Confidence Intervals for Mean and Difference between Means of Delta-Lognormal Distributions Based on Left-Censored Data
Abstract
:1. Introduction
2. Confidence Intervals for the Mean of Delta-Lognormal Distribution Based on Left-Censored Data
2.1. Generalized Confidence Interval Approach
- 1.
- For , has a probability distribution free of unknown parameters.
- 2.
- For , the observed value of does not depend on the nuisance parameter.
Algorithm 1: |
Step 1: Generate sample from the standard normal distribution and compute and Step 2: Compute from Equation (12) and compute from Equation (13) Step 3: Compute from Equation (14) Step 4: Repeat Step 1–Step 3 a total m times and obtain an array of ’s Step 5: Compute and |
2.2. Bayesian Approach
Algorithm 2: |
Step 1: Compute from Equation (16) Step 2: Compute from Equation (17) Step 3: Compute from Equation (18) Step 4: Repeat Step 1–Step 3 a total m times and obtain an array of ’s Step 5: Compute and |
2.3. Parametric Bootstrap Approach
Algorithm 3: |
Step 1: Generate Step 2: Compute from Equation (20) and compute from Equation (21) Step 3: Compute from Equation (22) Step 4: Repeat Step 1–Step 3 a total m times and obtain an array of ’s Step 5: Compute and |
3. Confidence Intervals for the Difference between Means of Delta-Lognormal Distributions Based on Left-Censored Data
3.1. Generalized Confidence Interval Approach
Algorithm 4: |
Step 1: Generate sample from the standard normal distribution and compute , , , and Step 2: Compute and from Equations (43) and (44) and compute and from Equations (46) and (47) Step 3: Compute and from Equations (45) and (48) and compute from Equation (49) Step 4: Repeat Step 1–Step 3 a total m times and obtain an array of ’s Step 5: Compute and |
3.2. Bayesian Approach
Algorithm 5: |
Step 1: Compute from Equation (51) and compute from Equation (52) Step 2: Compute from Equation (54) and compute from Equation (55) Step 3: Compute and from Equations (53) and (56) and compute from Equation (57) Step 4: Repeat Step 1–Step 3 a total m times and obtain an array of ’s Step 5: Compute and |
3.3. Parametric Bootstrap Approach
Algorithm 6: |
Step 1: Generate and Step 2: Compute and from Equations (59) and (60) and compute and from Equations (62) and (63) Step 3: Compute and from Equations (61) and (64) and compute from Equation (65) Step 4: Repeat Step 1–Step 3 a total m times and obtain an array of ’s Step 5: Compute and from Equations (66) and (67) |
3.4. Method of Variance Estimates Recovery Approach
Algorithm 7: |
Step 1: Compute from Equation (71) and compute from Equation (72) Step 2: Compute from Equation (73) and compute from Equation (74) Step 3: Compute from Equation (77) and compute from Equation (78) Step 4: Compute from Equation (79) and compute from Equation (80) Step 5: Compute from Equation (81) and compute from Equation (82) Step 6: Compute from Equation (83) and compute from Equation (84) Step 7: Compute from Equation (85) and compute from Equation (86) |
4. Results
Algorithm 8: |
Step 1: Generate z from DLN distribution with parameters , , and and set x from LN distribution with parameters and Step 2: Compute and select Step 3: Compute , , , , and Step 4: Use Algorithms 1–3 to construct the confidence intervals Step 5: If , set 1; else, set 0 Step 6: Compute Step 7: Repeat Step 1–Step 6 a total M times Step 8: Compute mean of p defined by the CP Step 9: Compute mean of defined by the AL |
Algorithm 9: |
Step 1: Generate from DLN distribution with parameters , , and , and set from LN distribution with parameters and Step 2: Generate from DLN distribution with parameters , , and , and set from LN distribution with parameters and Step 3: Compute and select Step 4: Compute and select Step 5: Compute , , , , , , , , , , and Step 6: Use Algorithms 4–7 to construct the confidence intervals Step 7: If , set 1; else, set 0 Step 8: Compute Step 9: Repeat Step 1–Step 8 a total M times Step 10: Compute mean of p defined by the CP Step 11: Compute mean of defined by the AL |
5. Empirical Applications
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, X.H.; Gao, S.; Hui, S.L. Methods for comparing the means of two independent log-normal samples. Biometrics 1997, 53, 1129–1135. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.H.; Tu, W. Confidence intervals for the mean of diagnostic test charge data containing zeros. Biometrics 2000, 56, 1118–1125. [Google Scholar] [CrossRef] [PubMed]
- Tian, L. Inferences on the mean of zero-inflated lognormal data: The generalized variable approach. Stat. Med. 2005, 24, 3223–3232. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhou, X.; Tian, L. Interval estimation for the mean of lognormal data with excess zeros. Stat. Probab. Lett. 2013, 83, 2447–2453. [Google Scholar] [CrossRef]
- Tian, L.; Wu, J. Inferences on the common mean of several log-normal populations: The generalized variable approach. Biometr. J. 2007, 49, 944–951. [Google Scholar] [CrossRef]
- Krishnamoorthy, K.; Oral, E. Standardized likelihood ratio test for comparing several log-normal means and confidence interval for the common mean. Stat. Methods Med. Res. 2015, 26, 2919–2937. [Google Scholar] [CrossRef]
- Fletcher, D. Confidence intervals for the mean of the delta-lognormal distribution. Environ. Eco. Stat. 2008, 15, 175–189. [Google Scholar] [CrossRef]
- Wu, W.H.; Hsieh, H.N. Generalized confidence interval estimation for the mean of delta-lognormal distribution: An application to New Zealand trawl survey data. J. Appl. Stat. 2014, 41, 1471–1485. [Google Scholar] [CrossRef]
- Harvey, J.; van der Merwe, A.J. Bayesian confidence intervals for means and variances of lognormal and bivariate lognormal distributions. J. Stat. Plan J. Stat. Plan. Inference 2012, 142, 1294–1309. [Google Scholar] [CrossRef]
- Thangjai, W.; Niwitpong, S.-A. The relative potency of two drugs using the confidence interval for ratio of means of two normal populations with unknown coefficients of variation. J. Stat. Appl. Probab. 2022, 11, 1–14. [Google Scholar]
- Krstanovic, P.F.; Singh, V.P. Evaluation of rainfall networks using entropy: I. Theoretical development. Water Resour. Manag. 1992, 6, 279–293. [Google Scholar] [CrossRef]
- Singh, V.P.; Rajagopal, A.K. A new method of parameter estimation for hydrologic frequency analysis. Hydrol. Sci. Technol. 1986, 2, 33–40. [Google Scholar]
- Singh, V.P.; Singh, K. Parameter estimation for TPLN distribution for flood frequency analysis. JAWRA J. Am. Water Resour. Assoc. 1987, 23, 1185–1189. [Google Scholar] [CrossRef]
- Maneerat, P.; Niwitpong, S.-A.; Niwitpong, S. Statistical estimation of mean of delta-lognormal distribution. Thailand Stat. 2020, 18, 439–456. [Google Scholar]
- Maneerat, P.; Niwitpong, S.-A.; Niwitpong, S. Bayesian confidence intervals for a single mean and the difference between two means of delta-lognormal distributions. Comm. Stat. Simul. Comput. 2021, 50, 2906–2934. [Google Scholar] [CrossRef]
- Yosboonruang, N.; Niwitpong, S.-A.; Niwitpong, S. Bayesian computation for the common coefficient of variation of delta-lognormal distributions with application to common rainfall dispersion in Thailand. PeerJ 2022, 10, e12858. [Google Scholar] [CrossRef]
- Thangjai, W.; Niwitpong, S.-A.; Niwitpong, S. Estimation of common percentile of rainfall datasets in Thailand using delta-lognormal distributions. PeerJ 2022, 10, e14498. [Google Scholar] [CrossRef]
- Cohen, A.C. Truncated and Censored Samples; Marcel Dekker: New York, NY, USA, 1991. [Google Scholar]
- Hammett, K.M. Low-flow frequency analysis for streams in west central Florida. In U.S. Geological Survey Water-Resources Investigations Report; United States Geological Survey: Tallahassee, FL, USA, 1984; pp. 84–4299. [Google Scholar]
- Kroll, C.N.; Stedinger, J.R. Estimation of moments and quantiles using censored data. Water Resour. Res. 1996, 32, 1005–1012. [Google Scholar] [CrossRef] [Green Version]
- Owen, W.J.; DeRouen, T.A. Estimation of the mean for lognormal data containing zeroes and left-censored values, with applications to the measurement of worker exposure to air contaminants. Biometrics 1980, 36, 707–719. [Google Scholar] [CrossRef]
- Glass, D.C.; Gray, C.N. Estimating mean exposures from censored data: Exposure to benzene in the Australian petroleum industry. Ann. Occup. Hyg. 2001, 45, 275–282. [Google Scholar] [CrossRef]
- Krishnamoorthy, K.; Mallick, A.; Mathew, T. Inference for the lognormal mean and quantiles based on samples with left and right Type I censoring. Technometrics 2011, 53, 72–83. [Google Scholar] [CrossRef]
- Weerahandi, S. Generalized confidence intervals. J. Am. Stat. Assoc. 1993, 88, 899–905. [Google Scholar] [CrossRef]
- Krishnamoorthy, K.; Lu, Y. Inference on the common means of several normal populations based on the generalized variable method. Biometrics 2003, 59, 237–247. [Google Scholar] [CrossRef] [Green Version]
- Tian, L. Inferences on the common coefficient of variation. Stat. Med. 2005, 24, 2213–2220. [Google Scholar] [CrossRef] [PubMed]
- Ye, R.D.; Ma, T.F.; Wang, S.G. Inferences on the common mean of several inverse Gaussian populations. Comput. Stat. Data Anal. 2010, 54, 906–915. [Google Scholar] [CrossRef]
- Thangjai, W.; Niwitpong, S.-A.; Niwitpong, S. Confidence intervals for variance and difference between variances of one-parameter exponential distributions. Adv. Appl. Stat. 2018, 53, 259–283. [Google Scholar] [CrossRef]
- Rao, K.A.; D’Cunha, J.G. Bayesian inference for median of the lognormal distribution. J. Mod. Appl. Stat. Methods 2016, 15, 526–535. [Google Scholar] [CrossRef]
- Ma, Z.; Chen, G. Bayesian methods for dealing with missing data problems. J. Korean Stat. Society 2018, 47, 297–313. [Google Scholar] [CrossRef]
- Thangjai, W.; Niwitpong, S.-A.; Niwitpong, S. A Bayesian approach for estimation of coefficients of variation of normal distributions. Sains Malays. 2021, 50, 261–278. [Google Scholar] [CrossRef]
- Padgett, W.J.; Tomlinson, M.A. Lower confidence bounds for percentiles of Weibull and Birnbaum-Saunders distributions. J. Stat. Comput. Simul. 2003, 73, 429–443. [Google Scholar] [CrossRef]
- Zhang, G. A parametric bootstrap approach for one-way ANOVA under unequal variances with unbalanced data. Commun. Stat. Simul. Comput. 2015, 44, 827–832. [Google Scholar] [CrossRef]
- Zou, G.Y.; Donner, A. Construction of confidence limits about effect measures: A general approach. Stat. Med. 2008, 27, 1693–1702. [Google Scholar] [CrossRef] [PubMed]
- Zou, G.Y.; Taleban, J.; Hao, C.Y. Confidence interval estimation for lognormal data with application to health economics. Comput. Stat. Data Anal. 2009, 53, 3755–3764. [Google Scholar] [CrossRef]
- Donner, A.; Zou, G.Y. Closed-form confidence intervals for function of the normal standard deviation. Stat. Methods Med. Res. 2012, 21, 347–359. [Google Scholar] [CrossRef] [PubMed]
Run Number | ||||
---|---|---|---|---|
1 | 0.0326 | 0.3815 | 0.10 | 0.25 |
2 | −0.0742 | 0.5992 | 0.10 | 0.10 |
3 | −0.1810 | 0.7568 | 0.10 | 0.05 |
4 | 0.1971 | 0.4257 | 0.25 | 0.25 |
5 | 0.0821 | 0.6412 | 0.25 | 0.10 |
6 | −0.0302 | 0.7974 | 0.25 | 0.05 |
7 | −0.2061 | 0.7175 | 0.05 | 0.25 |
8 | −0.2722 | 0.8690 | 0.10 | 0.25 |
9 | −0.1656 | 0.9522 | 0.25 | 0.25 |
10 | −0.5909 | 1.1801 | 0.10 | 0.25 |
n | Run Number | CP (AL) | ||
---|---|---|---|---|
20 | 1 | 0.9912 | 0.9872 | 0.8692 |
(0.8372) | (0.7328) | (0.3881) | ||
2 | 0.9902 | 0.9904 | 0.9224 | |
(1.7040) | (1.6223) | (0.7408) | ||
3 | 0.9806 | 0.9888 | 0.9054 | |
(3.1942) | (3.1780) | (1.1575) | ||
4 | 0.9990 | 0.9984 | 0.8184 | |
(2.2617) | (2.0191) | (0.6068) | ||
5 | 0.9982 | 0.9998 | 0.9052 | |
(6.4150) | (9.3597) | (1.4474) | ||
6 | 0.9828 | 0.9994 | 0.8090 | |
(18.7733) | (42.5334) | (2.8766) | ||
7 | 0.9788 | 0.9650 | 0.8832 | |
(1.3040) | (1.0321) | (0.7072) | ||
8 | 0.9818 | 0.9740 | 0.8630 | |
(2.3494) | (1.8102) | (0.9981) | ||
9 | 0.9800 | 0.9796 | 0.8232 | |
(5.8573) | (6.4620) | (1.5802) | ||
10 | 0.9742 | 0.9798 | 0.8446 | |
(6.9770) | (6.7278) | (1.7690) | ||
30 | 1 | 0.9918 | 0.9904 | 0.8774 |
(0.6294) | (0.5688) | (0.3223) | ||
2 | 0.9928 | 0.9924 | 0.9268 | |
(1.2028) | (1.1615) | (0.6090) | ||
3 | 0.9824 | 0.9908 | 0.9012 | |
(2.0167) | (2.0038) | (0.9383) | ||
4 | 0.9992 | 0.9994 | 0.8188 | |
(1.5172) | (1.3733) | (0.4992) | ||
5 | 0.9974 | 0.9996 | 0.9050 | |
(3.6072) | (3.9979) | (1.1628) | ||
6 | 0.9684 | 0.9988 | 0.7400 | |
(8.2978) | (10.9098) | (2.2252) | ||
7 | 0.9770 | 0.9652 | 0.8986 | |
(0.9274) | (0.7750) | (0.5868) | ||
8 | 0.9766 | 0.9686 | 0.8736 | |
(1.5154) | (1.2409) | (0.8145) | ||
9 | 0.9770 | 0.9756 | 0.8372 | |
(3.0594) | (2.6148) | (1.2530) | ||
10 | 0.9722 | 0.9764 | 0.8728 | |
(3.2162) | (2.6407) | (1.3501) | ||
50 | 1 | 0.9754 | 0.9884 | 0.8504 |
(0.4543) | (0.4208) | (0.2501) | ||
2 | 0.9942 | 0.9952 | 0.9380 | |
(0.8482) | (0.8277) | (0.4770) | ||
3 | 0.9740 | 0.9906 | 0.8792 | |
(1.3171) | (1.3268) | (0.7227) | ||
4 | 0.9980 | 0.9980 | 0.7780 | |
(1.0337) | (0.9580) | (0.3907) | ||
5 | 0.9938 | 0.9998 | 0.8826 | |
(2.2628) | (2.4167) | (0.8943) | ||
6 | 0.9144 | 0.9924 | 0.5864 | |
(4.5057) | (5.2494) | (1.6769) | ||
7 | 0.9692 | 0.9598 | 0.9070 | |
(0.6525) | (0.5668) | (0.4596) | ||
8 | 0.9696 | 0.9620 | 0.8784 | |
(1.0010) | (0.8609) | (0.6282) | ||
9 | 0.9780 | 0.9730 | 0.8340 | |
(1.8114) | (1.5904) | (0.9488) | ||
10 | 0.9698 | 0.9728 | 0.8828 | |
(1.8249) | (1.5558) | (1.0062) | ||
100 | 1 | 0.9122 | 0.9754 | 0.7966 |
(0.3077) | (0.2897) | (0.1789) | ||
2 | 0.9942 | 0.9962 | 0.9356 | |
(0.5614) | (0.5531) | (0.3382) | ||
3 | 0.9484 | 0.9746 | 0.8010 | |
(0.8421) | (0.8586) | (0.5120) | ||
4 | 0.9928 | 0.9958 | 0.6548 | |
(0.6693) | (0.6333) | (0.2777) | ||
5 | 0.9820 | 0.9980 | 0.8164 | |
(1.3874) | (1.4675) | (0.6278) | ||
6 | 0.7512 | 0.9358 | 0.2938 | |
(2.5295) | (2.8640) | (1.1597) | ||
7 | 0.9524 | 0.9572 | 0.9090 | |
(0.4352) | (0.3878) | (0.3298) | ||
8 | 0.9618 | 0.9590 | 0.8856 | |
(0.6394) | (0.5676) | (0.4452) | ||
9 | 0.9678 | 0.9582 | 0.8214 | |
(1.0887) | (0.9860) | (0.6666) | ||
10 | 0.9720 | 0.9688 | 0.8932 | |
(1.0669) | (0.9445) | (0.6959) |
Run Number | ||||
---|---|---|---|---|
1 | (0.00, 0.00) | (0.3815, 0.3815) | (0.10, 0.10) | (0.10, 0.10) |
2 | (0.00, 0.00) | (0.3815, 0.3815) | (0.10, 0.10) | (0.10, 0.25) |
3 | (0.00, 0.00) | (0.3815, 0.3815) | (0.10, 0.25) | (0.10, 0.10) |
4 | (0.00, 0.00) | (0.3815, 0.3815) | (0.10, 0.25) | (0.10, 0.25) |
5 | (0.00, 0.00) | (0.3815, 0.5992) | (0.10, 0.10) | (0.10, 0.10) |
6 | (0.00, 0.00) | (0.3815, 0.5992) | (0.10, 0.10) | (0.10, 0.25) |
7 | (0.00, 0.00) | (0.3815, 0.5992) | (0.10, 0.25) | (0.10, 0.10) |
8 | (0.00, 0.00) | (0.3815, 0.5992) | (0.10, 0.25) | (0.10, 0.25) |
Run Number | CP (AL) | ||||
---|---|---|---|---|---|
(20, 20) | 1 | 0.9990 | 0.9996 | 0.9340 | 0.9990 |
(2.1168) | (2.2141) | (0.6374) | (2.3162) | ||
2 | 0.9966 | 0.9978 | 0.8996 | 0.9956 | |
(1.6883) | (1.6417) | (0.5923) | (1.7354) | ||
3 | 1.0000 | 1.0000 | 0.9266 | 1.0000 | |
(3.9405) | (5.1912) | (0.7716) | (7.6454) | ||
4 | 0.9986 | 0.9996 | 0.8128 | 0.9996 | |
(2.0779) | (2.1431) | (0.6094) | (2.2208) | ||
5 | 0.9962 | 0.9984 | 0.9302 | 0.9958 | |
(2.6335) | (2.7108) | (0.9446) | (2.8697) | ||
6 | 0.9916 | 0.9958 | 0.8800 | 0.9912 | |
(2.1284) | (2.0000) | (0.8267) | (2.0541) | ||
7 | 0.9996 | 1.0000 | 0.9386 | 1.0000 | |
(5.2628) | (6.9590) | (1.2488) | (12.2312) | ||
8 | 0.9934 | 0.9966 | 0.8072 | 0.9942 | |
(2.7956) | (2.7810) | (0.8828) | (2.9778) | ||
(30, 30) | 1 | 0.9994 | 0.9998 | 0.9372 | 0.9994 |
(1.4633) | (1.4972) | (0.5237) | (1.5127) | ||
2 | 0.9950 | 0.9984 | 0.8886 | 0.9974 | |
(1.1725) | (1.1409) | (0.4819) | (1.1625) | ||
3 | 0.9998 | 1.0000 | 0.9318 | 1.0000 | |
(2.4588) | (2.7804) | (0.6282) | (3.0647) | ||
4 | 0.9976 | 0.9990 | 0.7602 | 0.9986 | |
(1.4264) | (1.4370) | (0.5009) | (1.4470) | ||
5 | 0.9974 | 0.9986 | 0.9382 | 0.9982 | |
(1.8046) | (1.8281) | (0.7750) | (1.8711) | ||
6 | 0.9888 | 0.9930 | 0.8828 | 0.9908 | |
(1.4737) | (1.3893) | (0.6837) | (1.4006) | ||
7 | 0.9994 | 1.0000 | 0.9414 | 0.9998 | |
(3.1278) | (3.4931) | (1.0036) | (4.0365) | ||
8 | 0.9940 | 0.9974 | 0.7866 | 0.9946 | |
(1.8611) | (1.8076) | (0.7303) | (1.8445) | ||
(20, 30) | 1 | 0.9992 | 0.9992 | 0.9276 | 0.9992 |
(1.7747) | (1.8158) | (0.5816) | (1.8873) | ||
2 | 0.9954 | 0.9978 | 0.9038 | 0.9972 | |
(1.5513) | (1.5031) | (0.5497) | (1.6174) | ||
3 | 1.0000 | 1.0000 | 0.9282 | 1.0000 | |
(2.7087) | (3.1494) | (0.6747) | (3.3786) | ||
4 | 0.9984 | 0.9998 | 0.8114 | 0.9990 | |
(1.7824) | (1.8087) | (0.5643) | (1.8763) | ||
5 | 0.9966 | 0.9990 | 0.9440 | 0.9976 | |
(2.1119) | (2.1777) | (0.8188) | (2.2600) | ||
6 | 0.9906 | 0.9948 | 0.8912 | 0.9918 | |
(1.8202) | (1.7418) | (0.7325) | (1.8165) | ||
7 | 0.9996 | 1.0000 | 0.9458 | 1.0000 | |
(3.4029) | (3.9400) | (1.0435) | (4.3992) | ||
8 | 0.9916 | 0.9960 | 0.8104 | 0.9940 | |
(2.1869) | (2.1775) | (0.7755) | (2.2339) | ||
(50, 50) | 1 | 0.9996 | 0.9998 | 0.9448 | 1.0000 |
(1.0123) | (1.0245) | (0.4072) | (1.0278) | ||
2 | 0.9882 | 0.9986 | 0.8382 | 0.9966 | |
(0.8374) | (0.8199) | (0.3782) | (0.8273) | ||
3 | 1.0000 | 1.0000 | 0.9236 | 1.0000 | |
(1.5939) | (1.7293) | (0.4847) | (1.8045) | ||
4 | 0.9920 | 0.9984 | 0.6556 | 0.9970 | |
(0.9874) | (0.9881) | (0.3916) | (0.9902) | ||
5 | 0.9984 | 0.9996 | 0.9408 | 0.9990 | |
(1.2249) | (1.2283) | (0.6016) | (1.2408) | ||
6 | 0.9786 | 0.9894 | 0.8558 | 0.9860 | |
(1.0218) | (0.9703) | (0.5325) | (0.9718) | ||
7 | 0.9992 | 1.0000 | 0.9532 | 1.0000 | |
(1.9803) | (2.1144) | (0.7749) | (2.2552) | ||
8 | 0.9798 | 0.9884 | 0.7294 | 0.9862 | |
(1.2322) | (1.1939) | (0.5631) | (1.2042) | ||
(30, 50) | 1 | 0.9994 | 0.9996 | 0.9386 | 0.9996 |
(1.2356) | (1.2480) | (0.4675) | (1.2666) | ||
2 | 0.9912 | 0.9984 | 0.8862 | 0.9968 | |
(1.0900) | (1.0604) | (0.4424) | (1.0960) | ||
3 | 1.0000 | 1.0000 | 0.9156 | 1.0000 | |
(1.7892) | (1.9630) | (0.5385) | (2.0156) | ||
4 | 0.9932 | 0.9984 | 0.7366 | 0.9968 | |
(1.2141) | (1.2149) | (0.4537) | (1.2314) | ||
5 | 0.9990 | 0.9998 | 0.9520 | 0.9994 | |
(1.4403) | (1.4596) | (0.6444) | (1.4757) | ||
6 | 0.9852 | 0.9948 | 0.8862 | 0.9894 | |
(1.2451) | (1.1966) | (0.5814) | (1.2150) | ||
7 | 0.9978 | 1.0000 | 0.9446 | 0.9994 | |
(2.1593) | (2.3543) | (0.8129) | (2.4570) | ||
8 | 0.9864 | 0.9946 | 0.7740 | 0.9910 | |
(1.4486) | (1.4275) | (0.6113) | (1.4375) | ||
(100, 100) | 1 | 0.9998 | 0.9998 | 0.9422 | 0.9998 |
(0.6640) | (0.6678) | (0.2888) | (0.6702) | ||
2 | 0.9488 | 0.9940 | 0.7474 | 0.9912 | |
(0.5514) | (0.5422) | (0.2670) | (0.5467) | ||
3 | 1.0000 | 1.0000 | 0.8930 | 1.0000 | |
(1.0056) | (1.0697) | (0.3430) | (1.0928) | ||
4 | 0.9450 | 0.9858 | 0.4352 | 0.9850 | |
(0.6428) | (0.6420) | (0.2777) | (0.6438) | ||
5 | 0.9986 | 0.9988 | 0.9456 | 0.9984 | |
(0.7958) | (0.7956) | (0.4256) | (0.7998) | ||
6 | 0.9574 | 0.9852 | 0.8098 | 0.9814 | |
(0.6671) | (0.6384) | (0.3765) | (0.6407) | ||
7 | 0.9990 | 1.0000 | 0.9258 | 0.9996 | |
(1.2338) | (1.3014) | (0.5453) | (1.3453) | ||
8 | 0.9540 | 0.9664 | 0.5948 | 0.9672 | |
(0.7916) | (0.7697) | (0.3999) | (0.7739) | ||
(50, 100) | 1 | 0.9996 | 0.9998 | 0.9428 | 0.9998 |
(0.8511) | (0.8540) | (0.3532) | (0.8623) | ||
2 | 0.9766 | 0.9968 | 0.8262 | 0.9954 | |
(0.7631) | (0.7493) | (0.3361) | (0.7651) | ||
3 | 1.0000 | 1.0000 | 0.8872 | 1.0000 | |
(1.1519) | (1.2302) | (0.3992) | (1.2417) | ||
4 | 0.9688 | 0.9928 | 0.5956 | 0.9902 | |
(0.8307) | (0.8290) | (0.3432) | (0.8377) | ||
5 | 0.9990 | 0.9994 | 0.9480 | 0.9996 | |
(0.9611) | (0.9662) | (0.4709) | (0.9725) | ||
6 | 0.9778 | 0.9936 | 0.8508 | 0.9904 | |
(0.8517) | (0.8253) | (0.4291) | (0.8343) | ||
7 | 0.9990 | 1.0000 | 0.9330 | 0.9996 | |
(1.3531) | (1.4418) | (0.5792) | (1.4654) | ||
8 | 0.9680 | 0.9876 | 0.6782 | 0.9844 | |
(0.9544) | (0.9381) | (0.4474) | (0.9431) |
Chiang Mai Province | Lampang Province | ||||||||
---|---|---|---|---|---|---|---|---|---|
2.0 | 14.2 | 2.6 | 0.3 | 13.3 | 1.3 | 0.1 | 0.0 | 0.0 | 7.7 |
0.2 | 1.6 | 0.5 | 0.0 | 45.7 | 0.0 | 0.0 | 1.6 | 0.0 | 23.6 |
0.0 | 10.9 | 18.6 | 0.0 | 7.1 | 0.0 | 0.4 | 5.0 | 0.0 | 0.4 |
0.0 | 1.7 | 16.8 | 4.6 | 0.0 | 0.0 | 2.8 | 36.6 | 38.3 | 0.0 |
7.7 | 0.5 | 2.0 | 0.3 | 0.8 | 1.4 | 29.2 | 1.2 | 0.0 | 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thangjai, W.; Niwitpong, S.-A. Confidence Intervals for Mean and Difference between Means of Delta-Lognormal Distributions Based on Left-Censored Data. Symmetry 2023, 15, 1216. https://doi.org/10.3390/sym15061216
Thangjai W, Niwitpong S-A. Confidence Intervals for Mean and Difference between Means of Delta-Lognormal Distributions Based on Left-Censored Data. Symmetry. 2023; 15(6):1216. https://doi.org/10.3390/sym15061216
Chicago/Turabian StyleThangjai, Warisa, and Sa-Aat Niwitpong. 2023. "Confidence Intervals for Mean and Difference between Means of Delta-Lognormal Distributions Based on Left-Censored Data" Symmetry 15, no. 6: 1216. https://doi.org/10.3390/sym15061216
APA StyleThangjai, W., & Niwitpong, S. -A. (2023). Confidence Intervals for Mean and Difference between Means of Delta-Lognormal Distributions Based on Left-Censored Data. Symmetry, 15(6), 1216. https://doi.org/10.3390/sym15061216