Controlled S-Metric-Type Spaces and Applications to Fractional Integrals
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
Cases | |||
1. | even | even | even |
2. | even | even | odd |
2.1. | even= | even | odd |
3. | even | odd | even |
4. | even | odd | odd |
5. | odd | even | even |
6. | odd | even | odd |
7. | odd | odd | even |
7.1. | odd= | odd | even |
8. | odd | odd | odd |
- (1)
- A sequence is convergent to some if, for each , there exists such that for all
- (2)
- A sequence in Θ is called a Cauchy sequence if, for each , there exists such that for all
- (3)
- A controlled S-metric-type space is said to be complete if every Cauchy sequence is convergent.
- (i)
- If M supplies (N1), then T has a fixed point.
- (ii)
- If M supplies (N2) and T has a fixed point, then this fixed point is unique.
4. Some Applications to Fractional Integrals
4.1. Fixed Point Approximation to the Riemann–Liouville Fractional Integrals
4.2. Fixed Point Approximation to the Atangana–Baleanu Fractional Integrals
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banach, S. Sur les operations dans les ensembles abstraits et leur application aux equations integrales. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Mustafa, Z.; Sims, B. A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 2006, 7, 289–297. [Google Scholar]
- Dhage, B.C. Generalized metric spaces mappings with fixed point. Bull. Calcutta Math. Soc. 1992, 84, 329–336. [Google Scholar]
- Sedghi, S.; Shobe, N.; Zhou, H. A common fixed point theorem in D*-metric spaces. Fixed Point Theory Appl. 2007, 2007, 27906. [Google Scholar] [CrossRef]
- Shatanawi, W.; Shatnawi, T.A.M. New fixed point results in controlled metric type spaces based on new contractive conditions. AIMS Math. 2023, 8, 9314–9330. [Google Scholar] [CrossRef]
- Rezazgui, A.-Z.; Tallafha, A.A.; Shatanawi, W. Common fixed point results via Aν-α-contractions with a pair and two pairs of self-mappings in the frame of an extended quasi b-metric space. AIMS Math. 2023, 8, 7225–7241. [Google Scholar] [CrossRef]
- Joshi, M.; Tomar, A.; Abdeljawad, T. On fixed points, their geometry and application to satellite web coupling problem in S-metric spaces. AIMS Math. 2023, 8, 4407–4441. [Google Scholar] [CrossRef]
- Sedghi, S.; Shobe, N.; Aliouche, A. A generalization of fixed point theorem in S-metric spaces. Mat. Vesnik 2012, 64, 258–266. [Google Scholar]
- Bakhtin, I.A. The contraction mapping principle in almost metric spaces. Funct. Anal. 1989, 30, 26–37. [Google Scholar]
- Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostra. 1993, 1, 5–11. [Google Scholar]
- Kamran, T.; Samreen, M.; UL Ain, Q. A generalization of b-metric space and some fixed point theorems. Mathematics 2017, 5, 19. [Google Scholar] [CrossRef]
- Mlaiki, N.; Aydi, H.; Souayah, N.; Abdeljawad, T. Controlled metric type spaces and the related contraction principle. Mathematics 2018, 6, 194. [Google Scholar] [CrossRef]
- Ahmad, J.; Al-Mazrooci, A.E.; Aydi, H.; De la Sen, M. On fixed point results in controlled metric spaces. J. Funct. Spaces 2020, 2020, 2108167. [Google Scholar] [CrossRef]
- Mlaiki, N.; Aydi, H.; Souayah, N.; Abdeljawad, T. An improvement of recent results in controlled metric type spaces. Filomat 2020, 34, 1853–1862. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Mlaiki, N.; Aydi, H.; Souayah, N. Double. controlled metric type spaces and some fixed point results. Mathematics 2018, 6, 320. [Google Scholar] [CrossRef]
- Ahmad, H.; Younis, M.; Koksal, M.E. Double controlled partial metric type spaces and convergence results. J. Math. 2021, 2021, 7008737. [Google Scholar] [CrossRef]
- Mlaiki, N.; Hajji, M.; Abdeljawad, T. A new extension of the rectangular b-metric spaces. Adv. Math. Phys. 2020, 2020, 8319584. [Google Scholar] [CrossRef]
- Souayah, N.; Mrad, M. On fixed-point results in controlled partial metric type spaces with a graph. Mathematics 2020, 8, 33. [Google Scholar] [CrossRef]
- Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. Therm. Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef]
- Saqib, M.; Khan, I.; Shafie, S. Application of Atangana-Baleanu fractional derivative to MHD channel flow of CMC-based CNT’s nanofluid through a porous medium. Chaos Solitons Fractals 2018, 116, 79–85. [Google Scholar] [CrossRef]
- Gomez-Aguilar, J.F.; Atangana, A.; Morales-Delgado, V.V.F. Electrical circuits RC, LC, and RL described by Atangana-Baleanu fractional derivatives. Int. J. Circuit Theory Appl. 2017, 45, 1514–1533. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekiz Yazici, N.; Ege, O.; Mlaiki, N.; Mukheimer, A. Controlled S-Metric-Type Spaces and Applications to Fractional Integrals. Symmetry 2023, 15, 1100. https://doi.org/10.3390/sym15051100
Ekiz Yazici N, Ege O, Mlaiki N, Mukheimer A. Controlled S-Metric-Type Spaces and Applications to Fractional Integrals. Symmetry. 2023; 15(5):1100. https://doi.org/10.3390/sym15051100
Chicago/Turabian StyleEkiz Yazici, Nilay, Ozgur Ege, Nabil Mlaiki, and Aiman Mukheimer. 2023. "Controlled S-Metric-Type Spaces and Applications to Fractional Integrals" Symmetry 15, no. 5: 1100. https://doi.org/10.3390/sym15051100
APA StyleEkiz Yazici, N., Ege, O., Mlaiki, N., & Mukheimer, A. (2023). Controlled S-Metric-Type Spaces and Applications to Fractional Integrals. Symmetry, 15(5), 1100. https://doi.org/10.3390/sym15051100