ) + ( 1 i ) s Λ ( k ) ,
holds for all e , k I and i [ 0 , 1 ] (see [15]).
Now, we prove the following identity, which is basic to establish our main results.
Lemma 1.
Let : ϑ , κ R be a differentiable function on ϑ , κ , with ϑ < κ and L 1 ϑ , κ , then the following equality holds
1 3 2 3 ϑ + κ 4 ϑ + κ 2 + 2 ϑ + 3 κ 4 1 κ ϑ κ ϑ j d j = κ ϑ 16 1 0 i 1 i ϑ + i 3 ϑ + κ 4 d i + 1 0 i 5 3 1 i 3 ϑ + κ 4 + i ϑ + κ 2 d i + 1 0 i + 2 3 1 i ϑ + κ 2 + i ϑ + 3 κ 4 d i + 1 0 i 1 1 i ϑ + 3 κ 4 + i κ d i .
Proof. 
Let
I 1 = 1 0 i 1 i ϑ + i 3 ϑ + κ 4 d i , I 2 = 1 0 i 5 3 1 i 3 ϑ + κ 4 + i ϑ + κ 2 d i , I 3 = 1 0 i + 2 3 1 i ϑ + κ 2 + i ϑ + 3 κ 4 d i , I 4 = 1 0 i 1 1 i ϑ + 3 κ 4 + i κ d i .
Integrating by parts I 1 , we obtain
I 1 = 4 κ ϑ i 1 i ϑ + i 3 ϑ + κ 4 i = 0 i = 1 4 κ ϑ 1 0 1 i ϑ + i 3 ϑ + κ 4 d i = 4 κ ϑ 3 ϑ + κ 4 4 κ ϑ 1 0 1 i ϑ + i 3 ϑ + κ 4 d i = 4 κ ϑ 3 ϑ + κ 4 16 κ ϑ 2 3 ϑ + κ 4 ϑ j d j .
Similarly, we obtain
I 2 = 8 3 κ ϑ ϑ + κ 2 + 20 3 κ ϑ 3 ϑ + κ 4 16 κ ϑ 2 ϑ + κ 2 3 ϑ + κ 4 j d j ,
I 3 = 20 3 κ ϑ ϑ + 3 κ 4 8 3 κ ϑ ϑ + κ 2 16 κ ϑ 2 ϑ + 3 κ 4 ϑ + κ 2 j d j ,
and
I 4 = 4 κ ϑ ϑ + 3 κ 4 16 κ ϑ 2 κ ϑ + 3 κ 4 j d j .
Adding (7)–(10), multiplying the result by κ ϑ 16 , we obtain the desired result. □
Theorem 1.
Let ℵ be as in Lemma 1 with 0 ϑ < κ . If is s-convex in the second sense for some fixed s 0 , 1 , then we have
1 3 2 3 ϑ + κ 4 ϑ + κ 2 + 2 ϑ + 3 κ 4 1 κ ϑ κ ϑ j d j κ ϑ 16 1 s + 1 s + 2 ( ϑ ) + ( κ ) + 4 s + 14 3 s + 1 s + 2 ϑ + κ 2 + 8 s + 10 3 s + 1 s + 2 ( 3 ϑ + κ 4 ) + ϑ + 3 κ 4 .
Proof. 
From Lemma 1, properties of modulus, and s-convexity in the second sense of , we have
1 3 2 3 ϑ + κ 4 ϑ + κ 2 + 2 ϑ + 3 κ 4 1 κ ϑ κ ϑ j d j κ ϑ 16 1 0 t 1 i ϑ + i 3 ϑ + κ 4 d i + 1 0 5 3 i 1 i 3 ϑ + κ 4 + i ϑ + κ 2 d i + 1 0 i + 2 3 1 i ϑ + κ 2 + i ϑ + 3 κ 4 d i + 1 0 1 i 1 i ϑ + 3 κ 4 + i κ d i κ ϑ 16 1 0 i 1 i s ϑ + i s 3 ϑ + κ 4 d i + 1 0 5 3 i 1 i s 3 ϑ + κ 4 + i s ϑ + κ 2 d i + 1 0 i + 2 3 1 i s ϑ + κ 2 + i s ϑ + 3 κ 4 d i + 1 0 1 i 1 i s ϑ + 3 κ 4 + i s κ d i = κ ϑ 16 1 0 i ( 1 i ) s d i ( ϑ ) + 1 0 i s + 1 d i + 1 0 ( 5 3 i ) 1 i s d i ( 3 ϑ + κ 4 ) + 1 0 ( 5 3 i ) i s d i + 1 0 ( i + 2 3 ) ( 1 i ) s d i ϑ + κ 2 + 1 0 ( i + 2 3 ) i s d i + 1 0 ( 1 i ) s + 1 d i ϑ + 3 κ 4 + 1 0 ( 1 i ) i s d i ( κ ) = κ ϑ 16 1 s + 1 s + 2 ( ϑ ) + ( κ ) + 4 s + 14 3 s + 1 s + 2 ϑ + κ 2 + 8 s + 10 3 s + 1 s + 2 ( 3 ϑ + κ 4 ) + ϑ + 3 κ 4 ,
where we have used the fact that
1 0 i 1 i s d i = 1 0 i s 1 i d i = 1 s + 1 s + 2 ,
1 0 i s + 1 d i = 1 0 1 i s + 1 d i = 1 s + 2 ,
1 0 5 3 i 1 i s d i = 1 0 i s i + 2 3 d i = 5 s + 7 3 s + 1 s + 2 ,
and
1 0 i s 5 3 i d i = 1 0 i + 2 3 1 i s d i = 2 s + 7 3 s + 1 s + 2 .
The proof is completed. □
Corollary 1.
For s = 1 , Theorem 1 gives
1 3 2 3 ϑ + κ 4 ϑ + κ 2 + 2 ϑ + 3 κ 4 1 κ ϑ κ ϑ j d j 5 κ ϑ 24 ( ϑ ) + 6 ( 3 ϑ + κ 4 ) + 6 ϑ + κ 2 + 6 ϑ + 3 κ 4 + ( κ ) 20 .
Theorem 2.
Let ℵ be as in Lemma 1 with 0 ϑ < κ . If q is s-convex in the second sense for some fixed s 0 , 1 where q > 1 with 1 p + 1 q = 1 , then we have
1 3 2 3 ϑ + κ 4 ϑ + κ 2 + 2 ϑ + 3 κ 4 1 κ ϑ κ ϑ j d j κ ϑ 16 p + 1 1 p ϑ q + 3 ϑ + κ 4 q 1 + s 1 q + ϑ + 3 κ 4 q + κ q 1 + s 1 q + 5 p + 1 2 p + 1 3 p + 1 1 p 3 ϑ + κ 4 q + ϑ + κ 2 q 1 + s 1 q + ϑ + κ 2 q + ϑ + 3 κ 4 q 1 + s 1 q .
Proof. 
From Lemma 1, properties of modulus, Hölder’s inequality, and s-convexity in the second sense of q , we have
1 3 2 3 ϑ + κ 4 ϑ + κ 2 + 2 ϑ + 3 κ 4 1 κ ϑ κ ϑ j d j κ ϑ 16 1 0 i p d i 1 p 1 0 1 i ϑ + i 3 ϑ + κ 4 q d i 1 q + 1 0 5 3 i p d i 1 p 1 0 1 i 3 ϑ + κ 4 + i ϑ + κ 2 q d i 1 q + 1 0 i + 2 3 p d i 1 p 1 0 1 i ϑ + κ 2 + i ϑ + 3 κ 4 q d i 1 q + 1 0 1 i p d i 1 p 1 0 1 i ϑ + 3 κ 4 + i κ q d i 1 q κ ϑ 16 p + 1 1 p 1 0 1 i s ϑ q + i s 3 ϑ + κ 4 q d i 1 q + 5 p + 1 2 p + 1 3 p + 1 1 p 1 0 1 i s 3 ϑ + κ 4 q + i s ϑ + κ 2 q d i 1 q + 1 0 1 i s ϑ + κ 2 q + i s ϑ + 3 κ 4 q d i 1 q + 1 0 1 i s ϑ + 3 κ 4 q + i s κ q d i 1 q = κ ϑ 16 p + 1 1 p ϑ q + 3 ϑ + κ 4 q 1 + s 1 q + ϑ + 3 κ 4 q + κ q 1 + s 1 q + 5 p + 1 2 p + 1 3 p + 1 1 p 3 ϑ + κ 4 q + ϑ + κ 2 q 1 + s 1 q + ϑ + κ 2 q + ϑ + 3 κ 4 q 1 + s 1 q .
The proof is completed. □
Corollary 2.
For s = 1 , Theorem 2 gives
1 3 2 3 ϑ + κ 4 ϑ + κ 2 + 2 ϑ + 3 κ 4 1 κ ϑ κ ϑ j d j κ ϑ 16 p + 1 1 p ϑ q + 3 ϑ + κ 4 q 2 1 q + ϑ + 3 κ 4 q + κ q 2 1 q + 5 p + 1 2 p + 1 3 p + 1 1 p 3 ϑ + κ 4 q + ϑ + κ 2 q 2 1 q + ϑ + κ 2 q + ϑ + 3 κ 4 q 2 1 q .
Theorem 3.
Let ℵ be as in Lemma 1 with 0 ϑ < κ . If q is s-convex in the second sense for some fixed s 0 , 1 where q 1 , then we have
1 3 2 3 ϑ + κ 4 ϑ + κ 2 + 2 ϑ + 3 κ 4 1 κ ϑ κ ϑ j d j κ ϑ 16 1 2 1 1 q ϑ q + s + 1 3 ϑ + κ 4 q s + 1 s + 2 1 q + s + 1 ϑ + 3 κ 4 q + κ q s + 1 s + 2 1 q + 7 6 1 1 q 5 s + 7 3 ϑ + κ 4 q + 2 s + 7 ϑ + κ 2 q 3 s + 1 s + 2 1 q + 7 6 1 1 q 2 s + 7 ϑ + κ 2 q + 5 s + 7 ϑ + 3 κ 4 q 3 s + 1 s + 2 1 q .
Proof. 
From Lemma 1, properties of modulus, power mean inequality, and s-convexity in the second sense of q , we have
1 3 2 3 ϑ + κ 4 ϑ + κ 2 + 2 ϑ + 3 κ 4 1 κ ϑ κ ϑ j d j κ ϑ 16 1 0 i d i 1 1 q 1 0 i 1 i ϑ + i 3 ϑ + κ 4 q d i 1 q + 1 0 5 3 i d i 1 1 q 1 0 5 3 i 1 i 3 ϑ + κ 4 + i ϑ + κ 2 q d i 1 q + 1 0 i + 2 3 d i 1 1 q 1 0 i + 2 3 1 i ϑ + κ 2 + i ϑ + 3 κ 4 q d i 1 q + 1 0 1 i d i 1 1 q 1 0 1 i 1 i ϑ + 3 κ 4 + i κ q d i 1 q κ ϑ 16 1 2 1 1 q 1 0 i 1 i s ϑ q + i s 3 ϑ + κ 4 q d i 1 q + 7 6 1 1 q 1 0 5 3 i 1 i s 3 ϑ + κ 4 q + i s ϑ + κ 2 q d i 1 q + 7 6 1 1 q 1 0 i + 2 3 1 i s ϑ + κ 2 q + i s ϑ + 3 κ 4 q d i 1 q + 1 2 1 1 q 1 0 1 i 1 i s ϑ + 3 κ 4 q + i s κ q d i 1 q = κ ϑ 16 1 2 1 1 q ϑ q 1 0 i 1 i s d i + 3 ϑ + κ 4 q 1 0 i s + 1 d i 1 q + 7 6 1 1 q 3 ϑ + κ 4 q 1 0 5 3 i 1 i s d i + ϑ + κ 2 q 1 0 5 3 i i s d i 1 q + 7 6 1 1 q ϑ + κ 2 q 1 0 i + 2 3 1 i s d i + ϑ + 3 κ 4 q 1 0 i + 2 3 i s d i 1 q + 1 2 1 1 q ϑ + 3 κ 4 q 1 0 1 i s + 1 d i + b q 1 0 1 i i s d i 1 q = κ ϑ 16 1 2 1 1 q ϑ q + s + 1 3 ϑ + κ 4 q s + 1 s + 2 1 q + s + 1 ϑ + 3 κ 4 q + κ q s + 1 s + 2 1 q + 7 6 1 1 q 5 s + 7 3 ϑ + κ 4 q + 2 s + 7 ϑ + κ 2 q 3 s + 1 s + 2 1 q + 7 6 1 1 q 2 s + 7 ϑ + κ 2 q + 5 s + 7 ϑ + 3 κ 4 q 3 s + 1 s + 2 1 q ,
where we have used (11)–(14). The proof is achieved. □
Corollary 3.
For s = 1 , Theorem 3 gives
1 3 2 3 ϑ + κ 4 ϑ + κ 2 + 2 ϑ + 3 κ 4 1 κ ϑ κ ϑ j d j κ ϑ 32 ϑ q + 2 3 ϑ + κ 4 q 3 1 q + 2 ϑ + 3 κ 4 q + κ q 3 1 q + 7 3 4 3 ϑ + κ 4 q + 3 ϑ + κ 2 q 7 1 q + 3 ϑ + κ 2 q + 4 ϑ + 3 κ 4 q 7 1 q .

3. Further Results

In the following results, we will discuss the cases where x is bounded as well as x of L-Lipschitzian functions.
Theorem 4.
Let ℵ be as in Lemma 1. If there exist constants < m < M < + such that m x M for all x ϑ , κ , then we have
1 3 2 3 ϑ + κ 4 ϑ + κ 2 + 2 ϑ + 3 κ 4 1 κ ϑ κ ϑ j d j 5 κ ϑ M m 48 .
Proof. 
From Lemma 1, we have
1 3 2 3 ϑ + κ 4 ϑ + κ 2 + 2 ϑ + 3 κ 4 1 κ ϑ κ ϑ j d j = κ ϑ 16 1 0 i 1 i ϑ + i 3 ϑ + κ 4 d i + 1 0 i 5 3 1 i 3 ϑ + κ 4 + i ϑ + κ 2 d i + 1 0 i + 2 3 1 i ϑ + κ 2 + i ϑ + 3 κ 4 d i + 1 0 i 1 1 i ϑ + 3 κ 4 + i κ d i = κ ϑ 16 1 0 i 1 i ϑ + i 3 ϑ + κ 4 m + M 2 + m + M 2 d i + 1 0 i 5 3 1 i 3 ϑ + κ 4 + i ϑ + κ 2 m + M 2 + m + M 2 d i + 1 0 i + 2 3 1 i ϑ + κ 2 + i ϑ + 3 κ 4 m + M 2 + m + M 2 d i + 1 0 i 1 1 i ϑ + 3 κ 4 + i κ m + M 2 + m + M 2 d i = κ ϑ 16 1 0 i 1 i ϑ + i 3 ϑ + κ 4 m + M 2 d i + 1 0 i 5 3 1 i 3 ϑ + κ 4 + i ϑ + κ 2 m + M 2 d i + 1 0 i + 2 3 1 i ϑ + κ 2 + i ϑ + 3 κ 4 m + M 2 d i + 1 0 i 1 1 i ϑ + 3 κ 4 + i κ m + M 2 d i ,
where we have used the fact that
1 0 i d i + 1 0 i 5 3 d i + 1 0 i + 2 3 d i + 1 0 i 1 d i = 1 0 4 i 2 d i = 0 .
Applying the absolute value in both sides of (15), we obtain
1 3 2 3 ϑ + κ 4 ϑ + κ 2 + 2 ϑ + 3 κ 4 1 κ ϑ κ ϑ j d j κ ϑ 16 1 0 i 1 i ϑ + i 3 ϑ + κ 4 m + M 2 d i + 1 0 5 3 i 1 i 3 ϑ + κ 4 + i ϑ + κ 2 m + M 2 d i + 1 0 i + 2 3 1 i ϑ + κ 2 + i ϑ + 3 κ 4 m + M 2 d i + 1 0 1 i 1 i ϑ + 3 κ 4 + i κ m + M 2 d i .
Since m x M for all x ϑ , κ , we have
1 i ϑ + i 3 ϑ + κ 4 m + M 2 M m 2 ,
1 i 3 ϑ + κ 4 + i ϑ + κ 2 m + M 2 M m 2 ,
1 i ϑ + κ 2 + i ϑ + 3 κ 4 m + M 2 M m 2 ,
and
1 i ϑ + 3 κ 4 + i κ m + M 2 M m 2 .
Using (17)–(20) in (16), we obtain
1 3 2 3 ϑ + κ 4 ϑ + κ 2 + 2 ϑ + 3 κ 4 1 κ ϑ κ ϑ j d j κ ϑ M m 32 1 0 i d i + 1 0 5 3 i d t + 1 0 i + 2 3 d t + 1 0 1 i d t = 5 κ ϑ M m 48 .
The proof is completed. □
Theorem 5.
Let ℵ be as in Lemma 1. If is L-Lipschitzian function on ϑ , κ , then we have
1 3 2 3 ϑ + κ 4 ϑ + κ 2 + 2 ϑ + 3 κ 4 1 κ ϑ κ ϑ j d j 13 κ ϑ 2 192 L .
Proof. 
From Lemma 1, we have
1 3 2 3 ϑ + κ 4 ϑ + κ 2 + 2 ϑ + 3 κ 4 1 κ ϑ κ ϑ j d j = κ ϑ 16 1 0 i 1 i ϑ + i 3 ϑ + κ 4 d i + 1 0 i 5 3 1 i 3 ϑ + κ 4 + i ϑ + κ 2 d i + 1 0 i + 2 3 1 i ϑ + κ 2 + i ϑ + 3 κ 4 d i + 1 0 i 1 1 i ϑ + 3 κ 4 + i κ d i = κ ϑ 16 1 0 i 1 i ϑ + i 3 ϑ + κ 4 ϑ + ϑ d i + 1 0 i 5 3 1 i 3 ϑ + κ 4 + i ϑ + κ 2 3 ϑ + κ 4 + ϑ + 3 κ 4 d i + 1 0 i + 2 3 1 i ϑ + κ 2 + i ϑ + 3 κ 4 ϑ + κ 2 + ϑ + κ 2 d i + 1 0 i 1 1 i ϑ + 3 κ 4 + i κ ϑ + 3 κ 4 + ϑ + 3 κ 4 d i = κ ϑ 16 1 0 i 1 i ϑ + i 3 ϑ + κ 4 ϑ d i + 1 0 i 5 3 1 i 3 ϑ + κ 4 + i ϑ + κ 2 3 ϑ + κ 4 d i + 1 0 i + 2 3 1 i ϑ + κ 2 + i ϑ + 3 κ 4 ϑ + κ 2 d i + 1 0 i 1 1 i ϑ + 3 κ 4 + i κ ϑ + 3 κ 4 d i + 1 2 ϑ ϑ + 3 κ 4 + 7 6 ϑ + κ 2 3 ϑ + κ 4 .
Applying the absolute value in both sides of (21), and by using the fact that is L-Lipschitzian on ϑ , κ , we obtain
1 3 2 3 ϑ + κ 4 ϑ + κ 2 + 2 ϑ + 3 κ 4 1 κ ϑ κ ϑ j d j κ ϑ 16 1 0 i 1 i ϑ + i 3 ϑ + κ 4 ϑ d i + 1 0 5 3 i 1 i 3 ϑ + κ 4 + i ϑ + κ 2 3 ϑ + κ 4 d i + 1 0 i + 2 3 1 i ϑ + κ 2 + i ϑ + 3 κ 4 ϑ + κ 2 d i + 1 0 1 i 1 i ϑ + 3 κ 4 + i κ ϑ + 3 κ 4 d i + 1 2 ϑ ϑ + 3 κ 4 + 7 6 ϑ + κ 2 3 ϑ + κ 4 κ ϑ 16 κ ϑ L 4 1 0 i 2 d i + κ ϑ L 4 1 0 5 3 i i d i + κ ϑ L 4 1 0 i + 2 3 i d i + κ ϑ L 4 1 0 1 i i d i + L 2 a a + 3 b 4 + 7 L 6 a + b 2 3 a + b 4 = 13 κ ϑ 2 192 L .
The proof is completed. □

4. Applications

Dual Simpson’s quadrature formula
Let Λ be the partition of the points ϑ = e 0 < e 1 < < e n = κ of the interval ϑ , κ , and consider the quadrature formula
κ ϑ j d j = λ , Λ + R , Λ ,
where
λ , Λ = n 1 i = 0 e i + 1 e i 3 2 3 e i + e i + 1 4 e i + e i + 1 2 + 2 e i + 3 e i + 1 4 ,
and R , Λ denotes the associated approximation error.
Proposition 1.
Let n N and : ϑ , κ R be a differentiable function on ϑ , κ with 0 ϑ < κ and L 1 ϑ , κ . If is s-convex function with s 0 , 1 , we have
R , Υ n 1 i = 0 e i + 1 e i 2 16 1 s + 1 s + 2 ( e i ) + ( e i + 1 ) + 4 s + 14 3 s + 1 s + 2 e i + e i + 1 2 + 8 s + 10 3 s + 1 s + 2 ( 3 e i + e i + 1 4 ) + e i + 3 e i + 1 4 .
Proof. 
Using Theorem 1 on e i , e i + 1 i = 0 , 1 , , n 1 , we obtain
1 3 2 3 e i + e i + 1 4 e i + e i + 1 2 + 2 e i + 3 e i + 1 4 1 e i + 1 e i e i + 1 e i j d j e i + 1 e i 16 1 s + 1 s + 2 ( e i ) + ( e i + 1 ) + 4 s + 14 3 s + 1 s + 2 e i + e i + 1 2 + 8 s + 10 3 s + 1 s + 2 ( 3 e i + e i + 1 4 ) + e i + 3 e i + 1 4 .
Multiplying both sides of (22) by e i + 1 e i , summing the obtained inequalities for all i = 0 , 1 , , n 1 and using the triangular inequality, we obtain the result. □
Application to special means
For arbitrary real numbers e , e 1 , e 2 , , e n , f we have:
The Arithmetic mean: A e 1 , e 2 , , e n = e 1 + e 2 + + e n n .
The p-Logarithmic mean: L p e , f = f p + 1 e p + 1 p + 1 f e 1 p , e , f > 0 , e f and p R 1 , 0 .
Proposition 2.
Let e , f R with 0 < e < f , then we have
2 A 3 2 e , e , e , f A 3 2 e , f + 2 A 3 2 e , f , f , f 3 L 3 2 3 2 e , f 15 f e f e 32 .
Proof. 
Applying Theorem 4 to the function j = j 3 2 on e , f . □

5. Conclusions

Many practical studies and engineering problems often lead to calculations of integrals, most of which cannot be solved directly, requiring us to evaluate them by different quadrature rules, hence the need to estimate the error made to better circumvent and manage the problem. Thus, in this work, we have considered the dual Simpson quadrature rule. We have firstly established a novel identity. Based on this identity, we have derived some new dual Simpson type integral inequalities for functions whose first derivatives are -convex. We have also discussed the above-mentioned inequality when the first derivatives lie in the classes of bounded and Lipschitzian functions. We have provided at the end some applications to quadrature formulas and special means. We hope that the obtained results stimulate further research, as well as generalizations in various other types of calculus in this interesting field.

Author Contributions

Conceptualization, T.C., H.B., M.I., B.M. and A.M.; Methodology, T.C., H.B., B.M. and A.M.; Formal analysis, H.B. and B.M.; Writing—original draft, T.C., H.B., M.I., B.M. and A.M.; Writing—review and editing, T.C., H.B., M.I., B.M. and A.M.; supervision, A.M.; project administration, A.M. and M.I.; funding acquisition, A.M. and M.I. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Not applicable.

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Small Groups.(RGP.1/350/43).

Conflicts of Interest

Authors declare that they have no conflict of interest.

References

  1. Pećarixcx, J.E.; Proschan, F.; Tong, Y.L. Convex Functions, Partial Orderings, and Statistical Applications; Mathematics in Science and Engineering; Academic Press, Inc.: Boston, MA, USA, 1992; Volume 187. [Google Scholar]
  2. Bakula, M.K.; Pećarixcx, J.; Penava, M.R. General three-point quadrature formulae with applications for α-L-Hölder type functions. J. Math. Inequal. 2008, 2, 343–361. [Google Scholar] [CrossRef]
  3. Pećarixcx, J.; Vukelixcx, A. General dual Euler-Simpson formulae. J. Math. Inequal. 2008, 2, 511–526. [Google Scholar]
  4. Dedić, L.; Matixcx, M.; Pexcxarixcx, J. On dual Euler-Simpson formulae. Bull. Belg. Math. Soc. Simon Stevin 2001, 8, 479–504. [Google Scholar] [CrossRef]
  5. Li, Y. Schur convexity and the dual Simpson’s formula. J. Appl. Math. Phys. 2016, 4, 623–629. [Google Scholar] [CrossRef] [Green Version]
  6. Vukelić, A. Estimations of the error for general Simpson type formulae via pre-Grüss inequality. J. Math. Inequal. 2009, 3, 559–566. [Google Scholar] [CrossRef] [Green Version]
  7. Dragomir, S.S. On Simpson’s quadrature formula for mappings of bounded variation and applications. Tamkang J. Math. 1999, 30, 53–58. [Google Scholar] [CrossRef]
  8. Pećarixcx, J.; Varošanec, S. A note on Simpson’s inequality for functions of bounded variation. Tamkang J. Math. 2000, 31, 239–242. [Google Scholar]
  9. Abdeljawad, T.; Rashid, S.; Hammouch, Z.; İşcan, İ.; Chu, Y.-M. Some new Simpson-type inequalities for generalized p-convex function on fractal sets with applications. Adv. Differ. Equ. 2020, 2020, 496. [Google Scholar] [CrossRef]
  10. Alomari, M.; Darus, M.; Dragomir, S.S. New inequalities of Simpson’s type for s-convex functions with applications. Res. Rep. 2009, 12, 4. [Google Scholar]
  11. Boulares, H.; Meftah, B.; Moumen, A.; Shafqat, R.; Saber, H.; Alraqad, T.; Ali, E.E. Fractional Multiplicative Bullen-Type Inequalities for Multiplicative Differentiable Functions. Symmetry 2023, 15, 451. [Google Scholar] [CrossRef]
  12. Hsu, K.-C.; Hwang, S.-R.; Tseng, K.-L. Some extended Simpson-type inequalities and applications. Bull. Iran. Math. Soc. 2017, 43, 409–425. [Google Scholar]
  13. Luo, C.-Y.; Du, T.-S.; Kunt, M.; Zhang, Y. Certain new bounds considering the weighted Simpson-like type inequality and applications. J. Inequal. Appl. 2018, 2018, 332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  14. Noor, M.A.; Noor, K.I.; Awan, M.U. Simpson-type inequalities for geometrically relative convex functions. Ukr. Math. J. 2018, 70, 1145–1154. [Google Scholar] [CrossRef]
  15. Breckner, W.W. Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Räumen. Publ. Inst. Math. 1978, 23, 13–20. (In Germany) [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Chiheb, T.; Boulares, H.; Imsatfia, M.; Meftah, B.; Moumen, A. On s-Convexity of Dual Simpson Type Integral Inequalities. Symmetry 2023, 15, 733. https://doi.org/10.3390/sym15030733

AMA Style

Chiheb T, Boulares H, Imsatfia M, Meftah B, Moumen A. On s-Convexity of Dual Simpson Type Integral Inequalities. Symmetry. 2023; 15(3):733. https://doi.org/10.3390/sym15030733

Chicago/Turabian Style

Chiheb, Tarek, Hamid Boulares, Moheddine Imsatfia, Badreddine Meftah, and Abdelkader Moumen. 2023. "On s-Convexity of Dual Simpson Type Integral Inequalities" Symmetry 15, no. 3: 733. https://doi.org/10.3390/sym15030733

APA Style

Chiheb, T., Boulares, H., Imsatfia, M., Meftah, B., & Moumen, A. (2023). On s-Convexity of Dual Simpson Type Integral Inequalities. Symmetry, 15(3), 733. https://doi.org/10.3390/sym15030733

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop