Next Article in Journal
Dynamics in a Competitive Nicholson’s Blowflies Model with Continuous Time Delays
Next Article in Special Issue
Symbolic 4-Plithogenic Rings and 5-Plithogenic Rings
Previous Article in Journal
Analysis of the Recursive Locally-Adaptive Filtration of 3D Tensor Images
Previous Article in Special Issue
A Complete Breakdown of Politics Coverage Using the Concept of Domination and Double Domination in Picture Fuzzy Graph
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On Novel Results about the Algebraic Properties of Symbolic 3-Plithogenic and 4-Plithogenic Real Square Matrices

by
Hamiyet Merkepçi
Department of Mathematics, Gaziantep University, Gazinatep 27310, Turkey
Symmetry 2023, 15(8), 1494; https://doi.org/10.3390/sym15081494
Submission received: 20 June 2023 / Revised: 14 July 2023 / Accepted: 24 July 2023 / Published: 27 July 2023
(This article belongs to the Special Issue Symmetry in Algebra and Its Applications)

Abstract

:
Symbolic n-plithogenic sets are considered to be modern concepts that carry within their framework both an algebraic and logical structure. The concept of symbolic n-plithogenic algebraic rings is considered to be a novel generalization of classical algebraic rings with many symmetric properties. These structures can be written as linear combinations of many symmetric elements taken from other classical algebraic structures, where the square symbolic k-plithogenic real matrices are square matrices with real symbolic k-plithogenic entries. In this research, we will find easy-to-use algorithms for calculating the determinant of a symbolic 3-plithogenic/4-plithogenic matrix, and for finding its inverse based on its classical components, and even for diagonalizing matrices of these types. On the other hand, we will present a new algorithm for calculating the eigenvalues and eigenvectors associated with matrices of these types. Also, the exponent of symbolic 3-plithogenic and 4-plithogenic real matrices will be presented, with many examples to clarify the novelty of this work.

1. Introduction

Symbolic n-plithogenic sets were propounded by Smarandache in [1,2,3] to be a novel generalization of classical sets. These sets play a key role in the generalization of classical algebraic structures to new versions possessing several characteristic properties; in these we can see many symbolic n-plithogenic algebraic structures, such as symbolic 2-plithogenic structures [4,5,6,7,8], and symbolic 3-plithogenic algebraic structures [9,10,11]. For example, symbolic 2-plithogenic rings were used to generalize vector spaces and modules into symbolic 2-plithogenic spaces and modules. The same work was presented for symbolic 3-plithogenic rings [12,13]. Symbolic 2-plithogenic matrices were defined and studied in [14]; these matrices consist of symbolic 2-plithogenic real entries. These matrices are recognized as a similar structure of refined neutrosophic matrices and structures [15,16,17,18,19,20,21,22,23,24]. In matrix theory, it is very important to deal with the exponents of matrices and their related problems, such as how to diagonalize a matrix, and how to compute eigenvalues and eigenvectors.
From this point of view, we continue the previous efforts presented in order to further our understanding of the behavior of symbolic n-plithogenic matrices, and present some algorithms for computing inverses, eigen values and vectors, and the diagonalization of square matrices using symbolic 3-plithogenic entries; we also present some algorithms for computing inverses, eigen values and vectors, and the diagonalization of square matrices using symbolic 4-plithogenic entries.
Our study opens the door to many future applications of this type of matrices, especially those related to the problem of representation through linear transformations, or the representation of algebraic groups by matrices of this type.

2. Preliminaries

Definition 1.
The ring of symbolic of 3-plithogenic real numbers is defined as follows: 
3 S P R = x + y P 1 + z P 2 + t P 3 ;   P i × P j = P m a x i , j , P i 2 = P i
Addition on 3-SP_R is defined as follows:
x 0 + x 1 P 1 + x 2 P 2 + x 3 P 3 + y 0 + y 1 P 1 + y 2 P 2 + y 3 P 3 = x 0 + y 0 + x 1 + y 1 P 1 + x 2 + y 2 P 2 + x 3 + y 3 P 3
Multiplication on  3 S P R  is defined as follows:
[ x 0 + x 1 P 1 + x 2 P 2 +   x 3 P 3 ] y 0 + y 1 P 1 + y 2 P 2 + y 3 P 3 = x 0 y 0 + x 0 y 1 + x 1 y 0 + x 1 y 1 P 1 + x 0 y 2 + x 2 y 1 + x 2 y 2 + x 2 y 0 + x 1 y 2 P 2 + x 0 y 3 + x 1 y 3 + x 2 y 3 + x 3 y 3 + x 3 y 0 + x 3 y 1 + x 3 y 2 P 3
Remark 1.
If we Let  X = x 0 + x 1 P 1 + x 2 P 2 + x 3 P 3 3 S P R , we have the following:
X  is invertible if, and only if,  x 0 0 , x 0 + x 1 0 , x 0 + x 1 + x 2 0 , x 0 + x 1 + x 2 + x 3 0  , and  X 1 = 1 X = 1 x 0 + 1 x 0 + x 1 1 x 0 P 1 + 1 x 0 + x 1 + x 2 1 x 0 + x 1 P 2 + 1 x 0 + x 1 + x 2 + x 3 1 x 0 + x 1 + x 2 P 3
For  n N  ,  X n = x 0 n + x 0 + x 1 n x 0 n P 1 + x 0 + x 1 + x 2 n x 0 + x 1 n P 2 + x 0 + x 1 + x 2 + x 3 n x 0 + x 1 + x 2 n P 3 .
Definition 2.
The ring of symbolic of 4-plithogenic real numbers is defined as follows:
4 S P R = x + y P 1 + z P 2 + t P 3 + l P 4 ; P i × P j = P m a x i , j , P i 2 = P i
Addition on  4 S P R  is defined as follows:
x 0 + x 1 P 1 + x 2 P 2 + x 3 P 3 + x 4 P 4 + y 0 + y 1 P 1 + y 2 P 2 + y 3 P 3 + y 4 P 4 = x 0 + y 0 + x 1 + y 1 P 1 + x 2 + y 2 P 2 + x 3 + y 3 P 3 + x 4 + y 4 P 4
Multiplication on 4-SP_R is defined as follows:
x 0 + x 1 P 1 + x 2 P 2 + x 3 P 3 + x 4 P 4 y 0 + y 1 P 1 + y 2 P 2 + y 3 P 3 + y 4 P 4 = x 0 y 0 + x 0 y 1 + x 1 y 0 + x 1 y 1 P 1 + x 0 y 2 + x 2 y 1 + x 2 y 2 + x 2 y 0 + x 1 y 2 P 2 + x 0 y 3 + x 1 y 3 + x 2 y 3 + x 3 y 3 + x 3 y 0 + x 3 y 1 + x 3 y 2 P 3 + x 0 y 4 + x 1 y 4 + x 2 y 4 + x 3 y 4 + x 3 y 4 + x 4 y 0 + x 4 y 1 + x 4 y 2 + x 4 y 3 + x 4 y 4 P 4 .

3. Main Discussion

3.1. Symbolic 3-Plithogenic Matrices

Definition 3.
A square symbolic 3-plithogenic matrix is a matrix with symbolic 3-plithogenic entries.
Example 1.
A = 4 + P 1 + P 2 2 P 3 1 + P 3 3 P 1 + 5 P 3 5 P 1 + P 2 2 P 1 7 P 1 + 4 P 2 P 3 6 P 2 + 4 P 3 5 + 11 P 2 + P 3 P 1 + P 3
 is a symbolic 3-plithogenic  3 × 3 real matrix.
Remark 2.
Any symbolic 3-plithogenic matrix can be written as follows:   A = A 0 + A 1 P 1 + A 2 P 2 + A 3 P 3 .
For example, the matrix defined in the previous example can be written as follows: 
A = 4 1 3 5 2 0 0 5 0 + 1 0 1 1 1 7 0 0 1 P 1 + 1 0 0 1 0 4 6 11 0 P 2 + 2 1 5 0 0 1 4 1 1 P 3
We denote the set of all symbolic 3-plithogenic n-square matrices by  3 S P M .
It is clear that  3 S P M , + , .  Is a ring.
Theorem 1.
Let  S = S 0 + S 1 P 1 + S 2 P 2 + S 3 P 3 3 S P M then the following is true: 
1. 
S  is invertible if, and only if,  S 0 , S 0 + S 1 , S 0 + S 1 + S 2 , S 0 + S 1 + S 2 + S 3  are invertible.
2. 
S 1 = S 0 1 + S 0 + S 1 1 S 0 1 P 1 + S 0 + S 1 + S 2 1 S 0 + S 1 1 P 2 + S 0 + S 1 + S 2 + S 3 1 S 0 + S 1 + S 2 1 P 3
3. 
For  n N , S n = S 0 n + S 0 + S 1 n S 0 n P 1 + S 0 + S 1 + S 2 n S 0 + S 1 n P 2 + S 0 + S 1 + S 2 + S 3 n S 0 + S 1 + S 2 n P 3
4. 
e S = e S 0 + e S 0 + S 1 e S 0 P 1 + e S 0 + S 1 + S 2 e S 0 + S 1 P 2 + e S 0 + S 1 + S 2 + S 3 e S 0 + S 1 + S 2 P 3 .
Proof of Theorem 1.
(1,2). Assume that S 0 , S 0 + S 1 , S 0 + S 1 + S 2 , S 0 + S 1 + S 2 + S 3 are invertible. We have the following:
K = S 0 1 + S 0 + S 1 1 S 0 1 P 1 + S 0 + S 1 + S 2 1 S 0 + S 1 1 P 2 + S 0 + S 1 + S 2 + S 3 1 S 0 + S 1 + S 2 1 P 3
Let us compute the following:
S K = S 0 S 0 1 + S 0 S 0 + S 1 1 S 0 S 0 1 + S 1 S 0 1 + S 1 S 0 + S 1 1 S 1 S 0 1 P 1 + [ S 0 S 0 + S 1 + S 2 1 S 0 S 0 + S 1 1 + S 1 S 0 + S 1 + S 2 1 S 1 S 0 + S 1 1 + S 2 S 0 + S 1 + S 2 1 S 2 S 0 + S 1 1 + S 2 S 0 1 + S 2 S 0 + S 1 1 S 2 S 0 1 ] P 2 +
[ S 0 ( S 0 + S 1 + S 2 + S 3 ) 1 S 0 S 0 + S 1 + S 2 1 + S 1 S 0 + S 1 + S 2 + S 3 1 S 1 S 0 + S 1 + S 2 1 + S 2 S 0 + S 1 + S 2 + S 3 1 S 2 S 0 + S 1 + S 2 1 + S 3 S 0 + S 1 + S 2 + S 3 1 S 3 S 0 + S 1 + S 2 1 + S 3 S 0 1 + S 3 S 0 + S 1 1 S 3 S 0 1 + S 3 S 0 + S 1 + S 2 + S 3 1 S 3 S 0 + S 1 1 ] P 3 = U n × n + O n × n P 1 + O n × n P 2 + O n × n P 3 = U n × n
Thus, S is invertible and S 1 = K .
For the converse, if we suppose that S is invertible, then there exists K = K 0 + K 1 P 1 + K 2 P 2 + K 3 P 3 3 S P M such that S × K = U n × n . This is equivalent to the following:
S 0 K 0 = U n × n 1 S 0 K 1 + S 1 K 0 + S 1 K 1 = O n × n 2 S 0 K 2 + S 1 K 2 + S 2 K 2 + S 2 K 1 + S 2 K 0 = O n × n 3 S 0 K 3 + S 1 K 3 + S 2 K 3 + S 3 K 3 + S 3 K 0 + S 3 K 1 + S 3 K 2 = O n × n       4
Equation 1 implies that S 0 is invertible and S 0 1 = K 0 .
By adding 1 to 2 , we obtain S 0 + S 1 K 0 + K 1 = U n × n , so that S 0 + S 1 is invertible and S 0 + S 1 1 = K 0 + K 1 , hence K 1 = S 0 + S 1 1 S 0 1 .
By adding 1 to 2 to 3 , we obtain S 0 + S 1 + S 2 K 0 + K 1 + K 2 = U n × n , so that S 0 + S 1 + S 2 is invertible and S 0 + S 1 + S 2 1 = K 0 + K 1 + K 2 , hence K 2 = S 0 + S 1 + S 2 1 S 0 + S 1 1 .
By adding 1 to 2 to 3 to 4 , we obtain S 0 + S 1 + S 2 + S 3 K 0 + K 1 + K 2 + K 3 = U n × n , so that S 0 + S 1 + S 2 + S 3 is invertible and S 0 + S 1 + S 2 + S 3 1 = K 0 + K 1 + K 2 + K 3 , hence K 3 = S 0 + S 1 + S 2 + S 3 1 S 0 + S 1 + S 2 1 .
(3). For n = 1 , it holds directly. We suppose that it is true. For n = k , we must prove it for k + 1 .
S k + 1 = S S k = S 0 S 0 k + S 0 S 0 + S 1 k S 0 S 0 k + S 1 S 0 k + S 1 S 0 + S 1 k S 1 S 0 k P 1 + [ S 0 S 0 + S 1 + S 2 k S 0 S 0 + S 1 k + S 1 S 0 + S 1 + S 2 k S 1 S 0 + S 1 k + S 2 S 0 + S 1 + S 2 k S 2 S 0 + S 1 k + S 2 S 0 k + S 2 S 0 + S 1 k S 2 S 0 k ] P 2 + [ S 0 S 0 + S 1 + S 2 + S 3 k S 0 S 0 + S 1 + S 2 k + S 1 S 0 + S 1 + S 2 + S 3 k S 1 S 0 + S 1 + S 2 k + S 2 S 0 + S 1 + S 2 + S 3 k S 2 S 0 + S 1 + S 2 k + S 3 S 0 + S 1 + S 2 + S 3 k S 3 S 0 + S 1 + S 2 k + S 3 S 0 k + S 3 S 0 + S 1 k S 3 S 0 k + S 3 S 0 + S 1 + S 2 + S 3 k S 3 S 0 + S 1 k ] P 3 = S 0 k + 1 + S 0 + S 1 S 0 + S 1 k S 0 S 0 k P 1 + S 0 + S 1 + S 2 S 0 + S 1 + S 2 k S 0 + S 1 S 0 + S 1 k P 2 + S 0 + S 1 + S 2 + S 3 S 0 + S 1 + S 2 + S 3 k S 0 + S 1 + S 2 S 0 + S 1 + S 2 k P 3 = S 0 k + 1 + S 0 + S 1 k + 1 S 0 S 0 k + 1 P 1 + S 0 + S 1 + S 2 k + 1 S 0 + S 1 k + 1 P 2 + S 0 + S 1 + S 2 + S 3 k + 1 S 0 + S 1 + S 2 k + 1 P 3
Therefore, the proof holds via induction.
(4). e S = n = 0 S n n ! = n = 0 S 0 n n ! + n = 0 S 0 + S 1 n n ! n = 0 S 0 n n ! P 1 + [ n = 0 S 0 + S 1 + S 2 n n ! n = 0 S 0 + S 1 n n ! ] P 2 + n = 0 S 0 + S 1 + S 2 + S 3 n n ! n = 0 S 0 + S 1 + S 2 n n ! P 3 = e S 0 + e S 0 + S 1 e S 0 P 1 + e S 0 + S 1 + S 2 e S 0 + S 1 P 2 + e S 0 + S 1 + S 2 + S 3 e S 0 + S 1 + S 2 P 3 .  □
Definition 4.
Let  S = S 0 + S 1 P 1 + S 2 P 2 + S 3 P 3 3 S P M , then we define the following:
det S = det S 0 + det S 0 + S 1 det S 0 P 1 + det S 0 + S 1 + S 2 det S 0 + S 1 P 2 + [ det S 0 + S 1 + S 2 + S 3 det S 0 + S 1 + S 2 ] P 3
Theorem 2.
S  is invertible if, and only if,  det S  is invertible in  3 S P R .
The proof holds via a similar discussion of the 2-plithogenic case.
Example 2.
Consider the following matrix:
S = 1 + P 1 + P 2 + P 3 5 + P 1 2 P 2 1 + 4 P 1 P 2 + 3 P 3 P 1 + P 3 = 1 5 1 0 + 1 1 4 1 P 1 + 1 2 1 0 P 2 + 1 0 3 1 P 3
We have  det S 0 = 5  ,  det S 0 + S 1 = d e t 2 6 5 1 = 28  ,  det S 0 + S 1 + S 2 = d e t 3 4 4 1 = 13  ,  det S 0 + S 1 + S 2 + S 3 = d e t 4 4 7 2 = 20 .
Hence,
det S = 5 + 28 + 5 P 1 + 13 + 28 P 2 + 20 + 13 P 3 = 5 23 P 1 + 15 P 2 7 P 3
Since  det S  is invertible, then  S  is invertible.
S 0 1 = 1 5 0 5 1 1 = 0 1 1 5 1 5
S 0 + S 1 1 = 1 28 1 6 5 2 = 1 28 6 28 5 28 2 28
S 0 + S 1 + S 2 1 = 1 13 1 4 4 3 = 1 13 4 13 4 13 3 13
S 0 + S 1 + S 2 + S 3 1 = 1 20 2 4 7 4 = 2 20 4 20 7 20 4 20
S 1 = S 0 1 + S 0 + S 1 1 S 0 1 P 1 + S 0 + S 1 + S 2 1 S 0 + S 1 1 P 2 + S 0 + S 1 + S 2 + S 3 1 S 0 + S 1 + S 2 1 P 3
S 1 = 0 1 1 5 1 5 + 1 28 22 28 3 28 18 28 P 1 + 15 364 34 364 47 364 58 364 P 2 + 6 260 28 260 11 260 8 260 P 3 = 1 28 P 1 15 364 P 2 6 260 P 3 1 22 28 P 1 + 34 364 P 2 28 260 P 3 1 5 3 28 P 1 + 47 364 P 2 + 11 260 P 3 1 5 + 18 28 P 1 + 58 364 P 2 + 8 260 P 3

3.2. Symbolic 3-Plithogenic Eigen Values/Vectors

Theorem 3.
Let  S = S 0 + S 1 P 1 + S 2 P 2 + S 3 P 3 3 S P M , then  A = a 0 + a 1 P 1 + a 2 P 2 + a 3 P 3  is an eigen value of  S  if, and only if,  a 0  eigen value of  S 0  ,  a 0 + a 1  eigen value of  S 0 + S 1  ,  a 0 + a 1 + a 2  eigen value of  S 0 + S 1 + S 2  ,  a 0 + a 1 + a 2 + a 3  eigen value of  S 0 + S 1 + S 2 + S 3 .
In addition,  X = X 0 + X 1 P 1 + X 2 P 2 + X 3 P 3  is the corresponding eigen vector of  A  if, and only if,  X 0  eigen vector of  a 0  ,  X 0 + X 1  eigen vector of  a 0 + a 1  ,  X 0 + X 1 + X 2  eigen vector of  a 0 + a 1 + a 2  ,  X 0 + X 1 + X 2 + X 3  eigen vector of  a 0 + a 1 + a 2 + a 3 .
Proof of Theorem 3.
From the equation A S = A X , we can obtain:
a 0 S 0 = a 0 X 0 5 a 0 S 1 + a 1 S 0 + a 1 S 1 = a 0 X 1 + a 1 X 0 + a 1 X 1 6 a 0 S 2 + a 1 S 2 + a 2 S 2 + a 2 S 1 + a 2 S 0 = a 0 X 2 + a 1 X 2 + a 2 X 2 + a 2 X 1 + a 2 X 0 7 a 0 S 3 + a 1 S 3 + a 2 S 3 + a 3 S 3 + a 3 S 0 + a 3 S 1 + a 3 S 2 = a 0 X 3 + a 1 X 3 + a 2 X 3 + a 3 X 3 + a 3 X 0 + a 3 X 1 + a 3 X 2       8
Equation 5 implies that a 0 is the eigen value of S 0 , with X 0 as the eigen vector.
By adding 5 to 6 , we obtain a 0 + a 1 S 0 + S 1 = a 0 + a 1 X 0 + X 1 , which means that a 0 + a 1 is the eigen value of S 0 + S 1 , with X 0 + X 1 as the eigen vector.
By adding 5 to 6 to 7 , we obtain a 0 + a 1 + a 2 S 0 + S 1 + S 2 = a 0 + a 1 + a 2 X 0 + X 1 + X 2 , which means that a 0 + a 1 + a 2 is the eigen value of S 0 + S 1 + S 2 , with X 0 + X 1 + X 2 as the eigen vector.
By adding 5 to 6 to 7 to 8 , we obtain a 0 + a 1 + a 2 + a 3 S 0 + S 1 + S 2 + S 3 = a 0 + a 1 + a 2 + a 3 X 0 + X 1 + X 2 + X 3 , which means that a 0 + a 1 + a 2 + a 3 is the eigen value of S 0 + S 1 + S 2 + S 3 , with X 0 + X 1 + X 2 + X 3 as the eigen vector.
Therefore, the proof is complete. □
Example 3.
Consider the following matrix:
S = 3 + 2 P 1 P 3 4 + P 2 3 P 3 2 P 1 + P 2 + P 3 5 + P 1 = 3 4 0 5 + 2 0 2 1 P 1 + 0 1 1 0 P 2 + 1 3 1 0 P 3 = A 0 + A 1 P 1 + A 2 P 2 + A 3 P 3
The eigen values of  A 0 = 3 4 0 5  are  3,5 .
The eigen values of  A 0 + A 1 = 2 0 2 1  are  11 + 33 2 , 11 33 2 .
The eigen values of  A 0 + A 1 + A 2 = 0 1 1 0  are  11 + 61 2 , 11 61 2 .
The eigen values of  A 0 + A 1 + A 2 + A 3 = 1 3 1 0  are  8,2 .
The eigen values of the symbolic 3-plithogenic matrix  A  are as follows: 
U 1 = 3 + 11 + 33 2 3 P 1 + 11 + 61 2 11 + 33 2 P 2 + 8 11 + 61 2 P 3
U 2 = 3 + 11 + 33 2 3 P 1 + 11 + 61 2 11 + 33 2 P 2 + 2 11 + 61 2 P 3
U 3 = 3 + 11 + 33 2 3 P 1 + 11 61 2 11 + 33 2 P 2 + 8 11 + 61 2 P 3
U 4 = 3 + 11 + 33 2 3 P 1 + 11 61 2 11 + 33 2 P 2 + 2 11 + 61 2 P 3
U 5 = 3 + 11 33 2 3 P 1 + 11 + 61 2 11 33 2 P 2 + 8 11 + 61 2 P 3
U 6 = 3 + 11 33 2 3 P 1 + 11 61 2 11 33 2 P 2 + 2 11 61 2 P 3
U 7 = 3 + 11 33 2 3 P 1 + 11 61 2 11 33 2 P 2 + 8 11 61 2 P 3
U 8 = 3 + 11 33 2 3 P 1 + 11 + 61 2 11 33 2 P 2 + 2 11 61 2 P 3
U 9 = 5 + 11 + 33 2 5 P 1 + 11 + 61 2 11 + 33 2 P 2 + 8 11 + 61 2 P 3
U 10 = 5 + 11 + 33 2 5 P 1 + 11 + 61 2 11 + 33 2 P 2 + 2 11 + 61 2 P 3
U 11 = 5 + 11 + 33 2 5 P 1 + 11 61 2 11 + 33 2 P 2 + 8 11 61 2 P 3
U 12 = 5 + 11 + 33 2 5 P 1 + 11 61 2 11 + 33 2 P 2 + 2 11 61 2 P 3
U 13 = 5 + 11 33 2 5 P 1 + 11 + 61 2 11 33 2 P 2 + 8 11 + 61 2 P 3
U 14 = 5 + 11 33 2 5 P 1 + 11 + 61 2 11 33 2 P 2 + 2 11 + 61 2 P 3
U 15 = 5 + 11 33 2 5 P 1 + 11 61 2 11 33 2 P 2 + 8 11 61 2 P 3
U 16 = 5 + 11 33 2 5 P 1 + 11 + 61 2 11 33 2 P 2 + 2 11 61 2 P 3
Remark 3.
If  A  has  n  eigen values for  0 i s , then  A  has  n 4  eigen values.

3.3. Symbolic 3-Plithogenic Diagonalization

Theorem 4.
Let  T = T 0 + T 1 P 1 + T 2 P 2 + T 3 P 3  be an n-square symbolic 3-plithogenic matrix, then  T  is diagonalizable if, and only if,  T 0 , T 0 + T 1 , T 0 + T 1 + T 2 , T 0 + T 1 + T 2 + T 3  are diagonalizable.
Proof of Theorem 4.
T are diagonalizable if, and only if, there exists L = L 0 + L 1 P 1 + L 2 P 2 + L 3 P 3 and D = D 0 + D 1 P 1 + D 2 P 2 + D 3 P 3 such that T = L 1 D L , where D is diagonal and L is invertible.
The equation T = L 1 D L is equivalent to the following:
T 0 = L 0 1 D 0 L 0 T 0 + T 1 = L 0 + L 1 1 D 0 + D 1 L 0 + L 1 T 0 + T 1 + T 2 = L 0 + L 1 + L 2 1 D 0 + D 1 + D 2 L 0 + L 1 + L 2 T 0 + T 1 + T 2 + T 3 = L 0 + L 1 + L 2 + L 3 1 D 0 + D 1 + D 2 + D 3 L 0 + L 1 + L 2 + L 3
Which implies the proof. □
Example 4.
Consider the following matrix:
T = 2 + P 1 + P 2 + 2 P 3 P 1 + P 2 3 + P 3 1 + 3 P 2 + P 3 = 2 0 3 1 + 1 1 0 0 P 1 + 1 1 0 3 P 2 + 2 0 1 1 P 3 = T 0 + T 1 P 1 + T 2 P 2 + T 3 P 3
T 0 = 2 0 3 1 = L 0 D 0 L 0 1 = 1 0 1 1 2 0 0 1 1 1 0 0 1
T 0 + T 1 = 3 1 3 1 = M 1 K 1 M 1 1 = 1 1 2 + 7 2 7 1 + 7 0 0 1 7 1 1 2 + 7 2 7 1
T 0 + T 1 + T 2 = 4 2 3 2 = M 2 K 2 M 2 1 = 1 1 1 + 7 2 1 7 2 3 + 7 0 0 3 7 1 1 1 + 7 2 1 7 2 1
T 0 + T 1 + T 2 + T 3 = 6 2 4 3 = M 3 K 3 M 3 1 = 1 1 3 + 41 4 3 41 4 9 + 41 4 0 0 9 41 4 1 1 3 + 41 4 3 41 4 1
So that  L 1 = M 1 L 0 , L 2 = M 2 M 1 , L 3 = M 3 M 2 , D 1 = K 1 D 0 , D 2 = K 2 K 1 , D 3 = K 3 K 2 .

3.4. Symbolic 4-Plithogenic Matrices

Definition 5.
A square symbolic 4-plithogenic matrix is a matrix with symbolic 4-plithogenic entries.
Example 5.
A = 4 + P 1 + P 2 2 P 3 + 4 P 4 1 + P 3 + 2 P 4 3 P 1 + 5 P 3 + 4 P 4 5 P 1 + P 2 + 3 P 4 2 P 1 + 11 P 4 7 P 1 + 4 P 2 P 3 + 6 P 4 6 P 2 + 4 P 3 + 2 P 4 5 + 11 P 2 + P 3 + 11 P 4 P 1 + P 3 + 3 P 4
 is a symbolic 4-plithogenic  3 × 3  real matrix.
Remark 4.
Any symbolic 4-plithogenic matrix can be written as follows:  A = A 0 + A 1 P 1 + A 2 P 2 + A 3 P 3 + A 4 P 4 .
For example, the matrix defined in the previous example can be written as follows: 
A = 4 1 3 5 2 0 0 5 0 + 1 0 1 1 1 7 0 0 1 P 1 + 1 0 0 1 0 4 6 11 0 P 2 + 2 1 5 0 0 1 4 1 1 P 3 + 4 2 4 3 11 6 2 11 3 P 4
Definition 6.
Let  S = S 0 + S 1 P 1 + S 2 P 2 + S 3 P 3 + S 4 P 4 , T = T 0 + T 1 P 1 + T 2 P 2 + T 3 P 3 + T 4 P 4  be two n-square symbolic 4-plithogenic matrices, then the following is true: 
S + T = S 0 + T 0 + S 1 + T 1 P 1 + S 2 + T 2 P 2 + S 3 + T 3 P 3 + S 4 + T 4 P 4
S × T = S 0 T 0 + S 0 T 1 + S 1 T 0 + S 1 T 1 P 1 + S 0 T 2 + S 2 T 1 + S 2 T 2 + S 2 T 0 + S 1 T 2 P 2 + S 0 T 3 + S 1 T 3 + S 2 T 3 + S 3 T 3 + S 3 T 0 + S 3 T 1 + S 3 T 2 P 3 + S 0 T 4 + S 1 T 4 + S 2 T 4 + S 3 T 4 + S 4 T 0 + S 4 T 1 + S 4 T 2 + S 4 T 3 + S 4 T 4 P 4
We denote the set of all symbolic 4-plithogenic n-square matrices using  4 S P M .
It is clear that 4 S P M , + , . . Is a ring.
Theorem 5.
Let  S = S 0 + S 1 P 1 + S 2 P 2 + S 3 P 3 + S 4 P 4 4 S P M  , then: 
1. 
S  is invertible if, and only if,  S 0 , S 0 + S 1 , S 0 + S 1 + S 2 , S 0 + S 1 + S 2 + S 3 , S 0 + S 1 + S 2 + S 3 + S 4  are invertible.
2. 
S 1 = S 0 1 + S 0 + S 1 1 S 0 1 P 1 + S 0 + S 1 + S 2 1 S 0 + S 1 1 P 2 + S 0 + S 1 + S 2 + S 3 1 S 0 + S 1 + S 2 1 P 3 + S 0 + S 1 + S 2 + S 3 + S 4 1 S 0 + S 1 + S 2 + S 3 1 P 4
3. 
For  n N
4. 
S n = S 0 n + S 0 + S 1 n S 0 n P 1 + S 0 + S 1 + S 2 n S 0 + S 1 n P 2 + S 0 + S 1 + S 2 + S 3 n S 0 + S 1 + S 2 n P 3 + S 0 + S 1 + S 2 + S 3 + S 4 n S 0 + S 1 + S 2 + S 3 n P 4 .
5. 
e S = e S 0 + e S 0 + S 1 e S 0 P 1 + e S 0 + S 1 + S 2 e S 0 + S 1 P 2 + e S 0 + S 1 + S 2 + S 3 e S 0 + S 1 + S 2 P 3 + e S 0 + S 1 + S 2 + S 3 + S 4 e S 0 + S 1 + S 2 + S 3 P 4
Proof of Theorem 5.
(1,2). Assume that S 0 , S 0 + S 1 , S 0 + S 1 + S 2 , S 0 + S 1 + S 2 + S 3 , S 0 + S 1 + S 2 + S 3 + S 4 are invertible. We have the following:
K = S 0 1 + S 0 + S 1 1 S 0 1 P 1 + S 0 + S 1 + S 2 1 S 0 + S 1 1 P 2 + [ S 0 + S 1 + S 2 + S 3 1 S 0 + S 1 + S 2 1 ] P 3 + S 0 + S 1 + S 2 + S 3 + S 4 1 S 0 + S 1 + S 2 + S 3 1 P 4 ,
Let us compute the following:
S K = S 0 S 0 1 + S 0 S 0 + S 1 1 S 0 S 0 1 + S 1 S 0 1 + S 1 S 0 + S 1 1 S 1 S 0 1 P 1 + [ S 0 S 0 + S 1 + S 2 1 S 0 S 0 + S 1 1 + S 1 S 0 + S 1 + S 2 1 S 1 S 0 + S 1 1 + S 2 S 0 + S 1 + S 2 1 S 2 S 0 + S 1 1 + S 2 S 0 1 + S 2 S 0 + S 1 1 S 2 S 0 1 ] P 2 +
[ S 0 ( S 0 + S 1 + S 2 + S 3 ) 1 S 0 S 0 + S 1 + S 2 1 + S 1 S 0 + S 1 + S 2 + S 3 1 S 1 S 0 + S 1 + S 2 1 + S 2 S 0 + S 1 + S 2 + S 3 1 S 2 S 0 + S 1 + S 2 1 + S 3 S 0 + S 1 + S 2 + S 3 1 S 3 S 0 + S 1 + S 2 1 + S 3 S 0 1 + S 3 S 0 + S 1 1 S 3 S 0 1 + S 3 S 0 + S 1 + S 2 + S 3 1 S 3 S 0 + S 1 1 ] P 3 +
[ S 0 ( S 0 + S 1 + S 2 + S 3 + S 4 ) 1 S 0 S 0 + S 1 + S 2 + S 3 1 + S 1 S 0 + S 1 + S 2 + S 3 + S 4 1 S 1 S 0 + S 1 + S 2 + S 3 1 + S 2 S 0 + S 1 + S 2 + S 3 + S 4 1 S 2 S 0 + S 1 + S 2 + S 3 1 + S 3 S 0 + S 1 + S 2 + S 3 + S 4 1 S 3 S 0 + S 1 + S 2 + S 3 1 + S 4 S 0 1 + S 4 S 0 + S 1 1 S 4 S 0 1 + S 4 S 0 + S 1 + S 2 1 S 4 S 0 + S 1 1 + S 4 S 0 + S 1 + S 2 + S 3 1 S 4 S 0 + S 1 + S 2 1 + S 4 S 0 + S 1 + S 2 + S 3 + S 4 1 S 4 S 0 + S 1 + S 2 + S 3 1 ] P 4 = U n × n + O n × n P 1 + O n × n P 2 + O n × n P 3 + O n × n P 4 = U n × n
Thus, S is invertible and S 1 = K .
For the converse, if we suppose that S is invertible, then there exists K = K 0 + K 1 P 1 + K 2 P 2 + K 3 P 3 + K 4 P 4 4 S P M such that S × K = U n × n . This is equivalent to the following:
S 0 K 0 = U n × n 9 S 0 K 1 + S 1 K 0 + S 1 K 1 = O n × n 10 S 0 K 2 + S 1 K 2 + S 2 K 2 + S 2 K 1 + S 2 K 0 = O n × n 11 S 0 K 3 + S 1 K 3 + S 2 K 3 + S 3 K 3 + S 3 K 0 + S 3 K 1 + S 3 K 2 = O n × n       12 S 0 K 4 + S 1 K 4 + S 2 K 4 + S 3 K 4 + S 4 K 0 + S 4 K 1 + S 4 K 2 + S 4 K 3 + S 4 K 4 = O n × n   ( 13 )
Equation 9 implies that S 0 is invertible and S 0 1 = K 0 .
By adding 9 to 10 , we obtain S 0 + S 1 K 0 + K 1 = U n × n , so that S 0 + S 1 is invertible and S 0 + S 1 1 = K 0 + K 1 , hence K 1 = S 0 + S 1 1 S 0 1 .
By adding 9 to 10 to 11 , we obtain S 0 + S 1 + S 2 K 0 + K 1 + K 2 = U n × n , so that S 0 + S 1 + S 2 is invertible and S 0 + S 1 + S 2 1 = K 0 + K 1 + K 2 , hence K 2 = S 0 + S 1 + S 2 1 S 0 + S 1 1 .
By adding 9 to 10 to 11 to 12 , we obtain S 0 + S 1 + S 2 + S 3 K 0 + K 1 + K 2 + K 3 = U n × n , so that S 0 + S 1 + S 2 + S 3 is invertible and S 0 + S 1 + S 2 + S 3 1 = K 0 + K 1 + K 2 + K 3 , hence K 3 = S 0 + S 1 + S 2 + S 3 1 S 0 + S 1 + S 2 1 .
By adding all equations, we obtain the following:
S 0 + S 1 + S 2 + S 3 + S 4 K 0 + K 1 + K 2 + K 3 + K 4 = U n × n
so that S 0 + S 1 + S 2 + S 3 + S 4 is invertible and S 0 + S 1 + S 2 + S 3 + S 4 1 = K 0 + K 1 + K 2 + K 3 + K 4 ; hence K 4 = S 0 + S 1 + S 2 + S 3 + S 4 1 S 0 + S 1 + S 2 + S 3 1 .
(3). For n = 1 , it holds directly. We suppose that it is true. For n = k , we must prove it for k + 1 .
S k + 1 = S S k = S 0 S 0 k + S 0 S 0 + S 1 k S 0 S 0 k + S 1 S 0 k + S 1 S 0 + S 1 k S 1 S 0 k P 1 + [ S 0 S 0 + S 1 + S 2 k S 0 S 0 + S 1 k + S 1 S 0 + S 1 + S 2 k S 1 S 0 + S 1 k + S 2 S 0 + S 1 + S 2 k S 2 S 0 + S 1 k + S 2 S 0 k + S 2 S 0 + S 1 k S 2 S 0 k ] P 2 + [ S 0 S 0 + S 1 + S 2 + S 3 k S 0 S 0 + S 1 + S 2 k + S 1 S 0 + S 1 + S 2 + S 3 k S 1 S 0 + S 1 + S 2 k + S 2 S 0 + S 1 + S 2 + S 3 k S 2 S 0 + S 1 + S 2 k + S 3 S 0 + S 1 + S 2 + S 3 k S 3 S 0 + S 1 + S 2 k + S 3 S 0 k + S 3 S 0 + S 1 k S 3 S 0 k + S 3 S 0 + S 1 + S 2 + S 3 k S 3 S 0 + S 1 k ] P 3 + [ S 0 S 0 + S 1 + S 2 + S 3 + S 4 k S 0 S 0 + S 1 + S 2 + S 3 k + S 1 S 0 + S 1 + S 2 + S 3 + S 4 k S 1 S 0 + S 1 + S 2 + S 3 k + S 2 S 0 + S 1 + S 2 + S 3 + S 4 k S 2 S 0 + S 1 + S 2 + S 3 k + S 3 ( S 0 + S 1 + S 2 + S 3 + S 4 ) k S 3 S 0 + S 1 + S 2 + S 3 k + S 4 S 0 k + S 4 S 0 + S 1 k S 4 S 0 k + S 4 S 0 + S 1 + S 2 k S 4 S 0 + S 1 k + S 4 S 0 + S 1 + S 2 + S 3 k S 4 S 0 + S 1 + S 2 k + S 4 S 0 + S 1 + S 2 + S 3 + S 4 k S 4 S 0 + S 1 + S 2 + S 3 k ] P 4 = S 0 k + 1 + S 0 + S 1 k + 1 S 0 S 0 k + 1 P 1 + [ S 0 + S 1 + S 2 k + 1 ( S 0 + S 1 ) k + 1 ] P 2 + S 0 + S 1 + S 2 + S 3 k + 1 S 0 + S 1 + S 2 k + 1 P 3 + [ S 0 + S 1 + S 2 + S 3 + S 4 n S 0 + S 1 + S 2 + S 3 n ] P 4
.
This is so that the proof holds by induction.
(4). e S = n = 0 S n n ! = n = 0 S 0 n n ! + n = 0 S 0 + S 1 n n ! n = 0 S 0 n n ! P 1 + [ n = 0 S 0 + S 1 + S 2 n n ! n = 0 S 0 + S 1 n n ! ] P 2 + n = 0 S 0 + S 1 + S 2 + S 3 n n ! n = 0 S 0 + S 1 + S 2 n n ! P 3 + [ n = 0 S 0 + S 1 + S 2 + S 3 + S 4 n n ! n = 0 S 0 + S 1 + S 2 + S 3 n n ! ] P 4 = e S 0 + e S 0 + S 1 e S 0 P 1 + e S 0 + S 1 + S 2 e S 0 + S 1 P 2 + [ e S 0 + S 1 + S 2 + S 3 e S 0 + S 1 + S 2 ] P 3 + e S 0 + S 1 + S 2 + S 3 + S 4 e S 0 + S 1 + S 2 + S 3 P 4 .  □
Definition 7.
Let  S = S 0 + S 1 P 1 + S 2 P 2 + S 3 P 3 + S 4 P 4 4 S P M  , then we define the following: 
det S = det S 0 + det S 0 + S 1 det S 0 P 1 + det S 0 + S 1 + S 2 det S 0 + S 1 P 2 + det S 0 + S 1 + S 2 + S 3 det S 0 + S 1 + S 2 P 3 + det S 0 + S 1 + S 2 + S 3 + S 4 det S 0 + S 1 + S 2 + S 3 P 4 .
Theorem 6.
S  is invertible if, and only if,  det S  is invertible in  4 S P R .
The proof holds via a similar discussion of the 3-plithogenic case.

3.5. Symbolic 4-Plithogenic Eigen Values/Vectors

Theorem 7.
Let  S = S 0 + S 1 P 1 + S 2 P 2 + S 3 P 3 + S 4 P 4 4 S P M  , then  A = a 0 + a 1 P 1 + a 2 P 2 + a 3 P 3 + a 4 P 4  is an eigen value of  S  if, and only if,  a 0  eigen value of  S 0  ,  a 0 + a 1  eigen value of  S 0 + S 1  ,  a 0 + a 1 + a 2  eigen value of  S 0 + S 1 + S 2  ,  a 0 + a 1 + a 2 + a 3  eigen value of  S 0 + S 1 + S 2 + S 3 , a 0 + a 1 + a 2 + a 3 + a 4  eigen value of  S 0 + S 1 + S 2 + S 3 + S 4 .
In addition,  X = X 0 + X 1 P 1 + X 2 P 2 + X 3 P 3 + X 4 P 4  is the corresponding eigen vector of  A  if, and only if, the  X 0  eigen vector of  a 0  , the  X 0 + X 1  eigen vector of  a 0 + a 1 , the  X 0 + X 1 + X 2  eigen vector of  a 0 + a 1 + a 2 , the  X 0 + X 1 + X 2 + X 3  eigen vector of  a 0 + a 1 + a 2 + a 3 , t h e X 0 + X 1 + X 2 + X 3 + X 4  eigen vector of  a 0 + a 1 + a 2 + a 3 + a 4 .
Proof of Theorem 7.
From the equation A S = A X , we obtain the following:
a 0 S 0 = a 0 X 0 14 a 0 S 1 + a 1 S 0 + a 1 S 1 = a 0 X 1 + a 1 X 0 + a 1 X 1 15 a 0 S 2 + a 1 S 2 + a 2 S 2 + a 2 S 1 + a 2 S 0 = a 0 X 2 + a 1 X 2 + a 2 X 2 + a 2 X 1 + a 2 X 0 16 a 0 S 3 + a 1 S 3 + a 2 S 3 + a 3 S 3 + a 3 S 0 + a 3 S 1 + a 3 S 2 = a 0 X 3 + a 1 X 3 + a 2 X 3 + a 3 X 3 + a 3 X 0 + a 3 X 1 + a 3 X 2       17 a 0 S 4 + a 1 S 4 + a 2 S 4 + a 3 S 4 + a 4 S 0 + a 4 S 1 + a 4 S 2 + a 4 S 3 + a 4 S 4 = a 0 X 4 + a 1 X 4 + a 2 X 4 + a 3 X 4 + a 4 X 0 + a 4 X 1 + a 4 X 2 + a 4 X 3 + a 4 X 4       18
Equation 14 implies that a 0 is the eigen value of S 0 , with X 0 as the eigen vector.
By adding 14 to 15 , we obtain a 0 + a 1 S 0 + S 1 = a 0 + a 1 X 0 + X 1 , which means that a 0 + a 1 is the eigen value of S 0 + S 1 , with X 0 + X 1 as the eigen vector.
By adding 14 to 15 to 16 , we obtain a 0 + a 1 + a 2 S 0 + S 1 + S 2 = a 0 + a 1 + a 2 X 0 + X 1 + X 2 , which means that a 0 + a 1 + a 2 is the eigen value of S 0 + S 1 + S 2 , with X 0 + X 1 + X 2 as the eigen vector.
By adding 14 to 15 to 16 to 17 , we obtain a 0 + a 1 + a 2 + a 3 S 0 + S 1 + S 2 + S 3 = a 0 + a 1 + a 2 + a 3 X 0 + X 1 + X 2 + X 3 , which means that a 0 + a 1 + a 2 + a 3 is the eigen value of S 0 + S 1 + S 2 + S 3 , with X 0 + X 1 + X 2 + X 3 as the eigen vector.
By adding all equations, we obtain the following: a 0 + a 1 + a 2 + a 3 + a 4 S 0 + S 1 + S 2 + S 3 + S 4 = a 0 + a 1 + a 2 + a 3 + a 4 X 0 + X 1 + X 2 + X 3 + X 4 , which means that a 0 + a 1 + a 2 + a 3 + a 4 is the eigen value of S 0 + S 1 + S 2 + S 3 + S 4 , with X 0 + X 1 + X 2 + X 3 + X 4 as the eigen vector.
This is so that the proof is complete. □
Example 6.
Consider the following matrix:
S = 3 + 2 P 1 P 3 P 4 4 + P 2 3 P 3 2 P 1 + P 2 + P 3 P 4 5 + P 1 + P 4 = 3 4 0 5 + 2 0 2 1 P 1 + 0 1 1 0 P 2 + 1 3 1 0 P 3 + 1 0 1 1 P 4 = A 0 + A 1 P 1 + A 2 P 2 + A 3 P 3 + A 4 P 4
The eigen values of  A 0 = 3 4 0 5  are  3,5 .
The eigen values of  A 0 + A 1 = 2 0 2 1  are  11 + 33 2 , 11 33 2 .
The eigen values of  A 0 + A 1 + A 2 = 0 1 1 0  are  11 + 61 2 , 11 61 2 .
The eigen values of  A 0 + A 1 + A 2 + A 3 = 1 3 1 0  are  8,2 .
The eigen values of  A 0 + A 1 + A 2 + A 3 + A 4 = 2 3 0 1  are  2,1 .
The eigen values of the symbolic 4-plithogenic matrix  A  are as follows: 
U 1 = 3 + 11 + 33 2 3 P 1 + 11 + 61 2 11 + 33 2 P 2 + 8 11 + 61 2 P 3 + 10 P 4
U 2 = 3 + 11 + 33 2 3 P 1 + 11 + 61 2 11 + 33 2 P 2 + 2 11 + 61 2 P 3 + 4 P 4
U 3 = 3 + 11 + 33 2 3 P 1 + 11 61 2 11 + 33 2 P 2 + 8 11 + 61 2 P 3 + 7 P 4
U 4 = 3 + 11 + 33 2 3 P 1 + 11 61 2 11 + 33 2 P 2 + 2 11 + 61 2 P 3 + 1 P 4
U 5 = 3 + 11 33 2 3 P 1 + 11 + 61 2 11 33 2 P 2 + 8 11 + 61 2 P 3 + 10 P 4
U 6 = 3 + 11 33 2 3 P 1 + 11 61 2 11 33 2 P 2 + 2 11 61 2 P 3 + 4 P 4
U 7 = 3 + 11 33 2 3 P 1 + 11 61 2 11 33 2 P 2 + 8 11 61 2 P 3 + 7 P 4
U 8 = 3 + 11 33 2 3 P 1 + 11 + 61 2 11 33 2 P 2 + 2 11 61 2 P 3 + 1 P 4
U 9 = 5 + 11 + 33 2 5 P 1 + 11 + 61 2 11 + 33 2 P 2 + 8 11 + 61 2 P 3 + 10 P 4
U 10 = 5 + 11 + 33 2 5 P 1 + 11 + 61 2 11 + 33 2 P 2 + 2 11 + 61 2 P 3 + 4 P 4
U 11 = 5 + 11 + 33 2 5 P 1 + 11 61 2 11 + 33 2 P 2 + 8 11 61 2 P 3 + 7 P 4
U 12 = 5 + 11 + 33 2 5 P 1 + 11 61 2 11 + 33 2 P 2 + 2 11 61 2 P 3 + 1 P 4
U 13 = 5 + 11 33 2 5 P 1 + 11 + 61 2 11 33 2 P 2 + 8 11 + 61 2 P 3 + 10 P 4
U 14 = 5 + 11 33 2 5 P 1 + 11 + 61 2 11 33 2 P 2 + 2 11 + 61 2 P 3 + 4 P 4
U 15 = 5 + 11 33 2 5 P 1 + 11 61 2 11 33 2 P 2 + 8 11 61 2 P 3 + 7 P 4
U 16 = 5 + 11 33 2 5 P 1 + 11 + 61 2 11 33 2 P 2 + 2 11 61 2 P 3 + 1 P 4
.
We continue using the same process to obtain all other eigen values.
Remark 5.
If  A  has  n  eigen values for  0 i s  , then  A  has  n 5  eigen values.

3.6. Symbolic 4-Plithogenic Diagonalization

Theorem 8.
Let T = T 0 + T 1 P 1 + T 2 P 2 + T 3 P 3 + T 4 P 4 be an n-square symbolic 4-plithogenic matrix, then T is diagonalizable if, and only if, T 0 , T 0 + T 1 , T 0 + T 1 + T 2 , T 0 + T 1 + T 2 + T 3 , T 0 + T 1 + T 2 + T 3 + T 4 are diagonalizable.
Proof of Theorem 8.
T are diagonalizable if, and only if, there exists L = L 0 + L 1 P 1 + L 2 P 2 + L 3 P 3 + L 4 P 4 and D = D 0 + D 1 P 1 + D 2 P 2 + D 3 P 3 + D 4 P 4 , such that T = L 1 D L , where D is diagonal and L is invertible.
The equation T = L 1 D L is equivalent to the following:
T 0 = L 0 1 D 0 L 0 T 0 + T 1 = L 0 + L 1 1 D 0 + D 1 L 0 + L 1 T 0 + T 1 + T 2 = L 0 + L 1 + L 2 1 D 0 + D 1 + D 2 L 0 + L 1 + L 2 T 0 + T 1 + T 2 + T 3 = L 0 + L 1 + L 2 + L 3 1 D 0 + D 1 + D 2 + D 3 L 0 + L 1 + L 2 + L 3 T 0 + T 1 + T 2 + T 3 + T 4 = L 0 + L 1 + L 2 + L 3 + L 4 1 D 0 + D 1 + D 2 + D 3 + D 4 L 0 + L 1 + L 2 + L 3 + L 4
This implies the proof. □

4. Conclusions

In this scientific work, we have studied the symbolic 3-plithogenic square real matrices and the symbolic 4-plithogenic square real matrices from many different perspectives, and we have presented many algorithms and theorems to describe the invertibility, the eigen values, vectors, and diagonalization of these matrices by transforming them into classical matrices. In the future, we aim to study the symbolic 5-plithogenic and 6-plithogenic real square matrices in a similar approach to that used for the symbolic 3-plithogenic matrices and symbolic 4-plithogenic matrices.

Funding

This research received no external funding.

Data Availability Statement

Not applicable.

Conflicts of Interest

The author declares no conflict of interest.

References

  1. Smarandache, F. Introduction to the Symbolic Plithogenic Algebraic Structures (revisited). Neutrosophic Sets Syst. 2023, 53, 39. [Google Scholar]
  2. Smarandache, F. Plithogenic Algebraic Structures. Chapter in “Nidus idearum Scilogs, V: Joining the Dots”, 3rd ed.; Pons Publishing: Brussels, Belgium, 2019; pp. 123–125. [Google Scholar]
  3. Smarandache, F. Plithogenic Set, an Extension of Crisp, Fuzzy, Intuitionistic Fuzzy, and Neutrosophic Sets—Revisited. Neutrosophic Sets Syst. 2018, 21, 153–166. [Google Scholar]
  4. Taffach, N.M.; Hatip, A. A Review on Symbolic 2-Plithogenic Algebraic Structures. Galoitica J. Math. Struct. Appl. 2023, 5, 8–16. [Google Scholar] [CrossRef]
  5. Taffach, N.M.; Hatip, A. A Brief Review on The Symbolic 2-Plithogenic Number Theory and Algebraic Equations. Galoitica J. Math. Struct. Appl. 2023, 5, 36–44. [Google Scholar] [CrossRef]
  6. Merkepci, H.; Abobala, M. On the Symbolic 2-Plithogenic Rings. Int. J. Neutrosophic Sci. 2023, 20, 115–122. [Google Scholar] [CrossRef]
  7. Taffach, N. An Introduction to Symbolic 2-Plithogenic Vector Spaces Generated from the Fusion of Symbolic Plithogenic Sets and Vector Spaces. Neutrosophic Sets Syst. 2023, 54, 45–57. [Google Scholar]
  8. Taffach, N.; Othman, K.B. An Introduction to Symbolic 2-Plithogenic Modules Over Symbolic 2-Plithogenic Rings. Neutrosophic Sets Syst. 2023, 54, 33–44. [Google Scholar]
  9. Ali, R.; Hasan, Z. An Introduction to the Symbolic 3-Plithogenic Modules. Galoitica J. Math. Struct. Appl. 2023, 6, 13–17. [Google Scholar] [CrossRef]
  10. Ali, R.; Hasan, Z. An Introduction to the Symbolic 3-Plithogenic Vector Spaces. Galoitica J. Math. Struct. Appl. 2023, 6, 8–12. [Google Scholar] [CrossRef]
  11. Rawashdeh, A. An Introduction to the Symbolic 3-plithogenic Number Theory. Neoma J. Math. Comput. Sci. 2023. [Google Scholar] [CrossRef]
  12. Othman, B.K. On Some Algorithms for Solving Symbolic 3-Plithogenic Equations. Neoma J. Math. Comput. Sci. 2023. [Google Scholar] [CrossRef]
  13. Albasheer, O.; Hajjari, A.; Dalla, R. On The Symbolic 3-Plithogenic Rings and Their Algebraic Properties. Neutrosophic Sets Syst. 2023, 54, 57–67. [Google Scholar]
  14. Alfahal, A.; Alhasan, Y.; Abdulfatah, R.; Mehmood, A.; Kadhim, M. On Symbolic 2-Plithogenic Real Matrices and Their Algebraic Properties. Int. J. Neutrosophic Sci. 2023, 21. [Google Scholar] [CrossRef]
  15. Abobala, M.; Hatip, A.; Olgun, N.; Broumi, S.; Salama, A.A.; Khaled, E.H. The algebraic creativity in the Neutrosophic Square Matrices. Neutrosophic Sets Syst. 2021, 40, 1–11. [Google Scholar]
  16. Abobala, M. On Refined Neutrosophic Matrices and Their Applications in Refined Neutrosophic Algebraic Equations. J. Math. 2021, 2021, 5531093. [Google Scholar] [CrossRef]
  17. Olgun, N.; Hatip, A.; Bal, M.; Abobala, M. A Novel Approach To Necessary and Sufficient Conditions For The Diagonalization of Refined Neutrosophic Matrices. Int. J. Neutrosophic Sci. 2021, 16, 72–79. [Google Scholar] [CrossRef]
  18. Merkepci, H.; Abobala, M. The Application of AH-isometry in the Study of Neutrosophic Conic Sections. Galoitica J. Math. Struct. Appl. 2022, 2, 18–22. [Google Scholar]
  19. Abobala, M.; Zeina, M.B. A Study of Neutrosophic Real Analysis by Using One Dimensional Geometric AH-Isometry. Galoitica J. Math. Struct. Appl. 2023, 3, 18–24. [Google Scholar] [CrossRef]
  20. Von Shtawzen, O. Conjectures for Invertible Diophantine Equations of 3-Cyclic and 4-Cyclic Refined Integers. J. Neutrosophic Fuzzy Syst. 2022, 3, 32–36. [Google Scholar] [CrossRef]
  21. Abobala, M.; Hatip, A.; Bal, M. A Review on Recent Advantages in Algebraic Theory of Neutrosophic Matrices. Int. J. Neutrosophic Sci. 2021, 17, 68–86. [Google Scholar] [CrossRef]
  22. Abobala, M.; Ziena, B.M.; Doewes, R.; Hussein, Z. The Representation of Refined Neutrosophic Matrices by Refined Neutrosophic Linear Functions. Int. J. Neutrosophic Sci. 2022, 19, 342–349. [Google Scholar] [CrossRef]
  23. Ahmad, K.; Thjeel, N.; AbdulZahra, M.; Jaleel, R. On the Classification of n-Refined Neutrosophic Rings and Its Applications in Matrix Computing Algorithms and Linear Systems. Int. J. Neutrosophic Sci. 2022, 18, 8–15. [Google Scholar]
  24. Abobala, M. On the Representation of Neutrosophic Matrices by Neutrosophic Linear Transformations. J. Math. 2021, 2021, 5591576. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Merkepçi, H. On Novel Results about the Algebraic Properties of Symbolic 3-Plithogenic and 4-Plithogenic Real Square Matrices. Symmetry 2023, 15, 1494. https://doi.org/10.3390/sym15081494

AMA Style

Merkepçi H. On Novel Results about the Algebraic Properties of Symbolic 3-Plithogenic and 4-Plithogenic Real Square Matrices. Symmetry. 2023; 15(8):1494. https://doi.org/10.3390/sym15081494

Chicago/Turabian Style

Merkepçi, Hamiyet. 2023. "On Novel Results about the Algebraic Properties of Symbolic 3-Plithogenic and 4-Plithogenic Real Square Matrices" Symmetry 15, no. 8: 1494. https://doi.org/10.3390/sym15081494

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop