Symmetry of Identical Particles, Modern Achievements in the Pauli Exclusion Principle, in Superconductivity and in Some Other Phenomena
Abstract
:1. The Pauli Exclusion Principle and Possible Symmetries of Identical Particle Systems
1.1. The Pauli Exclusion Principle and Discovery of Spin
1.2. The modern State of the Spin–Statistics Connection Studies and the Discovery of the Parastatistics
1.3. More about Parastatistics and Some Other Problems
2. Indistinguishability of Identical Particle Systems and Its Dependence on Other Fundamental Principles of Quantum Mechanics
2.1. Two Viewpoints of the Problem
2.2. The Proofs of the Principle of Indistinguishability of Identical Particles and Its Incorrectness
2.3. The Conception of Spin and the Density Functional Theory Approaches
2.4. Multipole Moments
3. Analysis of the Properties of Identical Particle System Not Obeying PEP
3.1. The Construction of the Irreducible Representations of the Permutation Group Using the Young Diagram Formalism
- Transitions between states with different symmetry [λN] are strictly forbidden;
- N–particle states with different [λN] have a different analytical formula for their energy (see Equation (22)).
3.2. Genealogy of the Young Diagrams for Systems with Different Number of Particles
4. High-Temperature Superconductors and the Discovery of Superconductivity at Room Temperature
5. Iron-Based Superconducting Materials
6. Phenomenological and Microscopic Theories of Superconductivity
6.1. Phenomenological Approach and Nonconservation of Fundamental Laws in Nature
6.2. The Bardeen, Cooper, and Schrieffer Microscopic Theory
7. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Short Necessary Knowledge on the formalism of Permutation Groups
References
- Pauli, W. Über den Einfluß der Geschwindigkeitsabhängigkeit der Elektronenmasse auf den Zeemaneffekt. Z. Phys. 1925, 31, 373–385. [Google Scholar] [CrossRef]
- Pauli, W. Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren. Z. Phys. 1925, 31, 765–783. [Google Scholar] [CrossRef]
- Heisenberg, W. Mehrkörperproblem und Resonanz in der Quantenmechanik. Z. Phys. 1926, 38, 411–426. [Google Scholar] [CrossRef]
- Dirac, P.A.M. On the theory of quantum mechanics. Proc. R. Soc. Lond. A 1926, 112, 661–677. [Google Scholar]
- Pauli, W. Exclusion principle and quantum mechanics. In Nobel Lecture. in Nobel Lectures, Physics 1942–1962; Elsevier: Amsterdam, The Netherlands, 1964. [Google Scholar]
- Kaplan, I.G. The Pauli Exclusion Principle: Origin, Verifications and Applications; Wiley: Chichester, UK, 2017. [Google Scholar]
- Kaplan, I.G. Pauli Principle and Indistinguishability of Identical Particles. Sov. Phys. Usp. 1975, 18, 988. [Google Scholar] [CrossRef]
- Kaplan, I.G. Group Theoretical Methods in Physics; Man’ko, V.I., Dodonov, V.V., Eds.; Nauka: Moscow, Russia, 1980; Volume 1. [Google Scholar]
- Kaplan, I.G. Exclusion Principle and Indistinguishability of Identical Particles in Quantum Mechanics. J. Mol. Struct. 1992, 272, 187–196. [Google Scholar] [CrossRef]
- Kaplan, I.G. Problems in DFT with the total spin and degenerate states. Int. J. Quant. Chem. 2007, 107, 2595–2603. [Google Scholar] [CrossRef]
- Kaplan, I.G. The Pauli Exclusion Principle and the Problems of Its Experimental Verification. Symmetry 2020, 12, 320. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, I.G. Modern State of the Pauli Exclusion Principle and the Problems of Its Theoretical Foundation. Symmetry 2021, 13, 21. [Google Scholar] [CrossRef]
- Pauli, W. The Connection Between Spin and Statistics. Phys. Rev. 1940, 58, 716–722. [Google Scholar] [CrossRef]
- Green, H.S. A Generalized Method of Field Quantization. Phys. Rev. 1953, 90, 270–273. [Google Scholar] [CrossRef]
- Volkov, D.V. On the quantization of half-integer spin fields. Sov. Phys. JETP 1959, 9, 1107–1111. [Google Scholar]
- Greenberg, O.W.; Messiah, A.M. Selection Rules for Parafields and the Absence of Para Particles in Nature. Phys. Rev. 1965, 138, B1155–B1167. [Google Scholar] [CrossRef]
- Ohnuki, Y.; Kamefuchi, S. Quantum Field Theory and Parastatistics; Springer: Berlin/Heidelberg, Germany, 1982. [Google Scholar]
- Mirman, R. Experimental meaning of the concept of identical particles. Nouvo Cim. 1973, 18B, 110–122. [Google Scholar] [CrossRef]
- Khare, A. Fractional Statistics and Quantum Theory, 2nd ed.; World Scientific: Singapore, 2005. [Google Scholar]
- Kaplan, I.G. Statistics of molecular excitons and magnons at high concentrations. Theor. Math. Phys. 1976, 27, 254. [Google Scholar] [CrossRef]
- Avdyugin, A.N.; Zavorotnev, Y.D.; Ovander, L.N. Polaritons in highly excited crystals. Sov. Phys. Solid State 1983, 25, 1437–1438. [Google Scholar]
- Nguyen, B.A. A step-by-step Bogoliubov transformation method for diagonalising a kind of non-Hermitian effective Hamiltonian. J. Phys. C Solid State Phys. 1988, 21, L1209–L1211. [Google Scholar]
- Pushkarov, D.I. On the Defecton Statistics in Quantum Crystals. Phys. Status Solidi B 1986, 133, 525–532. [Google Scholar] [CrossRef]
- Kaplan, I.G.; Navarro, O. Charge transfer and the statistics of holons in a periodical lattice. J. Phys. Condens. Matter 1999, 11, 6187–6195. [Google Scholar] [CrossRef]
- Nguyen, A.; Hoang, N.C. An approach to the many-exciton system. J. Phys. Condens. Matter 1990, 2, 4127–4136. [Google Scholar] [CrossRef]
- Kaplan, I.G.; Navarro, O. Statistics and properties of coupled hole pairs in superconducting ceramics. Phys. C Supercond. 2000, 341, 217–220. [Google Scholar] [CrossRef]
- Feynman, R.P. The Theory of Positrons. Phys. Rev. 1949, 76, 749–759. [Google Scholar] [CrossRef]
- Schwinger, J. Quantum Electrodynamics. I. A Covariant Formulation. Phys. Rev. 1949, 74, 1439. [Google Scholar] [CrossRef]
- Wightman, A.S. Pauli and the Spin-Statistics Theorem. Am. J. Phys. 1999, 67, 742. [Google Scholar]
- Duck, I.; Sudarshan, E.C.G. Pauli and the Spin-Statistics Theorem; World Scientific: Singapore, 1997. [Google Scholar]
- Duck, I.; Sudarshan, E.C.G. Toward an understanding of the spin-statistics theorem. Am. J. Phys. 1998, 66, 284–303. [Google Scholar] [CrossRef]
- Feynman, R.P. Feynman, Leighton and Sands, Basic Books. In Feynman Lectures on Physics; Vol. III, New Millennium Edition; Basic Books: New York, NY, USA, 2010; Chapter 4; p. 5. [Google Scholar]
- Jabs, A. Connecting Spin and Statistics in Quantum Mechanics. Found. Phys. 2010, 40, 776–792. [Google Scholar] [CrossRef] [Green Version]
- Bennett, A.F. Spin-Statistics Connection for Relativistic Quantum Mechanics. Found. Phys. 2015, 45, 370–381. [Google Scholar] [CrossRef] [Green Version]
- De Martini, F.; Santamato, E. The intrinsic helicity of elementary particles and the spin-statistic connection. Int. J. Quantum Inf. 2014, 12, 1560004. [Google Scholar] [CrossRef]
- Santamato, E.; De Martini, F. Proof of the Spin–Statistics Theorem. Found. Phys. 2015, 45, 858–873. [Google Scholar] [CrossRef]
- Santamato, E.; De Martini, F. Proof of the Spin Statistics Connection 2: Relativistic Theory. Found. Phys. 2017, 47, 1609–1625. [Google Scholar] [CrossRef]
- Dirac, P.A.M. The Principles of Quantum Mechanics; Clarendon Press: Oxford, UK, 1958. [Google Scholar]
- Schiff, L.I. Quantum Mechanics; Mc Graw-Hill: New York, NY, USA, 1955. [Google Scholar]
- Messiah, A.M. Quantum Mechanics; North-Holland: Amsterdam, The Netherlands, 1962. [Google Scholar]
- Pauli, W. Remarks on the History of the Exclusion Principle. Science 1946, 103, 213–215. [Google Scholar] [CrossRef]
- Messiah, A.M.; Greenberg, O.W. Symmetrization postulate and its experimental foundation. Phys Rev. 1964, 136, B248–B267. [Google Scholar] [CrossRef]
- Girardeau, M.D. Permutation Symmetry of Many-Particle Wave Functions. Phys. Rev. 1965, 139, B500–B508. [Google Scholar] [CrossRef]
- Corson, E.M. Perturbation Methods in Quantum Mechanics of Electron Systems; University Press: Glasgow, UK, 1951. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Quantum Mechanics: Non Relativistic Theory; Addison-Wesley: Boston, MA, USA, 1965. [Google Scholar]
- Blokhintzev, D.I. Principles of Quantum Mechanics; Allyn and Bacon: Boston, MA, USA, 1964. [Google Scholar]
- Kaplan, I.G. Is the Pauli exclusive principle an independent quantum mechanical postulate? Int. J. Quantum Chem. 2002, 89, 268–276. [Google Scholar] [CrossRef]
- Kaplan, I.G. The Pauli Exclusion Principle. Can It Be Proved? Found. Phys. 2013, 43, 1233–1251. [Google Scholar] [CrossRef]
- Canright, G.S.; Girvin, S.M. Fractional Statistics: Quantum Possibilities in Two Dimensions. Science 1990, 247, 1197–1205. [Google Scholar] [CrossRef]
- Leinaas, J.M.; Myrheim, J. On the Theory of Identical Particles. Nuovo Cim. 1977, 37B, 1–23. [Google Scholar] [CrossRef]
- Piela, L. Ideas of Quantum Chemistry, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Girardeau, M.D. Proof of the Symmetrization Postulate. J. Math. Phys. 1969, 10, 1302–1304. [Google Scholar] [CrossRef]
- Kaplan, I.G. Intermolecular Interactions: Physical Picture, Computational Methods and Model Potentials; John Wiley & Sons: Chichester, UK, 2006. [Google Scholar]
- Kaplan, I.G. Symmetry properties of the electron density and following from it limits on the KS-DFT applications. Mol. Phys. 2018, 116, 658–665. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef] [Green Version]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef] [Green Version]
- Arita, M.; Araspan, S.; Bowler, D.R.; Miyazaki, T. Large-scale DFT simulations with a linear-scaling DFT code CONQUEST on K-computer. J. Adv. Simulat. Sci. Eng. 2014, 1, 87–97. [Google Scholar] [CrossRef] [Green Version]
- McWeeny, R. Density functions and density functionals. Phil. Mag. B 1994, 69, 727–735. [Google Scholar] [CrossRef]
- Weiner, B.; Trickey, S.B.J. State energy functionals and variational equations in density functional theory. Mol. Struct. 2000, 501–502, 65–83. [Google Scholar] [CrossRef]
- Illas, F.; Moreira, I.d.P.R.; Bofill, J.M.; Filatov, M. Spin Symmetry Requirements in Density Functional Theory: The Proper Way to Predict Magnetic Coupling Constants in Molecules and Solids. Theor. Chem. Acta 2006, 116, 587–597. [Google Scholar] [CrossRef] [Green Version]
- Tzeli, D.; Miranda, U.; Kaplan, I.G.; Mavridis, A. First principles study of the electronic structure and bonding of Mn2. J. Chem. Phys. 2008, 129, 154310. [Google Scholar] [CrossRef]
- Moreira, I.; Moreira, P.F.; Costa, R.; Filatov, M.; Illas, F. Restricted ensemble-referenced Kohn−Sham versus broken symmetry approaches in density functional theory: Magnetic coupling in Cu binuclear complexes. J. Chem. Theory Comput. 2007, 3, 764–774. [Google Scholar] [CrossRef] [Green Version]
- Filatov, M.; Shaik, S. Spin-restricted density functional approach to the open-shell problem. Chem. Phys. Lett. 1998, 288, 689–697. [Google Scholar] [CrossRef]
- Filatov, M.; Shaik, S. Application of spin-restricted open-shell Kohn–Sham method to atomic and molecular multiplet states. J. Chem. Phys. 1999, 110, 116–125. [Google Scholar] [CrossRef]
- Kaplan, I.G. Modern State of the Conventional DFT Method Studies and the Limits Following from the Quantum State of the System and Its Total Spin in Density Functional Theory—Recent Advances, New Perspectives and Applications; Glossman-Mitnik, D., Ed.; IntechOpen: London, UK, 2022; pp. 19–36. [Google Scholar]
- Russo, T.V.; Martin, R.L.; Hay, P.J. Density functional calculations on first-row transition metals. J. Chem. Phys. 1994, 101, 7729. [Google Scholar] [CrossRef] [Green Version]
- Frank, I.; Hutter, J.; Marx, D.; Parinello, M. Molecular dynamics in low-spin excited states. J. Chem. Phys. 1998, 108, 4060–4069. [Google Scholar] [CrossRef]
- Grimm, S.; Nonnenberg, C.; Frank, I. Restricted open-shell Kohn–Sham theory for transitions. I. Polyenes, cyanines, and protonated imines. J. Chem. Phys. 2003, 119, 11574–11584. [Google Scholar] [CrossRef]
- Ziegler, T.; Rauk, A.; Baerends, E.J. On the calculation of multiplet energies by the Hartree-Fock-Slater method. Theoret. Chim. Acta. 1977, 43, 261–271. [Google Scholar] [CrossRef]
- Berry, M.V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 1984, 392, 45–57. [Google Scholar]
- Berry, M.V. The Geometric Phase. Sci. Am. 1988, 259, 46–55. [Google Scholar] [CrossRef]
- Villani, M. Effects of neutron stars magnetic dipole on the generation of gravitational waves. Phys. Dark Universe 2020, 27, 100420. [Google Scholar] [CrossRef]
- Hajdukovic, D.S. Virtual gravitational dipoles: The key for the understanding of the Universe? Phys. Dark Universe 2014, 3, 34–40. [Google Scholar] [CrossRef]
- Yang, Q.; Yu, H.; Di, H. Cosmic microwave background dipole asymmetry could be explained by axion monodromy cosmic strings. Phys. Dark Universe 2019, 26, 100407. [Google Scholar] [CrossRef] [Green Version]
- McDermott, S.D. Lining up the Galactic Center gamma-ray excess. Phys. Dark Universe 2015, 7–8, 12–15. [Google Scholar] [CrossRef] [Green Version]
- Jaraba, S.; García-Bellido, J. Black hole induced spins from hyperbolic encounters in dense clusters. Phys. Dark Universe 2021, 34, 100882. [Google Scholar] [CrossRef]
- Izaurieta, F.; Lepe, S.; Valdivia, O. The spin tensor of dark matter and the Hubble parameter tension. Phys. Dark Universe 2020, 30, 100662. [Google Scholar] [CrossRef]
- Kaplan, I.G.; Rodimova, O.B. Matrix elements of general configuration of nonorthogonalized orbitals in state with definite spin. Int. J. Quantum Chem. 1973, 7, 1203–1220. [Google Scholar] [CrossRef]
- Kaplan, I.G. Symmetry of Many-Electron Systems; Academic Press: New York, NY, USA, 1975. [Google Scholar]
- Petrashen, M.I.; Trifonov, E.D. Applications of Group Theory in Quantum Mechanics; M.I.T. Press: Cambridge, MA, USA, 1969. [Google Scholar]
- Oya, G.-I.; Saur, E.J. Preparation of Nb3Ge films by chemical transport reaction and their critical properties. J. Low Temp. Phys. 1979, 34, 569–583. [Google Scholar] [CrossRef]
- Bednorz, J.G.; Müller, K.A. Possible high Tc superconductivity in the Ba−La−Cu−O system. Z. Phys. B-Condens. Matter 1986, 64, 189–193. [Google Scholar] [CrossRef]
- Hor, P.H.; Gao, L.; Meng, R.L.; Huang, Z.J.; Wang, Y.Q.; Forster, K.; Vassilious, J.; Chu, C.W. High-pressure study of the new Y-Ba-Cu-O superconducting compound system. Phys. Rev. Lett. 1987, 58, 911–912. [Google Scholar] [CrossRef] [PubMed]
- Shun-hui, H.; Yu-lin, Z.; Han, H.; Yong, L. Pressure effects on the new high-Tc superconductor Tl-Ba-Ca-Cu-O. Phys. C 1988, 156, 113–115. [Google Scholar] [CrossRef]
- Maple, M.B.; Ayoub, N.Y.; Bjørnholm, T.; Early, E.A.; Ghamaty, S.; Lee, B.W.; Markert, J.T.; Neumeier, J.J.; Seaman, C.L. Magnetism, specific heat, and pressure-dependent resistivity of the electron-doped compounds Ln2−xMxCuO4−y (Ln = Pr, Nd, Sm, Eu, Gd; M = Ce, Th). Phys. C 1989, 162–164, 296–299. [Google Scholar] [CrossRef]
- Bucher, B.; Karpinski, J.; Kaldis, E.; Wachter, P. Strong pressure dependence of Tc of the new 80 K phase YBa2Cu4O8+x. Phys. C 1989, 157, 478–482. [Google Scholar] [CrossRef]
- Wu, M.K.; Ashburn, J.R.; Torng, C.J.; Hor, P.H.; Meng, R.L.; Gao, L.; Huang, Z.J.; Wang, Y.Q.; Chu, C.W. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett. 1987, 58, 908–910. [Google Scholar] [CrossRef] [Green Version]
- Schilling, A.; Cantoni, M.; Guo, J.D.; Ott, H.R. Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O system. Nature 1993, 363, 56–58. [Google Scholar] [CrossRef]
- Kirtley, J.R.; Tsuei, C.C.; Verwijs, C.J.M.; Harkema, S.; Hilgenkamp, H. Angle-resolved phase-sensitive determination of the in-plane gap symmetry in YBa2Cu3O7−δ. Nat. Phys. 2006, 2, 190–194. [Google Scholar] [CrossRef]
- Tranquada, J.M. Topological Doping and Superconductivity in Cuprates: An Experimental Perspective. Symmetry 2021, 13, 2365. [Google Scholar] [CrossRef]
- Drozdov, A.P.; Eremets, M.I.; Troyan, I.A.; Ksenofontov, V.; Shylin, S.I. Conventional superconductivity at 203 Kelvin at high pressures in the sulfur hydride system. Nature 2015, 525, 73–76. [Google Scholar] [CrossRef] [Green Version]
- Gor’kov, L.P.; Kresin, V.Z. High Pressure and road to room temperature superconductivity. Rev. Mod. Phys. 2018, 90, 011001. [Google Scholar] [CrossRef] [Green Version]
- Drozdov, A.P.; Kong, P.P.; Minkov, V.S.; Besedin, S.P.; Kuzovnikov, M.A.; Mozaffari, S.; Balicas, L.; Balakirev, F.F.; Graf, D.E.; Prakapenka, V.B.; et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature 2019, 569, 528–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snider, E.; Dasenbrock-Gammon, N.; McBride, R.; Debessai, M.; Vindana, H.; Vencatasamy, K.; Lawler, K.V.; Salamat, A.; Dias, R.P. Room-temperature superconductivity in a carbonaceous sulfur hydride. Nature 2020, 586, 373–377. [Google Scholar] [CrossRef]
- Hirsch, J.E.; Marsiglio, F. Absence of magnetic evidence for superconductivity in hydrides under high pressure. Phys. C 2021, 584, 1353866. [Google Scholar] [CrossRef]
- Hirsch, J.E.; Marsiglio, F. Unusual width of the superconducting transition in a hydride. Nature 2021, 596, E9–E10. [Google Scholar] [CrossRef]
- Eremets, M.I.; Minkov, V.S.; Drozdov, A.P.; Kong, P.P.; Ksenofontov, V.; Shylin, S.I.; Bud’ko, S.L.; Prozorov, R.; Balakirev, F.F.; Sun, D.; et al. High-temperature superconductivity in hydrides: Experimental evidence and details. J. Sup. Nov. Magn. 2020, 35, 965–977. [Google Scholar] [CrossRef]
- Snider, E.; Dasenbrock-Gammon, N.; McBride, R.; Wang, X.; Meyers, N.; Lawler, K.V.; Zurek, E.; Salamat, A.; Dias, R.P. Synthesis of Yttrium Superhydride Superconductor with a Transition Temperature up to 262 K by Catalytic Hydrogenation at High Pressures. Phys. Rev. Lett. 2021, 126, 117003. [Google Scholar] [CrossRef]
- Kamihara, Y.; Watanabe, M.; Hosono, H. Iron-Based Layered Superconductor La[O1-xFx]FeAs (x = 0.05−0.12) with Tc = 26 K. J. Am. Chem. Soc. 2008, 130, 3296–3297. [Google Scholar] [CrossRef]
- Takahashi, H.; Igawa, K.; Arii, K.; Kamihara, Y.; Hirano, M.; Hosono, H. Superconductivity at 43 K in an iron-based layered compound LaO1-xFxFeAs. Nature 2008, 453, 376–378. [Google Scholar] [CrossRef]
- Stewart, R.G. Superconductivity in iron compounds. Rev. Mod. Phys. 2011, 83, 1589–1652. [Google Scholar] [CrossRef]
- Wang, X.C.; Li, L.; Chi, S.; Zhu, Z.; Ren, Z.; Li, Y.; Wang, Y.; Lin, X.; Luo, Y.; Jiang, S.; et al. Thorium-doping–induced superconductivity up to 56 K in Gd1−xThxFeAsO. Europhys. Lett. 2008, 83, 67006. [Google Scholar] [CrossRef] [Green Version]
- Rotter, M.; Tegel, M.; Johrendt, D. Superconductivity at 38 K in the Iron Arsenide BaFe2As2. Phys. Rev. Lett. 2008, 101, 107006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sefat, A.S.; Marty, K.; Christianson, A.D.; Saparov, B.; McGuire, M.A.; Lumsden, M.D.; Tian, W.; Sales, B.C. Effect of molybdenum 4d hole substitution in BaFe2As2. Phys. Rev. B 2012, 85, 024503. [Google Scholar] [CrossRef] [Green Version]
- Texier, Y.; Laplace, Y.; Mendels, P.; Park, J.T.; Friemel, G.; Sun, D.L.; Inosov, D.S.; Lin, C.T.; Bobroff, J. Mn local moments prevent superconductivity in iron pnictides Ba(Fe1−xMnx)2As2. Eur. Phys. Lett. 2012, 99, 17002. [Google Scholar] [CrossRef] [Green Version]
- Canfield, P.C.; Bud’ko, S.L.; Ni, N.; Yan, J.Q.; Kracher, A. Decoupling of the superconducting and magnetic/structural phase transitions in electron-doped BaFe2As2. Phys. Rev. B 2009, 80, 060501. [Google Scholar] [CrossRef] [Green Version]
- Mun, E.D.; Bud’ko, S.L.; Ni, N.; Thaler, A.N.; Canfield, P.C. Thermoelectric power and Hall coefficient measurements on Ba(Fe1−xTx)2As2 (T=Co and Cu). Phys. Rev. B 2009, 80, 054517. [Google Scholar] [CrossRef] [Green Version]
- Mazin, I.I.; Singh, D.J.; Johannes, M.D.; Du, M.H. Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1−xFx. Phys. Rev. Lett. 2008, 101, 057003. [Google Scholar] [CrossRef] [Green Version]
- Mazin, I.I.; Schmalian, J. Pairing symmetry and pairing state in ferropnictides: Theoretical overview. Phys. C 2009, 469, 614–627. [Google Scholar] [CrossRef] [Green Version]
- Sefat, A.S.; Jin, R.; McGuire, M.A.; Sales, B.C.; Singh, D.J.; Mandrus, D. Superconductivity at 22 K in Co-Doped BaFe2As2 Crystals. Phys. Rev. Lett. 2008, 101, 117004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sefat, A.S.; Singh, D.J.; Van Bebber, L.H.; Mozharivskyj, Y.; McGuire, M.A.; Jin, R.; Sales, B.C.; Keppens, V.; Mandrus, D. Absence of superconductivity in hole-doped BaFe2−xCrxAs2 single crystals. Phys. Rev. B 2009, 79, 224524. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, J.P. Particle–Hole Transformation in Strongly-Doped Iron-Based Superconductors. Symmetry 2019, 11, 396. [Google Scholar] [CrossRef] [Green Version]
- Shestakov, V.A.; Korshunov, M.M.; Dolgov, O.V. Temperature-Dependent s± ↔ s++ Transitions in the Multiband Model for Fe-Based Superconductors with Impurities. Symmetry 2018, 10, 323. [Google Scholar] [CrossRef] [Green Version]
- Ekino, T.; Gabovich, A.M.; Li, M.S.; Pękała, M.; Szymczak, H.; Voitenko, A.I. d-Wave Superconductivity and s-Wave Charge Density Waves: Coexistence between Order Parameters of Different Origin and Symmetry. Symmetry 2011, 3, 699–749. [Google Scholar] [CrossRef]
- Kim, H.; Cho, K.; Tanatar, M.A.; Taufour, V.; Kim, S.K.; Bud’ko, S.L.; Canfield, P.C.; Kogan, V.G.; Prozorov, R. Self-Consistent Two-Gap Description of MgB2 Superconductor. Symmetry 2019, 11, 1012. [Google Scholar] [CrossRef] [Green Version]
- Guidry, M.; Sun, Y.; Wu, L.-A. The Superconducting Critical Temperature. Symmetry 2021, 13, 911. [Google Scholar] [CrossRef]
- Norman, M.R. High-temperature superconductivity in the iron pnictides. Physics 2008, 1, 21. [Google Scholar] [CrossRef] [Green Version]
- Mazin, I.I. Superconductivity gets an iron boost. Nature 2010, 464, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Norman, M.R. The Challenge of Unconventional Superconductivity. Science 2011, 332, 196–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Lee, D.-H. The Electron-Pairing Mechanism of Iron-Based Superconductors. Science 2011, 332, 200–204. [Google Scholar] [CrossRef]
- Chubukov, A. Pairing Mechanism in Fe-Based Superconductors. Ann. Rev. Condens. Matter Phys. 2012, 3, 57–92. [Google Scholar] [CrossRef] [Green Version]
- Hosono, H.; Kuroki, K. Iron-based superconductors: Current status of materials and pairing mechanism. Phys. C 2015, 514, 399–422. [Google Scholar] [CrossRef] [Green Version]
- Prozorov, R.; Kończykowski, M.; Tanatar, M.A.; Wen, H.H.; Fernandes, R.M.; Canfield, P.C. Interplay between superconductivity and itinerant magnetism in underdoped Ba1−xKxFe2As2 (x = 0.2) probed by the response to controlled point-like disorder. NPJ Quantum Mater. 2019, 4, 34. [Google Scholar] [CrossRef] [Green Version]
- Kreisel, A.; Hirschfeld, P.J.; Andersen Brian, M. On the Remarkable Superconductivity of FeSe and Its Close Cousins. Symmetry 2020, 12, 402. [Google Scholar] [CrossRef]
- Baquero, R. La Superconductividad: Sus orígenes, sus teorías, sus problemas candentes hoy. Rev. Acad. Colomb. Cienc. 2014, 38, 18–33. [Google Scholar] [CrossRef] [Green Version]
- Si, Q.; Abrahams, E. Strong Correlations and Magnetic Frustration in the High Tc Iron Pnictides. Phys. Rev. Lett. 2008, 101, 076401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, J.K.; Zhou, S.Y.; Guan, T.Y.; Zhang, H.; Dai, Y.F.; Qiu, X.; Wang, X.F.; He, Y.; Chen, X.H.; Li, S.Y. Quantum Criticality and Nodal Superconductivity in the FeAs-Based Superconductor KFe2As2. Phys. Rev. Lett. 2010, 104, 087005. [Google Scholar] [CrossRef] [Green Version]
- Reid, J.P.; Tanatar, M.A.; Juneau-Fecteau, A.; Gordon, R.T.; René de Cotret, S.; Doiron-Leyraud, N.; Saito, T.; Fukazawa, H.; Kohori, Y.; Kihou, K.; et al. Universal Heat Conduction in the Iron Arsenide Superconductor KFe2As2: Evidence of a d-Wave State. Phys. Rev. Lett. 2012, 109, 087001. [Google Scholar] [CrossRef] [Green Version]
- Lee, P.A.; Nagaosa, N.; Wen, X.G. Doping a Mott insulator: Physics of high-temperature superconductivity. Rev. Mod. Phys. 2006, 78, 17–85. [Google Scholar] [CrossRef]
- Anderson, P.W. The Resonating Valence Bond State in La2CuO4 and Superconductivity. Science 1987, 35, 1196–1198. [Google Scholar] [CrossRef] [PubMed]
- Kivelson, S.A.; Rokhsar, D.S.; Sethna, J.P. Topology of the resonating valence-bond state: Solitons and high-Tc superconductivity. Phys. Rev. B 1987, 35, 8865–8868. [Google Scholar] [CrossRef]
- Anderson, P.W.; Baskaran, G.; Zou, Z.; Hsu, T. Resonating–valence-bond theory of phase transitions and superconductivity in La2CuO4-based compounds. Phys. Rev. Lett. 1987, 58, 2790–2793. [Google Scholar] [CrossRef]
- Soullard, J.; Pérez-Enriquez, R.; Kaplan, I. Comparative study of pure and Co-doped BaFe2As2. Phys. Rev. B 2015, 91, 184517. [Google Scholar] [CrossRef]
- Soullard, J.; Kaplan, I. Comparative Study of the Magnetic Structure of BaFe2As2 Doped with Co or Ni. J. Supercond. Nov. Magn. 2016, 29, 3147–3154. [Google Scholar] [CrossRef]
- Columbié-Leyva, R.; Soullard, J.; Kaplan, I. Electronic structure study of new family of high-Tc Fe-superconductors based on BaFe2As2 in presence of dopants Rh and Pd. MRS Adv. 2019, 4, 3365–3372. [Google Scholar] [CrossRef]
- Ginzburg, V.L.; Landau, L.D. On the Theory of Superconductivity. Sov. Phys. JETP 1950, 20, 1064–1087. [Google Scholar]
- Ginzburg, V.L.; Landau, L.D. On the Theory of Superconductivity. In Superconductivity and Superfluidity; Springer: Berlin/Heidelberg, Germany, 2009; pp. 113–137. [Google Scholar]
- Gor’kov, L.P. Microscopic derivation of the Ginzburg-Landau equations in the theory of superconductivity. Sov. Phys. JETP 1959, 36, 1364–1367. [Google Scholar]
- Lee, T.D.; Yang, C.N. Question of parity conservation in weak interaction. Phys. Rev. 1956, 104, 254–258. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.S.; Ambler, E.; Hayward, R.W.; Hoppes, D.D.; Hudson, R.P. Experimental test of parity conservation in Beta decay. Phys. Rev. 1957, 105, 1413–1415. [Google Scholar] [CrossRef] [Green Version]
- Landau, L.D. On the conservation laws for weak interactions. Nucl. Phys. 1957, 3, 127–131. [Google Scholar] [CrossRef]
- Abrikosov, A.A. Determination of the value of the dielectric constant and normal conductivity of superconductors. Dokl. Akad. Nauk. SSSR 1952, 86, 489. [Google Scholar]
- Abrikosov, A.A. Nobel lecture: Type-II superconductors and the vortex lattice. Rev. Mod. Phys. 2004, 76, 975–979. [Google Scholar] [CrossRef] [Green Version]
- Abrikosov, A.A. On the magnetic properties of superconductors of the second group. Sov. Phys. JETP 1957, 5, 1174–1182. [Google Scholar]
- Abrikosov, A.A. Private Communications, Argonne National Laboratory; Courier Corporation: North Chelmsford, MA, USA, 2012. [Google Scholar]
- Bardeen, J.; Cooper, L.N.; Schrieffer, J.R. Microscopic theory of superconductivity. Phys. Rev. 1957, 106, 162–164. [Google Scholar] [CrossRef] [Green Version]
- Bardeen, J.; Cooper, L.N.; Schrieffer, J.R. Theory of superconductivity. Phys. Rev. 1957, 108, 1175–1204. [Google Scholar] [CrossRef] [Green Version]
- Bogoljubov, N.N.; Tolmachov, V.V.; Širkov, D.V. A New Method in the Theory of Superconductivity. Fortschr. Phys. 1958, 6, 605–682. [Google Scholar] [CrossRef]
- Éliashberg, G.M. Interactions between electrons and lattice vibrations in a superconductor. Sov. Phys. JETP 1960, 11, 696–702. [Google Scholar]
- Josué, R.M. Berriel-Aguayo and Peter, O. Hess The Role of the Pauli Exclusion Principle in Nuclear Physics Models. Symmetry 2020, 12, 738. [Google Scholar] [CrossRef]
- Wilczek, F. Quantum Mechanics of Fractional-Spin Particles. Phys. Rev. Lett. 1982, 48, 957–959. [Google Scholar] [CrossRef]
- Milotti, E.; Bartalucci, S.; Bertolucci, S.; Bazzi, M.; Bragadireanu, M.; Cargnelli, M.; Clozza, A.; Curceanu, C.; De Paolis, L.; Egger, J.-P.; et al. On the Importance of Electron Diffusion in a Bulk-Matter Test of the Pauli Exclusion Principle. Entropy 2018, 20, 515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piscicchia, K.; Marton, J.; Bartalucci, S.; Bazzi, M.; Bertolucci, S.; Bragadireanu, M.; Cargnelli, M.; Clozza, A.; Del Grande, R.; De Paolis, L.; et al. VIP-2—High-Sensitivity Tests on the Pauli Exclusion Principle for Electrons. Entropy 2020, 22, 1195. [Google Scholar] [CrossRef] [PubMed]
- Dorso, C.O.; Frank, G.; López, J.A. Symmetry Energy and the Pauli Exclusion Principle. Symmetry 2021, 13, 2116. [Google Scholar] [CrossRef]
- Napolitano, F.; Bartalucci, S.; Bertolucci, S.; Bazzi, M.; Bragadireanu, M.; Capoccia, C.; Cargnelli, M.; Clozza, A.; De Paolis, L.; Del Grande, R.; et al. Testing the Pauli Exclusion Principle with the VIP-2 Experiment. Symmetry 2022, 14, 893. [Google Scholar] [CrossRef]
- Kolos, W.; Rychlewski, J. Improved theoretical dissociation energy and ionization potential for the ground state of the hydrogen molecule. J. Chem. Phys. 1993, 98, 3960–3967. [Google Scholar] [CrossRef]
- Wolniewicz, L. Nonadiabatic energies of the ground state of the hydrogen molecule. J. Chem. Phys. 1995, 103, 1792–1799. [Google Scholar] [CrossRef]
- Rutherford, D.E. Substitutional Analysis; Hafner Publishing, Co.: London, UK, 1968. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Columbié-Leyva, R.; López-Vivas, A.; Soullard, J.; Miranda, U.; Kaplan, I.G. Symmetry of Identical Particles, Modern Achievements in the Pauli Exclusion Principle, in Superconductivity and in Some Other Phenomena. Symmetry 2023, 15, 701. https://doi.org/10.3390/sym15030701
Columbié-Leyva R, López-Vivas A, Soullard J, Miranda U, Kaplan IG. Symmetry of Identical Particles, Modern Achievements in the Pauli Exclusion Principle, in Superconductivity and in Some Other Phenomena. Symmetry. 2023; 15(3):701. https://doi.org/10.3390/sym15030701
Chicago/Turabian StyleColumbié-Leyva, Ronald, Alberto López-Vivas, Jacques Soullard, Ulises Miranda, and Ilya G. Kaplan. 2023. "Symmetry of Identical Particles, Modern Achievements in the Pauli Exclusion Principle, in Superconductivity and in Some Other Phenomena" Symmetry 15, no. 3: 701. https://doi.org/10.3390/sym15030701
APA StyleColumbié-Leyva, R., López-Vivas, A., Soullard, J., Miranda, U., & Kaplan, I. G. (2023). Symmetry of Identical Particles, Modern Achievements in the Pauli Exclusion Principle, in Superconductivity and in Some Other Phenomena. Symmetry, 15(3), 701. https://doi.org/10.3390/sym15030701