Striped Expression of Leucine-Rich Repeat Proteins Coordinates Cell Intercalation and Compartment Boundary Formation in the Early Drosophila Embryo
Abstract
1. Introduction
2. Complementary Domains of Cortical Tension and Junctional Adhesion Drive Cell Intercalation
3. Planar Polarity during Drosophila Convergent Extension Requires Patterned Transcriptional Inputs
4. Striped Leucine-Rich Repeat Receptors Link Embryonic Patterning to Planar Polarity
5. Toll-2 Signals through Src and PI3K to Induce Cell Intercalation
6. Toll-8 Interacts with the GPCR Cirl to Establish Planar Polarity
7. Compartment Boundaries in the Early Drosophila Embryo Require Tartan and Ten-m
8. Functional Overlap between LRR Receptor Signaling Pathways during CE
9. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shindo, A. Models of Convergent Extension during Morphogenesis. Wiley Interdiscip. Rev. Dev. Biol. 2018, 7, e293. [Google Scholar] [CrossRef] [PubMed]
- Paré, A.C.; Zallen, J.A. Cellular, Molecular, and Biophysical Control of Epithelial Cell Intercalation. In Current Topics in Developmental Biology; Academic Press Inc.: Cambridge, MA, USA, 2020; Volume 136, pp. 167–193. [Google Scholar]
- Keller, R.; Sutherland, A. Convergent Extension in the Amphibian Xenopus Laevis. Curr. Top. Dev. Biol. 2020, 136, 271–317. [Google Scholar] [PubMed]
- Williams, M.L.K.; Solnica-Krezel, L. Cellular and Molecular Mechanisms of Convergence and Extension in Zebrafish. Curr. Top. Dev. Biol. 2020, 136, 377–407. [Google Scholar] [PubMed]
- Sun, Z.; Amourda, C.; Shagirov, M.; Hara, Y.; Saunders, T.E.; Toyama, Y. Basolateral Protrusion and Apical Contraction Cooperatively Drive Drosophila Germ-Band Extension. Nat. Cell Biol. 2017, 19, 375–383. [Google Scholar]
- Fagotto, F. The Cellular Basis of Tissue Separation. Development 2014, 141, 3303–3318. [Google Scholar] [CrossRef]
- Wang, J.; Dahmann, C. Establishing Compartment Boundaries in Drosophila Wing Imaginal Discs: An Interplay between Selector Genes, Signaling Pathways and Cell Mechanics. Semin. Cell Dev. Biol. 2020, 107, 161–169. [Google Scholar]
- Sharrock, T.E.; Sanson, B. Cell Sorting and Morphogenesis in Early Drosophila Embryos. Semin. Cell Dev. Biol. 2020, 107, 147–160. [Google Scholar]
- Williams, M.; Yen, W.; Lu, X.; Sutherland, A. Distinct Apical and Basolateral Mechanisms Drive Planar Cell Polarity-Dependent Convergent Extension of the Mouse Neural Plate. Dev. Cell 2014, 29, 34–46. [Google Scholar]
- Wallingford, J.B.; Harland, R.M. Neural Tube Closure Requires Dishevelled-Dependent Convergent Extension of the Midline. Development 2002, 129, 5815–5825. [Google Scholar]
- Shi, W.; Peyrot, S.M.; Munro, E.; Levine, M. FGF3 in the Floor Plate Directs Notochord Convergent Extension in the Ciona Tadpole. Development 2009, 136, 23. [Google Scholar]
- Nishimura, T.; Honda, H.; Takeichi, M. Planar Cell Polarity Links Axes of Spatial Dynamics in Neural-Tube Closure. Cell 2012, 149, 1084–1097. [Google Scholar] [CrossRef] [PubMed]
- Irvine, K.D.; Wieschaus, E. Cell Intercalation during Drosophila Germband Extension and Its Regulation by Pair-Rule Segmentation Genes. Development 1994, 120, 841–872. [Google Scholar] [CrossRef]
- Vincent, J.P.; O’Farrell, P.H. The State of Engrailed Expression Is Not Clonally Transmitted during Early Drosophila Development. Cell 1992, 68, 923–931. [Google Scholar] [PubMed]
- Monier, B.; Pélissier-Monier, A.; Brand, A.H.; Sanson, B. An Actomyosin-Based Barrier Inhibits Cell Mixing at Compartmental Boundaries in Drosophila Embryos. Nat. Cell Biol. 2009, 12, 60–65. [Google Scholar] [CrossRef]
- Bertet, C.; Sulak, L.; Lecuit, T. Myosin-Dependent Junction Remodelling Controls Planar Cell Intercalation and Axis Elongation. Nature 2004, 429, 667–671. [Google Scholar] [CrossRef]
- Zallen, J.A.; Wieschaus, E. Patterned Gene Expression Directs Bipolar Planar Polarity in Drosophila. Dev. Cell 2004, 6, 343–355. [Google Scholar]
- Kasza, K.E.; Farrell, D.L.; Zallen, J.A. Spatiotemporal Control of Epithelial Remodeling by Regulated Myosin Phosphorylation. Proc. Natl. Acad. Sci. USA 2014, 111, 11732–11737. [Google Scholar]
- de Matos Simões, S.; Blankenship, J.T.; Weitz, O.; Farrell, D.L.; Tamada, M.; Fernandez-Gonzalez, R.; Zallen, J.A. Rho-Kinase Directs Bazooka/Par-3 Planar Polarity during Drosophila Axis Elongation. Dev. Cell 2010, 19, 377–388. [Google Scholar]
- Rauzi, M.; Lenne, P.-F.; Lecuit, T. Planar Polarized Actomyosin Contractile Flows Control Epithelial Junction Remodelling. Nature 2010, 468, 1110–1114. [Google Scholar]
- Amano, M.; Ito, M.; Kimura, K.; Fukata, Y.; Chihara, K.; Nakano, T.; Matsuura, Y.; Kaibuchi, K. Phosphorylation and Activation of Myosin by Rho-Associated Kinase (Rho- Kinase). J. Biol. Chem. 1996, 271, 20246–20249. [Google Scholar] [CrossRef]
- de Matos Simões, S.; Mainieri, A.; Zallen, J.A. Rho GTPase and Shroom Direct Planar Polarized Actomyosin Contractility during Convergent Extension. J. Cell Biol. 2014, 204, 575–589. [Google Scholar] [CrossRef]
- Garcia De Las Bayonas, A.; Philippe, J.-M.; Lellouch, A.C.; Lecuit, T. Distinct RhoGEFs Activate Apical and Junctional Contractility under Control of G Proteins during Epithelial Morphogenesis. Curr. Biol. 2019, 29, 3370–3385.e7. [Google Scholar] [PubMed]
- Pickering, K.; Alves-Silva, J.; Goberdhan, D.; Millard, T.H. Par3/Bazooka and Phosphoinositides Regulate Actin Protrusion Formation during Drosophila Dorsal Closure and Wound Healing. Development 2013, 140, 800–809. [Google Scholar]
- Tamada, M.; Zallen, J.A. Square Cell Packing in the Drosophila Embryo through Spatiotemporally Regulated EGF Receptor Signaling. Dev. Cell 2015, 35, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.C.; Balaghi, N.; Erdemci-Tandogan, G.; Castle, V.; Fernandez-Gonzalez, R. Myosin Cables Control the Timing of Tissue Internalization in the Drosophila Embryo. Cells Dev. 2021, 168, 203721. [Google Scholar] [CrossRef]
- Strutt, H.; Strutt, D. Asymmetric Localisation of Planar Polarity Proteins: Mechanisms and Consequences. Semin. Cell Dev. Biol. 2009, 20, 957–963. [Google Scholar] [PubMed]
- Goodrich, L.V.; Strutt, D. Principles of Planar Polarity in Animal Development. Development 2011, 138, 1877–1892. [Google Scholar] [CrossRef] [PubMed]
- Devenport, D. The Cell Biology of Planar Cell Polarity. J. Cell Biol. 2014, 207, 171–179. [Google Scholar]
- Yang, Y.; Mlodzik, M. Wnt-Frizzled/Planar Cell Polarity Signaling: Cellular Orientation by Facing the Wind (Wnt). Annu. Rev. Cell Dev. Biol. 2015, 31, 623–646. [Google Scholar]
- Paré, A.C.; Vichas, A.; Fincher, C.T.; Mirman, Z.; Farrell, D.L.; Mainieri, A.; Zallen, J.A. A Positional Toll Receptor Code Directs Convergent Extension in Drosophila. Nature 2014, 515, 523–527. [Google Scholar]
- Nüsslein-volhard, C.; Wieschaus, E. Mutations Affecting Segment Number and Polarity in Drosophila. Nature 1980, 287, 795–801. [Google Scholar] [PubMed]
- Kimelman, D.; Martin, B.L. Anterior-Posterior Patterning in Early Development: Three Strategies. Wiley Interdiscip. Rev. Dev. Biol. 2012, 1, 253–266. [Google Scholar]
- Clark, E. Dynamic Patterning by the Drosophila Pair-Rule Network Reconciles Long-Germ and Short-Germ Segmentation. PLoS Biol. 2017, 15, e2002439. [Google Scholar] [CrossRef]
- Akam, M. The Molecular Basis for Metameric Pattern in the Drosophila Embryo. Development 1987, 101, 1–22. [Google Scholar] [CrossRef]
- Eldon, E.; Kooyer, S.; D’Evelyn, D.; Duman, M.; Lawinger, P.; Botas, J.; Bellen, H. The Drosophila 18 Wheeler Is Required for Morphogenesis and Has Striking Similarities to Toll. Development 1994, 120, 885–899. [Google Scholar] [PubMed]
- Chiang, C.; Beachy, P.A. Expression of a Novel Toll-like Gene Spans the Parasegment Boundary and Contributes to Hedgehog Function in the Adult Eye of Drosophila. Mech. Dev. 1994, 47, 225–239. [Google Scholar]
- Kambris, Z.; Hoffmann, J.A.; Imler, J.L.; Capovilla, M. Tissue and Stage-Specific Expression of the Tolls in Drosophila Embryos. Gene Expr. Patterns 2002, 2, 311–317. [Google Scholar]
- Paré, A.C.; Naik, P.; Shi, J.; Mirman, Z.; Palmquist, K.H.; Zallen, J.A. An LRR Receptor-Teneurin System Directs Planar Polarity at Compartment Boundaries. Dev. Cell 2019, 51, 208–221.e6. [Google Scholar] [CrossRef] [PubMed]
- Chang, Z.; Price, B.D.; Bockheim, S.; Boedigheimer, M.J.; Smith, R.; Laughon, A. Molecular and Genetic Characterization of the Drosophila Tartan Gene. Dev. Biol. 1993, 160, 315–332. [Google Scholar] [CrossRef] [PubMed]
- Graham, P.L.; Anderson, W.R.; Brandt, E.A.; Xiang, J.; Pick, L. Dynamic Expression of Drosophila Segmental Cell Surface-Encoding Genes and Their Pair-Rule Regulators. Dev. Biol. 2019, 447, 147–156. [Google Scholar]
- Tetley, R.J.; Blanchard, G.B.; Fletcher, A.G.; Adams, R.J.; Sanson, B. Unipolar Distributions of Junctional Myosin II Identify Cell Stripe Boundaries That Drive Cell Intercalation throughout Drosophila Axis Extension. eLife 2016, 5, e12094. [Google Scholar] [CrossRef]
- Sharrock, T.E.; Evans, J.; Blanchard, G.B.; Sanson, B. Different Temporal Requirements for Tartan and Wingless in the Formation of Contractile Interfaces at Compartmental Boundaries. Development 2022, 149, dev200292. [Google Scholar] [CrossRef] [PubMed]
- Farrell, D.L.; Weitz, O.; Magnasco, M.O.; Zallen, J.A. SEGGA: A Toolset for Rapid Automated Analysis of Epithelial Cell Polarity and Dynamics. Development 2017, 144, 1725–1734. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Gonzalez, R.; de Matos Simões, S.; Röper, J.C.; Eaton, S.; Zallen, J.A. Myosin II Dynamics Are Regulated by Tension in Intercalating Cells. Dev. Cell 2009, 17, 736–743. [Google Scholar] [PubMed]
- Yu, J.C.; Fernandez-Gonzalez, R. Local Mechanical Forces Promote Polarized Junctional Assembly and Axis Elongation in Drosophila. eLife 2016, 5, e10757. [Google Scholar] [CrossRef]
- Bella, J.; Hindle, K.L.; McEwan, P.A.; Lovell, S.C. The Leucine-Rich Repeat Structure. Cell. Mol. Life Sci. 2008, 65, 2307–2333. [Google Scholar]
- Botos, I.; Segal, D.M.; Davies, D.R. The Structural Biology of Toll-Like Receptors. Structure 2011, 19, 447. [Google Scholar]
- Parthier, C.; Stelter, M.; Ursel, C.; Fandrich, U.; Lilie, H.; Breithaupt, C.; Stubbs, M.T. Structure of the Toll-Spatzle Complex, a Molecular Hub in Drosophila Development and Innate Immunity. Proc. Natl. Acad. Sci. USA 2014, 111, 6281–6286. [Google Scholar]
- Özkan, E.; Carrillo, R.A.; Eastman, C.L.; Weiszmann, R.; Waghray, D.; Johnson, K.G.; Zinn, K.; Celniker, S.E.; Garcia, K.C. An Extracellular Interactome of Immunoglobulin and LRR Proteins Reveals Receptor-Ligand Networks. Cell 2013, 154, 228–239. [Google Scholar]
- Lavalou, J.; Mao, Q.; Harmansa, S.; Kerridge, S.; Lellouch, A.C.; Philippe, J.M.; Audebert, S.; Camoin, L.; Lecuit, T. Formation of Polarized Contractile Interfaces by Self-Organized Toll-8/Cirl GPCR Asymmetry. Dev. Cell 2021, 56, 1574–1588.e7. [Google Scholar]
- Iijima, N.; Sato, K.; Kuranaga, E.; Umetsu, D. Differential Cell Adhesion Implemented by Drosophila Toll Corrects Local Distortions of the Anterior-Posterior Compartment Boundary. Nat. Commun. 2020, 11, 6320. [Google Scholar]
- Leulier, F.; Lemaitre, B. Toll-like Receptors—Taking an Evolutionary Approach. Nat. Rev. Genet. 2008, 9, 165. [Google Scholar] [CrossRef]
- Kawai, T.; Akira, S. Signaling to NF-KappaB by Toll-like Receptors. Trends Mol. Med. 2007, 13, 460–469. [Google Scholar]
- Anderson, K.V.; Bokla, L.; Nüsslein-Volhard, C. Establishment of Dorsal-Ventral Polarity in the Drosophila Embryo: The Induction of Polarity by the Toll Gene Product. Cell 1985, 42, 791–798. [Google Scholar]
- Anderson, K.V.; Jürgens, G.; Nüsslein-Volhard, C. Establishment of Dorsal-Ventral Polarity in the Drosophila Embryo: Genetic Studies on the Role of the Toll Gene Product. Cell 1985, 42, 779–789. [Google Scholar] [PubMed]
- Nüsslein-Volhard, C. The Toll Gene in Drosophila Pattern Formation. Trends Genet. 2022, 38, 231–245. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.V. Toll Signaling Pathways in the Innate Immune Response. Curr. Opin. Immunol. 2000, 12, 13–19. [Google Scholar] [PubMed]
- Kleve, C.D.; Siler, D.A.; Syed, S.K.; Eldon, E.D. Expression of 18-Wheeler in the Follicle Cell Epithelium Affects Cell Migration and Egg Morphology in Drosophila. Dev. Dyn. 2006, 235, 1953–1961. [Google Scholar]
- Kim, S.; Chung, S.; Yoon, J.; Choi, K.-W.; Yim, J. Ectopic Expression of Tollo/Toll-8 Antagonizes Dpp Signaling and Induces Cell Sorting in the Drosophila Wing. Genesis 2006, 44, 541–549. [Google Scholar]
- Kolesnikov, T.; Beckendorf, S.K. 18 Wheeler Regulates Apical Constriction of Salivary Gland Cells via the Rho-GTPase-Signaling Pathway. Dev. Biol. 2007, 307, 53–61. [Google Scholar]
- Yagi, Y.; Nishida, Y.; Ip, Y.T. Functional Analysis of Toll-Related Genes in Drosophila. Dev. Growth Differ. 2010, 52, 771–783. [Google Scholar] [CrossRef] [PubMed]
- Benton, M.A.; Pechmann, M.; Frey, N.; Stappert, D.; Conrads, K.H.; Chen, Y.T.; Stamataki, E.; Pavlopoulos, A.; Roth, S. Toll Genes Have an Ancestral Role in Axis Elongation. Curr. Biol. 2016, 26, 1609–1615. [Google Scholar] [CrossRef] [PubMed]
- Price, A.E.; Shamardani, K.; Lugo, K.A.; Deguine, J.; Roberts, A.W.; Lee, B.L.; Barton, G.M. A Map of Toll-like Receptor Expression in the Intestinal Epithelium Reveals Distinct Spatial, Cell Type-Specific, and Temporal Patterns. Immunity 2018, 49, 560–575.e6. [Google Scholar] [PubMed]
- McIlroy, G.; Foldi, I.; Aurikko, J.; Wentzell, J.S.; Lim, M.A.; Fenton, J.C.; Gay, N.J.; Hidalgo, A. Toll-6 and Toll-7 Function as Neurotrophin Receptors in the Drosophila Melanogaster CNS. Nat. Neurosci. 2013, 16, 1248–1256. [Google Scholar] [CrossRef]
- Ballard, S.L.; Miller, D.L.; Ganetzky, B. Retrograde Neurotrophin Signaling through Tollo Regulates Synaptic Growth In Drosophila. J. Cell Biol. 2014, 204, 1157–1172. [Google Scholar]
- Li, G.; Forero, M.G.; Wentzell, J.S.; Durmus, I.; Wolf, R.; Anthoney, N.C.; Parker, M.; Jiang, R.; Hasenauer, J.; Strausfeld, N.J.; et al. A Toll-Receptor Map Underlies Structural Brain Plasticity. eLife 2020, 9, e52743. [Google Scholar] [CrossRef]
- Kaul, D.; Habbel, P.; Derkow, K.; Krüger, C.; Franzoni, E.; Wulczyn, F.G.; Bereswill, S.; Nitsch, R.; Schott, E.; Veh, R.; et al. Expression of Toll-like Receptors in the Developing Brain. PLoS ONE 2012, 7, e37767. [Google Scholar] [CrossRef]
- Okun, E.; Griffioen, K.J.; Mattson, M.P. Toll-like Receptor Signaling in Neural Plasticity and Disease. Trends Neurosci. 2011, 34, 269–281. [Google Scholar]
- Carvalho, L.; Jacinto, A.; Matova, N. The Toll/NF-KappaB Signaling Pathway Is Required for Epidermal Wound Repair in Drosophila. Proc. Natl. Acad. Sci. USA 2014, 111, E5373–E5382. [Google Scholar]
- Capilla, A.; Karachentsev, D.; Patterson, R.A.; Hermann, A.; Juarez, M.T.; McGinnis, W. Toll Pathway Is Required for Wound-Induced Expression of Barrier Repair Genes in the Drosophila Epidermis. Proc. Natl. Acad. Sci. USA 2017, 114, E2682–E2688. [Google Scholar] [CrossRef]
- Meyer, S.N.; Amoyel, M.; Bergantinos, C.; de la Cova, C.; Schertel, C.; Basler, K.; Johnston, L.A. An Ancient Defense System Eliminates Unfit Cells from Developing Tissues during Cell Competition. Science 2014, 346, 1258236. [Google Scholar] [CrossRef] [PubMed]
- Tamada, M.; Shi, J.; Bourdot, K.S.; Supriyatno, S.; Palmquist, K.H.; Gutierrez-Ruiz, O.L.; Zallen, J.A. Toll Receptors Remodel Epithelia by Directing Planar-Polarized Src and PI3K Activity. Dev. Cell 2021, 56, 1589–1602.e9. [Google Scholar] [CrossRef] [PubMed]
- Wymann, M.P.; Pirola, L. Structure and Function of Phosphoinositide 3-Kinases. Biochim. Biophys. Acta 1998, 1436, 127–150. [Google Scholar] [CrossRef] [PubMed]
- Ridley, A.J. Rho Family Proteins: Coordinating Cell Responses. Trends Cell Biol. 2001, 11, 471–477. [Google Scholar]
- Campa, C.C.; Ciraolo, E.; Ghigo, A.; Germena, G.; Hirsch, E. Crossroads of PI3K and Rac Pathways. Small GTPases 2015, 6, 71–80. [Google Scholar] [CrossRef]
- Kerridge, S.; Munjal, A.; Philippe, J.M.; Jha, A.; De Las Bayonas, A.G.; Saurin, A.J.; Lecuit, T. Modular Activation of Rho1 by GPCR Signalling Imparts Polarized Myosin II Activation during Morphogenesis. Nat. Cell Biol. 2016, 18, 261–270. [Google Scholar] [CrossRef]
- Dahmann, C.; Oates, A.C.; Brand, M. Boundary Formation and Maintenance in Tissue Development. Nat. Rev. Genet. 2011, 12, 43–55. [Google Scholar] [CrossRef]
- Monier, B.; Pélissier-Monier, A.; Sanson, B. Establishment and Maintenance of Compartmental Boundaries: Role of Contractile Actomyosin Barriers. Cell. Mol. Life Sci. 2011, 68, 1897–1910. [Google Scholar]
- Pujades, C. The Multiple Functions of Hindbrain Boundary Cells: Tinkering Boundaries? Semin. Cell Dev. Biol. 2020, 107, 179–189. [Google Scholar]
- Garcia-Bellido, A.; Ripoll, P.; Morata, G. Developmental Compartmentalisation of the Wing Disk of Drosophila. Nat. New Biol. 1973, 245, 251–253. [Google Scholar] [CrossRef]
- Lawrence, P.A. A Clonal Analysis of Segment Development in Oncopeltus (Hemiptera). J. Embryol. Exp. Morphol. 1973, 30, 681–699. [Google Scholar] [CrossRef]
- Crick, F.H.; Lawrence, P.A. Compartments and Polyclones in Insect Development. Science 1975, 189, 340–347. [Google Scholar] [CrossRef]
- Fraser, S.; Keynes, R.; Lumsden, A. Segmentation in the Chick Embryo Hindbrain Is Defined by Cell Lineage Restrictions. Nature 1990, 344, 431–435. [Google Scholar] [CrossRef]
- Zeltser, L.M.; Larsen, C.W.; Lumsden, A. A New Developmental Compartment in the Forebrain Regulated by Lunatic Fringe. Nat. Neurosci. 2001, 4, 683–684. [Google Scholar] [CrossRef]
- Zervas, M.; Millet, S.; Ahn, S.; Joyner, A.L. Cell Behaviors and Genetic Lineages of the Mesencephalon and Rhombomere 1. Neuron 2004, 43, 345–357. [Google Scholar] [CrossRef] [PubMed]
- Langenberg, T.; Brand, M. Lineage Restriction Maintains a Stable Organizer Cell Population at the Zebrafish Midbrain-Hindbrain Boundary. Development 2005, 132, 3209–3216. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Guri, E.; Udina, F.; Colas, J.-F.; Sharpe, J.; Padrón-Barthe, L.; Torres, M.; Pujades, C. Clonal Analysis in Mice Underlines the Importance of Rhombomeric Boundaries in Cell Movement Restriction during Hindbrain Segmentation. PLoS ONE 2010, 5, e10112. [Google Scholar] [CrossRef]
- Kulesa, P.M.; Fraser, S.E. Cell Dynamics during Somite Boundary Formation Revealed by Time-Lapse Analysis. Science 2002, 298, 991–995. [Google Scholar] [CrossRef]
- Altabef, M.; Clarke, J.D.; Tickle, C. Dorso-Ventral Ectodermal Compartments and Origin of Apical Ectodermal Ridge in Developing Chick Limb. Development 1997, 124, 4547–4556. [Google Scholar] [CrossRef]
- Arques, C.G.; Doohan, R.; Sharpe, J.; Torres, M. Cell Tracing Reveals a Dorsoventral Lineage Restriction Plane in the Mouse Limb Bud Mesenchyme. Development 2007, 134, 3713–3722. [Google Scholar]
- Pearse, R.V., 2nd; Scherz, P.J.; Campbell, J.K.; Tabin, C.J. A Cellular Lineage Analysis of the Chick Limb Bud. Dev. Biol. 2007, 310, 388–400. [Google Scholar] [CrossRef]
- Qiu, Q.; Chen, H.; Johnson, R.L. Lmx1b-Expressing Cells in the Mouse Limb Bud Define a Dorsal Mesenchymal Lineage Compartment. Genesis 2009, 47, 224–233. [Google Scholar] [CrossRef]
- Smith, D.M.; Tabin, C.J. Clonally Related Cells Are Restricted to Organ Boundaries Early in the Development of the Chicken Gut to Form Compartment Boundaries. Dev. Biol. 2000, 227, 422–431. [Google Scholar] [CrossRef]
- Pérez-Pomares, J.M.; Foty, R.A. Tissue Fusion and Cell Sorting in Embryonic Development and Disease: Biomedical Implications. Bioessays 2006, 28, 809–821. [Google Scholar]
- Batlle, E.; Wilkinson, D.G. Molecular Mechanisms of Cell Segregation and Boundary Formation in Development and Tumorigenesis. Cold Spring Harb. Perspect. Biol. 2012, 4, a008227. [Google Scholar] [CrossRef]
- Twigg, S.R.F.; Kan, R.; Babbs, C.; Bochukova, E.G.; Robertson, S.P.; Wall, S.A.; Morriss-Kay, G.M.; Wilkie, A.O.M. Mutations of Ephrin-B1 (EFNB1), a Marker of Tissue Boundary Formation, Cause Craniofrontonasal Syndrome. Proc. Natl. Acad. Sci. USA 2004, 101, 8652. [Google Scholar] [CrossRef]
- Scarpa, E.; Finet, C.; Blanchard, G.B.; Sanson, B. Actomyosin-Driven Tension at Compartmental Boundaries Orients Cell Division Independently of Cell Geometry In Vivo. Dev. Cell 2018, 47, 727–740.e6. [Google Scholar] [CrossRef]
- del Álamo, D.; Rouault, H.; Schweisguth, F. Mechanism and Significance of Cis-Inhibition in Notch Signalling. Curr. Biol. 2011, 21, R40–R47. [Google Scholar] [CrossRef]
- Yang, C.H.; Axelrod, J.D.; Simon, M.A. Regulation of Frizzled by Fat-like Cadherins during Planar Polarity Signaling in the Drosophila Compound Eye. Cell 2002, 108, 675–688. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Kerr, M.; Freeman, M. Modulation of Drosophila Retinal Epithelial Integrity by the Adhesion Proteins Capricious and Tartan. PLoS ONE 2008, 3, e1827. [Google Scholar] [CrossRef]
- Milán, M.; Pérez, L.; Cohen, S.M. Boundary Formation in the Drosophila Wing: Functional Dissection of Capricious and Tartan. Dev. Dyn. 2005, 233, 804–810. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, K.T.; Kojima, T.; Aigaki, T.; Hayashi, S. Differential Control of Cell Affinity Required for Progression and Refinement of Cell Boundary during Drosophila Leg Segmentation. Dev. Biol. 2007, 309, 126–136. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Krause, C.; Wolf, C.; Hemphälä, J.; Samakovlis, C.; Schuh, R. Distinct Functions of the Leucine-Rich Repeat Transmembrane Proteins Capricious and Tartan in the Drosophila Tracheal Morphogenesis. Dev. Biol. 2006, 296, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Tucker, R.P. Teneurins: Domain Architecture, Evolutionary Origins, and Patterns of Expression. Front. Neurosci. 2018, 12, 938. [Google Scholar] [CrossRef]
- Cheung, A.; Schachermayer, G.; Biehler, A.; Wallis, A.; Missaire, M.; Hindges, R. Teneurin Paralogues Are Able to Localise Synaptic Sites Driven by the Intracellular Domain and Have the Potential to Form Cis-Heterodimers. Front. Neurosci. 2022, 16, 915149. [Google Scholar] [CrossRef]
- Hong, W.; Mosca, T.J.; Luo, L. Teneurins Instruct Synaptic Partner Matching in an Olfactory Map. Nature 2012, 484, 201–207. [Google Scholar] [CrossRef]
- Mosca, T.J.; Hong, W.; Dani, V.S.; Favaloro, V.; Luo, L. Trans-Synaptic Teneurin Signalling in Neuromuscular Synapse Organization and Target Choice. Nature 2012, 484, 237–241. [Google Scholar] [CrossRef]
- Mosca, T.J. On the Teneurin Track: A New Synaptic Organization Molecule Emerges. Front. Cell. Neurosci. 2015, 9, 204. [Google Scholar]
- Baumgartner, S.; Wides, R. Discovery of Teneurins. Front. Neurosci. 2019, 13, 230. [Google Scholar] [CrossRef]
- Leamey, C.A.; Merlin, S.; Lattouf, P.; Sawatari, A.; Zhou, X.; Demel, N.; Glendining, K.A.; Oohashi, T.; Sur, M.; Fässler, R. Ten_m3 Regulates Eye-Specific Patterning in the Mammalian Visual Pathway and Is Required for Binocular Vision. PLoS Biol. 2007, 5, e241. [Google Scholar] [CrossRef]
- Dharmaratne, N.; Glendining, K.A.; Young, T.R.; Tran, H.; Sawatari, A.; Leamey, C.A. Ten-M3 Is Required for the Development of Topography in the Ipsilateral Retinocollicular Pathway. PLoS ONE 2012, 7, e43083. [Google Scholar] [CrossRef]
- Antinucci, P.; Nikolaou, N.; Meyer, M.P.; Hindges, R. Teneurin-3 Specifies Morphological and Functional Connectivity of Retinal Ganglion Cells in the Vertebrate Visual System. Cell Rep. 2013, 5, 582–592. [Google Scholar] [CrossRef]
- Berns, D.S.; DeNardo, L.A.; Pederick, D.T.; Luo, L. Teneurin-3 Controls Topographic Circuit Assembly in the Hippocampus. Nature 2018, 554, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Nunes, S.M.; Ferralli, J.; Choi, K.; Brown-Luedi, M.; Minet, A.D.; Chiquet-Ehrismann, R. The Intracellular Domain of Teneurin-1 Interacts with MBD1 and CAP/Ponsin Resulting in Subcellular Codistribution and Translocation to the Nuclear Matrix. Exp. Cell Res. 2005, 305, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Keith, F.J.; Gay, N.J. The Drosophila Membrane Receptor Toll Can Function to Promote Cellular Adhesion. EMBO J. 1990, 9, 4299–4306. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.S.; Kim, S.E.; Heo, J.Y.; Lee, M.E.; Kim, H.M.; Paik, S.-G.; Lee, H.; Lee, J.-O. Crystal Structure of the TLR1-TLR2 Heterodimer Induced by Binding of a Tri-Acylated Lipopeptide. Cell 2007, 130, 1071–1082. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.Y.; Nan, X.; Jin, M.S.; Youn, S.-J.; Ryu, Y.H.; Mah, S.; Han, S.H.; Lee, H.; Paik, S.-G.; Lee, J.-O. Recognition of Lipopeptide Patterns by Toll-like Receptor 2-Toll-like Receptor 6 Heterodimer. Immunity 2009, 31, 873–884. [Google Scholar] [CrossRef]
- Bugga, L.; Ratnaparkhi, A.; Zinn, K. The Cell Surface Receptor Tartan Is a Potential in Vivo Substrate for the Receptor Tyrosine Phosphatase Ptp52F. Mol. Cell. Biol. 2009, 29, 3390–3400. [Google Scholar]
- Zarember, K.A.; Godowski, P.J. Tissue Expression of Human Toll-like Receptors and Differential Regulation of Toll-like Receptor MRNAs in Leukocytes in Response to Microbes, Their Products, and Cytokines. J. Immunol. 2002, 168, 554–561. [Google Scholar] [CrossRef]
- Huhta, H.; Helminen, O.; Kauppila, J.H.; Salo, T.; Porvari, K.; Saarnio, J.; Lehenkari, P.P.; Karttunen, T.J. The Expression of Toll-like Receptors in Normal Human and Murine Gastrointestinal Organs and the Effect of Microbiome and Cancer. J. Histochem. Cytochem. 2016, 64, 470–482. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuebler, C.A.; Paré, A.C. Striped Expression of Leucine-Rich Repeat Proteins Coordinates Cell Intercalation and Compartment Boundary Formation in the Early Drosophila Embryo. Symmetry 2023, 15, 1490. https://doi.org/10.3390/sym15081490
Kuebler CA, Paré AC. Striped Expression of Leucine-Rich Repeat Proteins Coordinates Cell Intercalation and Compartment Boundary Formation in the Early Drosophila Embryo. Symmetry. 2023; 15(8):1490. https://doi.org/10.3390/sym15081490
Chicago/Turabian StyleKuebler, Chloe A., and Adam C. Paré. 2023. "Striped Expression of Leucine-Rich Repeat Proteins Coordinates Cell Intercalation and Compartment Boundary Formation in the Early Drosophila Embryo" Symmetry 15, no. 8: 1490. https://doi.org/10.3390/sym15081490
APA StyleKuebler, C. A., & Paré, A. C. (2023). Striped Expression of Leucine-Rich Repeat Proteins Coordinates Cell Intercalation and Compartment Boundary Formation in the Early Drosophila Embryo. Symmetry, 15(8), 1490. https://doi.org/10.3390/sym15081490