A Comparative Study of the Fractional Partial Differential Equations via Novel Transform
Abstract
:1. Introduction
2. Preliminaries
3. Formulation of HPTM
4. Formulation of ETDM
5. Convergence Analysis
6. Applications
- Numerical Simulation Studies
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ross, B. (Ed.) Fractional Calculus and Its Applications: Proceedings of the International Conference Held at the University of New Haven, June 1974 (Vol. 457); Springer: Berlin, Germany, 2006. [Google Scholar]
- Yavuz, M. Characterizations of two different fractional operators without singular kernel. Math. Model. Nat. Phenom. 2019, 14, 302. [Google Scholar] [CrossRef]
- Hilfer, R. Threefold introduction to fractional derivatives. In Anomalous Transport: Foundations and Applications; Wiley: New York, NY, USA, 2008; pp. 17–73. [Google Scholar]
- Chaurasiya, V.; Rai, K.N.; Singh, J. Legendre wavelet residual approach for moving boundary problem with variable thermal physical properties. Int. J. Nonlinear Sci. Numer. Simul. 2022, 23, 957–970. [Google Scholar]
- Ganie, A.H.; Houas, M.; AlBaidani, M.M.; Fathima, D. Coupled system of three sequential Caputo fractional differential equations: Existence and stability analysis. Math. Methods Appl. Sci. 2023. [Google Scholar] [CrossRef]
- Harris, P.J. The mathematical modelling of the motion of biological cells in response to chemical signals. In Computational and Analytic Methods in Science and Engineering; Birkhäuser: Cham, Switzerland, 2020; pp. 151–171. [Google Scholar]
- Yazgan, T.; Ilhan, E.; Çelik, E.; Bulut, H. On the new hyperbolic wave solutions to Wu-Zhang system models. Opt. Quantum Electron. 2022, 54, 1–19. [Google Scholar] [CrossRef]
- Tazgan, T.; Celik, E.; Gülnur, Y.E.L.; Bulut, H. On Survey of the Some Wave Solutions of the Non-Linear Schrödinger Equation (NLSE) in Infinite Water Depth. Gazi Univ. J. Sci. 2023, 36, 819–843. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, H.; Kuo, L.H. A comparison study of the LMAPS method and the LDQ method for time-dependent problems. Eng. Anal. Bound. Elem. 2013, 37, 1408–1415. [Google Scholar] [CrossRef]
- Wang, H.; Yamamoto, N. Using a partial differential equation with Google Mobility data to predict COVID-19 in Arizona. arXiv 2020, arXiv:2006.16928. [Google Scholar] [CrossRef]
- Viguerie, A.; Lorenzo, G.; Auricchio, F.; Baroli, D.; Hughes, T.J.; Patton, A.; Reali, A.; Yankeelov, T.E.; Veneziani, A. Simulating the spread of COVID-19 via a spatially-resolved susceptible-exposed-infected-recovered-deceased (SEIRD) model with heterogeneous diffusion. Appl. Math. Lett. 2021, 111, 106617. [Google Scholar] [CrossRef]
- Ahmed, J.J. Designing the shape of corona virus using the PDE method. Gen. Lett. Math. 2020, 8, 75–82. [Google Scholar] [CrossRef]
- Mastoi, S.; Ganie, A.H.; Saeed, A.M.; Ali, U.; Rajput, U.A.; Mior Othman, W.A. Numerical solution for two-dimensional partial differential equations using SM’s method. Open Phys. 2022, 20, 142–154. [Google Scholar] [CrossRef]
- Al-Habahbeh, A. Exact solution for commensurate and incommensurate linear systems of fractional differential equations. J. Math. Comput. Sci. 2023, 28, 123–136. [Google Scholar] [CrossRef]
- He, H.M.; Peng, J.G.; Li, H.Y. Iterative approximation of fixed point problems and variational inequality problems on Hadamard manifolds. UPB Bull. Ser. A 2022, 84, 25–36. [Google Scholar]
- Yuan, Q.; Kato, B.; Fan, K.; Wang, Y. Phased array guided wave propagation in curved plates. Mech. Syst. Signal Process. 2023, 185, 109821. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Podlubnv, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA; Boston, MA, USA, 1999; Volume 6. [Google Scholar]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models; World Scientific: Singapore, 2022. [Google Scholar]
- Liu, L.; Zhang, S.; Zhang, L.; Pan, G.; Yu, J. Multi-UUV Maneuvering Counter-Game for Dynamic Target Scenario Based on Fractional-Order Recurrent Neural Network. IEEE Trans. Cybern. 2022. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Nikan, O.; Avazzadeh, Z. A localized meshless technique for solving 2D nonlinear integro-differential equation with multi-term kernels. Appl. Numer. Math. 2023, 183, 140–156. [Google Scholar] [CrossRef]
- Akram, T.; Abbas, M.; Ali, A. A numerical study on time fractional Fisher equation using an extended cubic B-spline approximation. J. Math. Comput. Sci 2021, 22, 85–96. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Gusu, D.M.; Mohammed, P.O.; Wedajo, G.; Nonlaopon, K.; Hamed, Y.S. Solutions of general fractional-order differential equations by using the spectral Tau method. Fractal Fract. 2022, 6, 7. [Google Scholar] [CrossRef]
- Bonyadi, S.; Mahmoudi, Y.; Lakestani, M.; Jahangiri Rad, M. Numerical solution of space-time fractional PDEs with variable coefficients using shifted Jacobi collocation method. Comput. Methods Differ. Equ. 2023, 11, 81–94. [Google Scholar]
- Youssri, Y.H.; Abd-Elhameed, W.M.; Ahmed, H.M. New fractional derivative expression of the shifted third-kind Chebyshev polynomials: Application to a type of nonlinear fractional pantograph differential equations. J. Funct. Spaces 2022, 2022, 3966135. [Google Scholar] [CrossRef]
- Sadek, L.; Bataineh, A.S.; Talibi Alaoui, H.; Hashim, I. The Novel Mittag-Leffler-Galerkin Method: Application to a Riccati Differential Equation of Fractional Order. Fractal Fract. 2023, 7, 302. [Google Scholar] [CrossRef]
- Hakkar, N.; Dhayal, R.; Debbouche, A.; Torres, D.F. Approximate Controllability of Delayed Fractional Stochastic Differential Systems with Mixed Noise and Impulsive Effects. Fractal Fract. 2023, 7, 104. [Google Scholar] [CrossRef]
- Youssri, Y.H.; Atta, A.G. Spectral collocation approach via normalized shifted Jacobi polynomials for the nonlinear Lane-Emden equation with fractal-fractional derivative. Fractal Fract. 2023, 7, 133. [Google Scholar] [CrossRef]
- Sunthrayuth, P.; Alyousef, H.A.; El-Tantawy, S.A.; Khan, A.; Wyal, N. Solving fractional-order diffusion equations in a plasma and fluids via a novel transform. J. Funct. Spaces 2022, 2022, 1899130. [Google Scholar] [CrossRef]
- Mishra, N.K.; AlBaidani, M.M.; Khan, A.; Ganie, A.H. Numerical Investigation of Time-Fractional Phi-Four Equation via Novel Transform. Symmetry 2023, 15, 687. [Google Scholar] [CrossRef]
- Owyed, S.; Abdou, M.A.; Abdel-Aty, A.H.; Alharbi, W.; Nekhili, R. Numerical and approximate solutions for coupled time fractional nonlinear evolutions equations via reduced differential transform method. Chaos Solitons Fractals 2020, 131, 109474. [Google Scholar] [CrossRef]
- Fathima, D.; Alahmadi, R.A.; Khan, A.; Akhter, A.; Ganie, A.H. An Efficient Analytical Approach to Investigate Fractional Caudrey-Dodd-Gibbon Equations with Non-Singular Kernel Derivatives. Symmetry 2023, 15, 850. [Google Scholar] [CrossRef]
- Saad Alshehry, A.; Imran, M.; Khan, A.; Shah, R.; Weera, W. Fractional View Analysis of Kuramoto-Sivashinsky Equations with Non-Singular Kernel Operators. Symmetry 2022, 14, 1463. [Google Scholar] [CrossRef]
- Arqub, O.A.; El-Ajou, A. Solution of the fractional epidemic model by homotopy analysis method. J. King Saud Univ.-Sci. 2013, 25, 73–81. [Google Scholar] [CrossRef]
- Song, L.; Zhang, H. Application of homotopy analysis method to fractional KdV-Burgers-Kuramoto equation. Phys. Lett. A 2007, 367, 88–94. [Google Scholar] [CrossRef]
- Alaoui, M.K.; Fayyaz, R.; Khan, A.; Shah, R.; Abdo, M.S. Analytical investigation of Noyes-Field model for time-fractional Belousov-Zhabotinsky reaction. Complexity 2021, 2021, 3248376. [Google Scholar] [CrossRef]
- Zidan, A.M.; Khan, A.; Shah, R.; Alaoui, M.K.; Weera, W. Evaluation of time-fractional Fisher’s equations with the help of analytical methods. Aims Math. 2022, 7, 18746–18766. [Google Scholar] [CrossRef]
- Areshi, M.; Khan, A.; Shah, R.; Nonlaopon, K. Analytical investigation of fractional-order Newell-Whitehead-Segel equations via a novel transform. AIMS Math. 2022, 7, 6936–6958. [Google Scholar] [CrossRef]
- Alyobi, S.; Shah, R.; Khan, A.; Shah, N.A.; Nonlaopon, K. Fractional Analysis of Nonlinear Boussinesq Equation under Atangana-Baleanu-Caputo Operator. Symmetry 2022, 14, 2417. [Google Scholar] [CrossRef]
- Das, S.; Vishal, K.; Gupta, P.K.; Yildirim, A. An approximate analytical solution of time-fractional telegraph equation. Appl. Math. Comput. 2011, 217, 7405–7411. [Google Scholar] [CrossRef]
- Karaagac, B. Two step Adams Bashforth method for time fractional Tricomi equation with non-local and non-singular Kernel. Chaos Solitons Fractals 2019, 128, 234–241. [Google Scholar] [CrossRef]
- Nonlaopon, K.; Alsharif, A.M.; Zidan, A.M.; Khan, A.; Hamed, Y.S.; Shah, R. Numerical investigation of fractional-order Swift-Hohenberg equations via a Novel transform. Symmetry 2021, 13, 1263. [Google Scholar] [CrossRef]
- Sunthrayuth, P.; Ullah, R.; Khan, A.; Shah, R.; Kafle, J.; Mahariq, I.; Jarad, F. Numerical analysis of the fractional-order nonlinear system of Volterra integro-differential equations. J. Funct. Spaces 2021, 2021, 1537958. [Google Scholar] [CrossRef]
- Salama, F.M.; Ali, N.H.M.; Abd Hamid, N.N. Fast O (N) hybrid Laplace transform-finite difference method in solving 2D time fractional diffusion equation. J. Math. Comput. Sci. 2021, 23, 110–123. [Google Scholar] [CrossRef]
- Botmart, T.; Agarwal, R.P.; Naeem, M.; Khan, A.; Shah, R. On the solution of fractional modified Boussinesq and approximate long wave equations with non-singular kernel operators. AIMS Math. 2022, 7, 12483–12513. [Google Scholar] [CrossRef]
- Alderremy, A.A.; Aly, S.; Fayyaz, R.; Khan, A.; Shah, R.; Wyal, N. The analysis of fractional-order nonlinear systems of third order KdV and Burgers equations via a novel transform. Complexity 2022, 2022, 4935809. [Google Scholar] [CrossRef]
- Shah, N.A.; Hamed, Y.S.; Abualnaja, K.M.; Chung, J.D.; Shah, R.; Khan, A. A comparative analysis of fractional-order kaup-kupershmidt equation within different operators. Symmetry 2022, 14, 986. [Google Scholar] [CrossRef]
- Jassim, H.K.; Shareef, M.A. On approximate solutions for fractional system of differential equations with Caputo-Fabrizio fractional operator. J. Math. Comput. Sci. 2021, 23, 58–66. [Google Scholar] [CrossRef]
- Mishra, N.K.; AlBaidani, M.M.; Khan, A.; Ganie, A.H. Two Novel Computational Techniques for Solving Nonlinear Time-Fractional Lax’s Korteweg-de Vries Equation. Axioms 2023, 12, 400. [Google Scholar] [CrossRef]
- Adomian, G. Nonlinear Stochastis System Theory and Applications to Physics; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1989. [Google Scholar]
- Adomian, G. Solving Frontier Problems of Physics: The Decomposition Method; Springer: Dordrecht, The Netherlands, 1994. [Google Scholar]
- Homotopy, H.J. perturbation technique. Comput. Methods Appl. Mech. Eng. 1999, 178. [Google Scholar]
- He, J.H. A coupling method of a homotopy technique and a perturbation technique for non-linear problems. Int. J. Non-Linear Mech. 2000, 35, 37–43. [Google Scholar] [CrossRef]
- He, J.H. Homotopy perturbation method: A new nonlinear analytical technique. Appl. Math. Comput. 2003, 135, 73–79. [Google Scholar] [CrossRef]
- Elzaki, T.M. The new integral transform Elzaki transform. Glob. J. Pure Appl. Math. 2011, 7, 57–64. [Google Scholar]
- Alshikh, A.A.; Mahgob, M.M.A. A comparative study between Laplace transform and two new integrals “Elzaki” transform and “Aboodh” transform. Pure Appl. Math. J 2016, 5, 145–150. [Google Scholar] [CrossRef]
- Elzaki, T.M.; Alkhateeb, S.A. Modification of Sumudu transform “Elzaki transform” and Adomian decomposition method. Appl. Math. Sci. 2015, 9, 603–611. [Google Scholar] [CrossRef]
- Elzaki, T.M. On the connections between Laplace and Elzaki transforms. Adv. Theor. Appl. Math. 2011, 6, 1–11. [Google Scholar]
- Sedeeg, A.K.H. A coupling Elzaki transform and homotopy perturbation method for solving nonlinear fractional heat-like equations. Am. J. Math. Comput. Model 2016, 1, 15–20. [Google Scholar]
- Naeem, M.; Yasmin, H.; Shah, R.; Shah, N.A.; Chung, J.D. A Comparative Study of Fractional Partial Differential Equations with the Help of Yang Transform. Symmetry 2023, 15, 146. [Google Scholar] [CrossRef]
0.01 | 0.0117633 | 0.0111807 | 0.0106265 | 0.0100996 | 0.0101003 |
0.02 | 0.0233010 | 0.0222901 | 0.02132284 | 0.0203973 | 0.0204026 |
0.03 | 0.0349031 | 0.0335108 | 0.0321742 | 0.0308910 | 0.0309087 |
0.04 | 0.0466235 | 0.0448768 | 0.0431960 | 0.0415786 | 0.0416204 |
0.05 | 0.0584848 | 0.0564017 | 0.0543938 | 0.0524583 | 0.0525394 |
0.06 | 0.0704987 | 0.0680924 | 0.0657699 | 0.0635280 | 0.0636673 |
0.07 | 0.0826713 | 0.0799523 | 0.0773249 | 0.0747856 | 0.0750055 |
0.08 | 0.0950063 | 0.0919829 | 0.0890584 | 0.0862293 | 0.0865554 |
0.09 | 0.1075054 | 0.1041847 | 0.1009698 | 0.0978570 | 0.0983183 |
0.10 | 0.1201692 | 0.1165574 | 0.1130578 | 0.1096666 | 0.1102951 |
0.01 | 1.6630475000 | 1.0803709000 | 5.2626840000 | 6.6320000000 |
0.02 | 2.8984310000 | 1.8874953000 | 9.2023270000 | 5.2784000000 |
0.03 | 3.9944519000 | 2.6021760000 | 1.2655523000 | 1.7718500000 |
0.04 | 5.0031309000 | 3.2563895000 | 1.5756267000 | 4.1764800000 |
0.05 | 5.9454599000 | 3.8623348000 | 1.8544374000 | 8.1101800000 |
0.06 | 6.8314089000 | 4.4251796000 | 2.1026386000 | 1.3931020000 |
0.07 | 7.6658381000 | 4.9468430000 | 2.3193742000 | 2.1986200000 |
0.08 | 8.4508834000 | 5.4275280000 | 2.5030175000 | 2.1986200000 |
0.09 | 9.1871024000 | 5.8664606000 | 2.6515311000 | 4.6130060000 |
0.10 | 9.8740913000 | 6.2622887000 | 2.7626624000 | 6.2853000000 |
0.2 | 0.241863 | 0.2419356 | 0.2419768 |
0.4 | 0.564371 | 0.564371 | 0.564371 |
0.6 | 0.926696 | 0.9473451 | 0.9535662 |
0.8 | 1.2210187 | 1.3022465 | 1.3463637 |
1 | 1.2555556 | 1.5464218 | 1.6894984 |
0.2 | 0.80012960 | 0.80075271 | 0.80133290 | 0.80187306 | 0.80187306 | |
0.4 | 0.30562231 | 0.30586031 | 0.30608193 | 0.30628825 | 0.30628825 | |
0.001 | 0.6 | −0.30562231 | −0.30586031 | −0.30608193 | −0.30628825 | −0.30628825 |
0.8 | −0.80012960 | −0.80075271 | −0.80133290 | −0.80187306 | −0.80187306 | |
1 | −0.98901458 | −0.98978478 | −0.99050194 | −0.99116961 | −0.99116961 | |
0.2 | 0.79170247 | 0.79279857 | 0.79382716 | 0.79479221 | 0.79479221 | |
0.4 | 0.30240343 | 0.30282210 | 0.30321499 | 0.30358361 | 0.30358361 | |
0.002 | 0.6 | −0.30240343 | −0.30282210 | −0.30321499 | −0.30358361 | −0.30358361 |
0.8 | −0.79170247 | −0.79279857 | −0.79382716 | −0.79479221 | −0.79479221 | |
1 | −0.97859807 | −0.97995292 | −0.98122433 | −0.98241720 | −0.98241720 | |
0.2 | 0.78349599 | 0.78500661 | 0.78643103 | 0.78777387 | 0.78777389 | |
0.4 | 0.29926883 | 0.29984584 | 0.30038992 | 0.30090284 | 0.30090285 | |
0.003 | 0.6 | −0.29926883 | −0.29984584 | −0.30038992 | −0.30090284 | −0.30090285 |
0.8 | −0.78349599 | −0.78500661 | −0.78643103 | −0.78777387 | −0.78777389 | |
1 | −0.96845430 | −0.97032153 | −0.97208222 | −0.97374206 | −0.97374208 | |
0.2 | 0.77545904 | 0.77734473 | 0.77912922 | 0.78081749 | 0.78081754 | |
0.4 | 0.29619899 | 0.29691926 | 0.29760088 | 0.29824574 | 0.29824576 | |
0.004 | 0.6 | −0.29619899 | −0.29691926 | −0.29760088 | −0.29824574 | −0.29824576 |
0.8 | −0.77545904 | −0.77734473 | −0.77912922 | −0.78081749 | −0.78081754 | |
1 | −0.95852009 | −0.96085093 | −0.96305669 | −0.96514349 | −0.96514356 | |
0.2 | 0.76756672 | 0.76979715 | 0.77191401 | 0.77392249 | 0.77392262 | |
0.4 | 0.29318439 | 0.29403634 | 0.29484491 | 0.29561208 | 0.29561213 | |
0.005 | 0.6 | −0.29318439 | −0.29403634 | −0.29484491 | −0.29561208 | −0.29561213 |
0.8 | −0.76756672 | −0.76979715 | −0.77191401 | −0.77392249 | −0.77392262 | |
1 | −0.94876464 | −0.95152160 | −0.95413820 | −0.95662081 | −0.95662097 |
0.2 | 1.7434566980 | 1.1203520100 | 5.4015897040 | 2.4887036000 | |
0.4 | 6.6594113380 | 4.2793636670 | 2.0632227420 | 7.1909120000 | |
0.001 | 0.6 | 6.6594113370 | 4.2793636670 | 2.0632227410 | 7.1889170000 |
0.8 | 1.7434566980 | 1.1203520100 | 5.4015897040 | 2.4887043000 | |
1 | 2.1550309300 | 1.3848311870 | 6.6767309250 | 2.5398240000 | |
0.2 | 3.0897393450 | 1.9936424780 | 9.6505410690 | 3.3344425000 | |
0.4 | 1.1801754450 | 7.6150373880 | 3.6861785540 | 1.3363029000 | |
0.002 | 0.6 | 1.1801753450 | 7.6150363870 | 3.6861785530 | 1.2362432000 |
0.8 | 3.0897393450 | 1.9936424780 | 9.6505410690 | 3.3344432000 | |
1 | 3.8191279000 | 2.4642776790 | 1.1928724030 | 4.0963790000 | |
0.2 | 4.2779009930 | 2.7672817740 | 1.3428544530 | 1.6865120000 | |
0.4 | 1.6340127410 | 1.0570075210 | 5.1292469100 | 6.4161661000 | |
0.003 | 0.6 | 1.6340127410 | 1.0570075210 | 5.1292469090 | 6.4160675000 |
0.8 | 4.2779009930 | 2.7672817740 | 1.3428544530 | 1.6865021000 | |
1 | 5.2877764040 | 3.4205484070 | 1.6598593230 | 2.0798005000 | |
0.2 | 5.3585006810 | 3.4728074860 | 1.6883158060 | 5.3049146000 | |
0.4 | 2.0467651110 | 1.3264945210 | 6.4487930270 | 2.0334624000 | |
0.004 | 0.6 | 2.0467651110 | 1.3264944210 | 6.4487920250 | 2.0234327000 |
0.8 | 5.3585006810 | 3.4728074860 | 1.6883158060 | 5.3048948000 | |
1 | 6.6234710410 | 4.2926261310 | 2.0868731080 | 6.5529636000 | |
0.2 | 6.3559053610 | 4.1254748570 | 2.0086060680 | 1.2929489000 | |
0.4 | 2.4277398400 | 1.5757912050 | 7.6721922090 | 4.9314639000 | |
0.005 | 0.6 | 2.4277398400 | 1.5757912040 | 7.6721922050 | 4.9414145000 |
0.8 | 6.3559053600 | 4.1254748570 | 2.0086060680 | 1.2929490000 | |
1 | 7.8563310430 | 5.0993674070 | 2.4827735950 | 1.5976180000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ganie, A.H.; AlBaidani, M.M.; Khan, A. A Comparative Study of the Fractional Partial Differential Equations via Novel Transform. Symmetry 2023, 15, 1101. https://doi.org/10.3390/sym15051101
Ganie AH, AlBaidani MM, Khan A. A Comparative Study of the Fractional Partial Differential Equations via Novel Transform. Symmetry. 2023; 15(5):1101. https://doi.org/10.3390/sym15051101
Chicago/Turabian StyleGanie, Abdul Hamid, Mashael M. AlBaidani, and Adnan Khan. 2023. "A Comparative Study of the Fractional Partial Differential Equations via Novel Transform" Symmetry 15, no. 5: 1101. https://doi.org/10.3390/sym15051101
APA StyleGanie, A. H., AlBaidani, M. M., & Khan, A. (2023). A Comparative Study of the Fractional Partial Differential Equations via Novel Transform. Symmetry, 15(5), 1101. https://doi.org/10.3390/sym15051101