Optimal Inequalities for Submanifolds in Trans-Sasakian Manifolds Endowed with a Semi-Symmetric Metric Connection
Abstract
:1. Introduction
2. Preliminaries
- (i)
- A Sasakian space form for and ;
- (ii)
- A Kenmotsu space form for and ;
- (iii)
- A cosymplectic space form for .
3. Chen First Inequality for Special Contact Slant Submanifolds
4. An Improved Chen First Inequality for Legendrian Submanifolds in Trans-Sasakian Manifolds Admitting a Semi-Symmetric Metric Connection
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Friedmann, A.; Schouten, J. Uber die Geometric der halbsymmetrischen Ubertragung. Math. Zeitschrift 1924, 21, 211–223. [Google Scholar] [CrossRef]
- Hayden, H. Subspaces of a space with torsion. Proc. Lond. Math. Soc. 1932, 2, 27–50. [Google Scholar] [CrossRef]
- Yano, K. On semi symmetric metric connection. Rev. Roumaine Math. Pures Appl. 1970, 15, 1579–1591. [Google Scholar]
- Nakao, Z. Submanifolds of a Riemannian manifold with semisymmetric metric connections. Proc. Am. Math. Soc. 1976, 54, 261–266. [Google Scholar] [CrossRef]
- Chen, B.Y. Some pinching and classification theorems for minimal submanifolds. Arch. Math. 1993, 60, 568–578. [Google Scholar] [CrossRef]
- Chen, B.Y. Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions. Glasgow Math. J. 1999, 41, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Aktan, N.; Sarıkaya, M.Z.; Özüsağlam, E. BY Chen’s inequality for semi-slant submanifolds in-space forms. Balkan J. Geom. Appl. 2008, 13, 1–10. [Google Scholar]
- Alegre, P.; Carriazo, A.; Kim, Y.H.; Yoon, D.W.B.-Y. Chen’s inequality for submanifolds of generalized space forms. Indian J. Pure Appl. Math. 2007, 38, 185. [Google Scholar]
- Mihai, I.; Presură, I. An improved first Chen inequality for Legendrian submanifolds in Sasakian space forms. Per. Math. Hung. 2017, 74, 220–226. [Google Scholar] [CrossRef]
- Mihai, A.; Rădulescu, I.N. Scalar and Ricci curvatures of special contact slant submanifolds in Sasakian space forms. Adv. Geom. 2014, 14, 147–159. [Google Scholar] [CrossRef]
- Postavaru, O.; Mihai, I. An optimized Chen first inequality for special slant submanifolds in Lorentz-Sasakian space forms. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales Serie A Matemáticas 2021, 115, 150. [Google Scholar] [CrossRef]
- Mihai, I. Ricci curvature of submanifolds in Sasakian space forms. J. Aust. Math. Soc. 2002, 72, 247–256. [Google Scholar] [CrossRef] [Green Version]
- Defever, F.; Mihai, I.; Verstraelen, L.B.-Y. Chen’s inequality for C-totally real submanifolds of Sasakian space forms. Boll. Un. Mat. Ital. 1997, 11, 365–374. [Google Scholar]
- Oiaga, A.; Mihai, I.B.Y. Chen inequalities for slant submanifolds in complex space forms. Demonstratio Math. 1999, 32, 835–846. [Google Scholar] [CrossRef] [Green Version]
- Carriazo, A.; Fernández, L.; Hans-Uber, M.B.Y. Chen’s inequality for S-space-forms: Applications to slant immersions. Indian J. Pure Appl. Math. 2003, 34, 1287–1298. [Google Scholar]
- Kim, J.S.; Song, Y.M.; Tripathi, M.M.B.-Y. Chen inequalities for submanifolds in generalized complex space forms. Bull. Korean Math. Soc. 2003, 40, 411–423. [Google Scholar] [CrossRef] [Green Version]
- Mihai, A.; Özgür, C. Chen inequalities for submanifolds of real space forms with a semi-symmetric metric connection. Taiwanese J. Math. 2010, 14, 1465–1477. [Google Scholar] [CrossRef]
- Mihai, A.; Özgür, C. Chen inequalities for submanifolds of complex space forms and Sasakian space forms endowed with semi-symmetric metric connections. Rocky Mt. J. Math. 2011, 41, 1653–1673. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, L.; Song, W. Chen’s inequalities for submanifolds of a Riemannian manifold of quasi-constant curvature with a semi-symmetric metric connection. Taiwan. J. Math. 2014, 18, 1841–1862. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, L. Casorati inequalities for submanifolds in a Riemannian manifold of quasi-constant curvature with a semi-symmetric metric connection. Symmetry 2016, 8, 19. [Google Scholar] [CrossRef] [Green Version]
- Blair, D.E. Contact Manifolds in Riemannian Geometry; Springer: Berlin/Heidelberg, Germany, 1976. [Google Scholar]
- Alegre, P.; Blair, D.; Carriazo, A. Generalized Sasakian-space-forms. Israel J. Math. 2004, 141, 157–183. [Google Scholar] [CrossRef]
- Lotta, A. Slant submanifolds in contact geometry. Bull. Math. Soc. Sci. Math. Roumanie 1996, 39, 183–198. [Google Scholar]
- Mihai, I.; Ghisoiu, V. Minimality of certain contact slant submanifolds in Sasakian space forms. Int. J. Pure Appl. Math. Sci. 2004, 1, 95–99. [Google Scholar]
- Cabrerizo, J.; Carriazo, A.; Fernandez, L.; Fernandez, M. Slant submanifolds in Sasakian manifolds. Glasgow Math. J. 2000, 42, 125–138. [Google Scholar] [CrossRef] [Green Version]
- Costache, S.; Zamfir, I. An improved Chen-Ricci inequality for special slant submanifolds in Kenmotsu space forms. Ann. Polonici Math. 2014, 110, 81–89. [Google Scholar] [CrossRef]
- Alegre, P.; Barrera, J.; Carriazo, A. A new class of slant submanifolds in generalized Sasakian space forms. Mediter. J. Math. 2020, 17, 76. [Google Scholar] [CrossRef]
- Kon, M.; Yano, K. Structures on Manifolds; World Scientific: Singapore, 1985; Volume 3. [Google Scholar]
- Carriazo, A. A contact version of B.-Y. Chen’s inequality and its applications to slant immersions. Kyungpook Math. J. 1999, 39, 465–476. [Google Scholar]
- Presura, I. Geometric inequalities for submanifolds in Sasakian space forms. Bull. Korean Math. Soc. 2016, 53, 1095–1103. [Google Scholar] [CrossRef] [Green Version]
- Bolton, J.; Dillen, F.; Fastenakels, J.; Vrancken, L. A best possible inequality for curvature-like tensor fields. Math. Inequal. Appl. 2009, 12, 663–681. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Tuncer, O.O. On (contra) pedals and (anti) orthotomics of frontals in de Sitter 2-space. Math. Methods Appl. Sci. 2023. [Google Scholar] [CrossRef]
- Yanlin, L.; Erdoğdu, M.; Yavuz, A. Differential geometric approach of Betchow-Da Rios soliton equation. Hacet. J. Math. Stat. 2022, 52, 114–125. [Google Scholar]
- Li, Y.; Abolarinwa, A.; Alkhaldi, A.H.; Ali, A. Some inequalities of Hardy type related to Witten–Laplace operator on smooth metric measure spaces. Mathematics 2022, 10, 4580. [Google Scholar] [CrossRef]
- Li, Y.; Aldossary, M.T.; Abdel-Baky, R.A. Spacelike circular surfaces in Minkowski 3-space. Symmetry 2023, 15, 173. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Z.; Nazra, S.H.; Abdel-Baky, R.A. Singularities for timelike developable surfaces in Minkowski 3-Space. Symmetry 2023, 15, 277. [Google Scholar] [CrossRef]
- Li, Y.; Eren, K.; Ayvacı, K.H.; Ersoy, S. The developable surfaces with pointwise 1-type Gauss map of Frenet type framed base curves in Euclidean 3-space. AIMS Math 2023, 8, 2226–2239. [Google Scholar] [CrossRef]
- Li, Y.; Abdel-Salam, A.; Saad, M.K. Primitivoids of curves in Minkowski plane. AIMS Math 2023, 8, 2386–2406. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihai, I.; Mohammed, M. Optimal Inequalities for Submanifolds in Trans-Sasakian Manifolds Endowed with a Semi-Symmetric Metric Connection. Symmetry 2023, 15, 877. https://doi.org/10.3390/sym15040877
Mihai I, Mohammed M. Optimal Inequalities for Submanifolds in Trans-Sasakian Manifolds Endowed with a Semi-Symmetric Metric Connection. Symmetry. 2023; 15(4):877. https://doi.org/10.3390/sym15040877
Chicago/Turabian StyleMihai, Ion, and Mohammed Mohammed. 2023. "Optimal Inequalities for Submanifolds in Trans-Sasakian Manifolds Endowed with a Semi-Symmetric Metric Connection" Symmetry 15, no. 4: 877. https://doi.org/10.3390/sym15040877
APA StyleMihai, I., & Mohammed, M. (2023). Optimal Inequalities for Submanifolds in Trans-Sasakian Manifolds Endowed with a Semi-Symmetric Metric Connection. Symmetry, 15(4), 877. https://doi.org/10.3390/sym15040877