Next Article in Journal
Results on Minkowski-Type Inequalities for Weighted Fractional Integral Operators
Previous Article in Journal
A Multi-Controller Placement Strategy for Hierarchical Management of Software-Defined Networking
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Some Results for Ćirić–Prešić Type Contractions in F-Metric Spaces

Department of Mathematics, Faculty of Polatli Science and Letters, University of Ankara Haci Bayram Veli, 06500 Ankara, Turkey
Symmetry 2023, 15(8), 1521; https://doi.org/10.3390/sym15081521
Submission received: 7 July 2023 / Revised: 27 July 2023 / Accepted: 29 July 2023 / Published: 1 August 2023

Abstract

:
In this study, first, we introduce Ćirić–Prešić type contraction in F-metric spaces and prove a fixed point theorem for self mappings. We apply the fixed point results for a second-order differential equation. Therefore, we define Prešić type almost contraction and F-contraction, and we prove some fixed point theorems. In the last section, we prove the best proximity point theorems for Ćirić–Prešić type proximal contraction in F-metric spaces. Our results generalize the existing results in the literature.

1. Introduction and Preliminaries

Fixed point theory started with Brouwer’s fixed point theorem in 1912. Brouwer proved the existence of the fixed point of the continuous mappings defined from the closed unit ball of R n to itself. Fixed point theory studies developed into three main branches, topological, metric, and separated spaces. Metric fixed point theory started with the Banach contraction principle in 1922. Banach’s fixed point theorem has recently become a fundamental and rapidly developing topic in nonlinear analysis. It has useful applications in fields such as science, economics, engineering sciences, as well as mathematics. In some cases where this principle is insufficient, some generalized metric spaces and generalized contraction principles were defined, and many fixed point theorems were proved.
It is established knowledge that for a self mapping f on a nonempty set X, if f x = x for any x X , then x is fixed point of f. In 1965, Preŝić [1] introduced this definition as f x , x , , x = x for the mapping f : X k X . Additionally, he proved a fixed point theorem for a mapping satisfying generalized contraction. In 2007, Ćirić-Prešić [1,2] produced a new type contraction. Some researchers have generalized the Prešić type contraction in metric and generalized metric spaces [3,4,5,6,7,8,9,10,11].
Jleli and Samet [12] presented the concept of F-metric space and proved the Banach contraction principle. The authors defined the F-metric by using of the F-functions in [13]. Later on, Mitrovic et al. [14] obtained common fixed results for Banach, Jungck, Reich, and Berinde type contractions in F-metric spaces before applying the results to dynamic programming. Zhou et al. [15] proved best proximity results in F-metric spaces. Lateefa et al. [16] proved fixed point theorems for Dass–Gupta type contraction. Jahangir et al. [17] discovered nonlinear contraction principles in F-metric spaces. Faraji et al. [18] defined ( α - β )-admissible type contraction and proved fixed point theorems in F-metric spaces.
In this work, we define concept of Ćirić–Prešić type contractions in F-metric spaces. We prove fixed point theorems for almost contraction and F-contraction mapping. We apply the main fixed point result for a second-order differential equation. In the last section, we prove the best proximity point theorems for Ćirić-Prešić type contraction in F-metric spaces. Every metric space is F-metric space. However, the converse may not be true. So, our results generalize the existing results in the literature.
In this work, we denote Λ the family of all functions F : 0 , R satisfying the following properties;
(F1)
F is increasing, i.e., for all s , u R + such that s < u ,   F s < F u ;
(F2)
For each sequence α s s N , lim s α s = 0  ⇔ lim n F ( α s ) = ;
(F3)
There exists k 0 , 1 such that α k lim n F ( α ) = 0 .
We denote Ω the family of all functions F : 0 , R satisfying properties of ( F 1 ) and ( F 2 ).
Definition 1
([12]). Let the set X and ( F , α ) Ω × [ 0 , + ) . d : X 2 0 , satisfies:
(d1) 
d x , y = 0    x = y ,
(d2) 
d x , y = d y , x ,
(d3) 
for N 2 ( N N ) and t n X such that
d t 1 , t s > 0 F d t 1 , t s F Σ i = 1 s d t i , t i + 1 + α
for all x , y X .  Then X , d is called a F-metric space.
Let X , d be a F-metric space. For each x X and ε > 0 ,
O x , l = { v X : d ( x , v ) < l }
is called F-open ball centered at x with radius l .
Definition 2
([12]). Let x s X , then
i. 
x s is called F-convergent if there is x X such that d x s , x 0 as s .
ii. 
x s is called F-Cauchy sequence if d x s , x r 0 as s , r .
iii. 
X , d is called F-complete if each F-Cauchy sequence is F-convergent.

2. Ćirić–Prešić Type Contractions

Definition 3.
Let X , d be a F-metric space and f : X t X be a mapping, where t is a positive integer. Then, a mapping f is said to be Ćirić–Prešić type contraction if there exists a γ ( 0 , 1 ) such that
d f x 1 , x 2 , x t , f x 2 , x t + 1 γ max { d x i , x i + 1 : 1 i t }
for all x i X .
Theorem 1.
Let X , d be a F-complete F-metric space and let f : X t X be a Ćirić–Prešić type contraction mapping where t is a positive integer. Then f has a unique fixed point in X.
Proof. 
Let x 1 , x 2 , x t   X be some arbitrary elements. We define a sequence x s in X by
x s + t = f x s , x s + 1 , , x s + t 1
for all s = 1 , 2 , . For simplicity, we say d s = d x s , x s + 1 . We shall prove by mathematical induction that
d s K μ s
for all s 1 , where μ = γ 1 / t and K = max d i γ i : 1 i t .
By (1), we obtain
d x s + t , x s + t + 1 = d f x s , x s + 1 , , x s + t 1 , f x s + 1 , , x s + t γ max { d x i , x i + 1 : s i s + t 1 } = γ max { d s , d s + 1 , , d s + t 1 } = γ K μ s = K μ s + t .
Hence, we have
lim s K μ s + t = 0 .
Now, for any δ > 0 there exists s 0 N such that
0 < K μ s + t < δ , s s 0 .
Let ε > 0 be fixed. Since F , α Ω × [ 0 , ) and by (d 3 ) and ( F 2 ), we obtain
0 < k < δ F k < F ε α
By (3) and (4), we have
F d x s , x s + r F Σ i = s s + r 1 d x i , x i + 1 + α F Σ i = s s + r 1 K μ i + α = F K μ s 1 μ + α < F ε
which implies that
d x s , x s + r < ε
for any s , r N . Hence, x s is a F-Cauchy sequence. The F-completeness of X , d confirms that the availability of a y X such that lim s d ( x s , y ) = 0 . Now, we show that y is a fixed point of f. Assume d y , f y , y , , y > 0 . Using the condition (F3) and contractive condition (1),
F ( d y , f y , y , , y ) F [ d y , x s + t + d x s + t , f ( y , y , , y ) ] + α F [ d y , x s + t + d f ( x s , , x s + t 1 ) , f ( y , y , , y ) ] + α F [ d y , x s + t + d f ( y , y , y , x s ) , f ( y , y , , y ) + d f ( y , y , , y , x s ) , f ( y , y , , x s , x s + 1 ) + d f ( y , x s , , x s + t 2 ) , f ( x s , x s + 1 , , x s + t 1 ) ] + α F [ d y , x s + t + d y , x s + γ max d y , x s , d x s , x s + 1 + + γ max d y , x s , d x s , x s + 1 , , d x s + t 2 , x s + t 1 ] + α .
Now, letting s in the above inequality and property of ( F 2 ), we obtain
d y , f y , y , , y < 0 ,
which is a contradiction. Hence, y = f y , y , , y .
Now, we show that uniqueness of fixed point. Let y , z be the two fixed points of f. By (1)
d f y , y , , y , f z , z , , z γ d y , z ,
which is a contradiction with γ 0 , 1 . Hence, f has unique fixed point. □
Example 1.
Let X = [ 0 , 2 ] . Define d : X 2 R , d x , y = 0 , if x = v max { x , v } + 1 , if x v .
Then d is a F-complete F- metric on X with F ( t ) = 1 t and α = 2 .
Let f : X 2 X , f x , v = x + v 4 . Take x , v , u X and any γ 0 , 1 .
If x > v > u , then
d f x , v , f v , u = d x + v 4 , v + u 4 = x + v 4 + 1 γ ( x + 1 ) = γ max { x + 1 , v + 1 } = γ max { d ( x , v ) , d v , u } .
If x > u > v , then
d f x , v , f v , u = d x + v 4 , v + u 4 = x + v 4 + 1 γ ( x + 1 ) = γ max { x + 1 , u + 1 } = γ max { d ( x , v ) , d v , u } .
If v > x > u , then
d f x , v , f v , u = d x + v 4 , v + u 4 = x + v 4 + 1 γ ( v + 1 ) = γ max { v + 1 , v + 1 } = γ max { d ( x , v ) , d v , u } .
If v > u > x , then
d f x , v , f v , u = d x + v 4 , v + u 4 = v + u 4 + 1 γ ( v + 1 ) = γ max { v + 1 , v + 1 } = γ max { d ( x , v ) , d v , u } .
If u > x > v of if u > v > x proof is similar. All conditions of Theorem 1 are satisfied. Hence x = 0 is unique fixed point of f.
Definition 4.
Let X , d be a F-metric space and let f : X t X be a mapping, where t is a positive. Then, a mapping f is said to be Ćirić–Prešić type almost contraction if there exists a γ ( 0 , 1 ) and for some Y 0 .
d f x 1 , x 2 , x t , f x 2 , x t + 1 γ max { d x i , x i + 1 : 1 i t } + Y min { d x 1 , f x 1 , x 1 , x 1 , d x t + 1 , f x t + 1 , x t + 1 , , x t + 1 , d x t + 1 , f x 1 , x 1 , x 1 , d x 1 , f x t + 1 , x t + 1 , , x t + 1 , d x t + 1 , f x 1 , x 2 , , x t }
for all x i X .
Theorem 2.
Let X , d be a F-complete F-metric space and let f : X t X be a Ćirić–Prešić almost contraction. Then f has a unique fixed point in X.
Proof. 
Let x 1 , x 2 , x t   X be arbitrary elements. We define a sequence x s by
x s + t = f x s , x s + 1 , , x s + t 1
for all s = 1 , 2 , . For simplicity, we say d s = d x s , x s + 1 . We shall prove by mathematical induction that
d s K μ s
for all s 1 , where μ = γ 1 / t and K = max d i γ i : 1 i t .
By (6) and (7), we have
d x s + t , x s + t + 1 = d f x s , x s + 1 , , x s + t 1 , f x s + 1 , , x s + t γ max { d x i , x i + 1 : s i s + t 1 } + Y min { d x s , f x s , x s , , x s , d x s + t , f x s + t , x s + t , , x s + t , d x s + t , f x s , x s , , x s , d x s , f x s + t , x s + t , , x s + t , d x s + t , f x s , x s + 1 , , x s + t 1 } = γ max { d s , d s + 1 , , d s + t 1 } + Y . 0 = γ K μ s = K μ s + t .
For any δ > 0 there exists s 0 N such that
0 < K μ s + t < δ , s s 0 .
Let ε > 0 be fixed. Since F , α Ω × [ 0 , ) and by (d 3 ) and ( F 2 )
0 < k < δ F k < F ε α
By (8) and (9), for any s , r N and by definition of F ,
F d x s , x s + r F Σ i = s s + r 1 d x i , x i + 1 + α F Σ i = s s + r 1 K μ i + α = F K μ s 1 μ + α < F ε .
which implies that by ( F 1 ),
d x s , x s + r < ε .
Hence x s is a F-Cauchy sequence. Hence x s is a F-Cauchy sequence. Since X , d is F-complete, there exists a y X with lim s d ( x s , y ) = 0 .
Now, we show that y is a fixed point of f. Assume d y , f y , y , , y > 0 ,
F ( d y , f y , y , , y ) F [ d y , x s + t + d x s + t , f ( y , y , , y ) ] + α F [ d y , x s + t + d f ( x s , , x s + t 1 ) , f ( y , y , , y ) ] + α F [ d y , x s + t + d f ( y , y , y , x s ) , f ( y , y , , y ) + d f ( y , y , , y , x s ) , f ( y , y , , x s , x s + 1 ) + + d f ( y , x s , , x s + t 2 ) , f ( x s , x s + 1 , , x s + t 1 ) ] + α F [ d y , x s + t + d y , x s + + Y . 0 + γ max d y , x s , d x s , x s + 1 + Y min { d y , f y , y , y , d x s + 1 , f x s + 1 , x s + 1 , , x s + 1 , d y , f x s + 1 , x s + 1 , , x s + 1 , d x s + 1 , f y , y , , y , d y , f y , , , , x s , x s + 1 } + + γ max d y , x s , d x s , x s + 1 , , d x s + t 2 , x s + t 1 + Y min { d y , f y , y , y , d x s + t 1 , f x s + t 1 , x s + t 1 , , x s + t 1 , d y , f x s + t 1 , x s + t 1 , , x s + t 1 , d x s + t 1 , f y , y , , y , d y , f x s , , x s + t 1 } ] + α
Now, taking limit as s , t in the above inequality, we obtain
d y , f y , y , , y < 0
which is a contradiction. Hence, we have y = f y , y , , y . Now, we show that uniqueness of fixed point. Let y , z be two different fixed points of f. Then, By (6),
d f y , y , , y , f z , z , , z γ d y , z + Y min { d y , f y , , y , d z , f z , , z , d z , f y , , y , d y , f z , , z , d y , f z , z , , z } d f y , y , , y , f z , z , , z γ d y , z
which is a contradiction with γ 0 , 1 . Thus, f has unique fixed point. □
Example 2.
Let X = N . Define d : X 2 R , d x , v = x v 2 if x , v 1 , 2 2 x v o t h e r .Then d is a F-complete F- metric on X with F ( t ) = 1 t and α = 4 . Therefore d is not a metric on X . For x = 1 , v = 2 , u = 4 , we have
d 1 , 4 = 2.3 = 6 1 + 4 = d ( 1 , 2 ) + d ( 2 , 4 ) .
Define f : X 2 X , f x , v = x v 2 , if x , v even , x v and x > v + 4 x v if x , v odd , x v , 1 , other .
If x , v , u 1 , 2 , u = v = u or x = u v or x v = u we have,
d f x , v , f v , u = d ( 1 , 1 ) = 0 γ .
If x , v , u are consecutive even or consecutive odd, we obtain
d f x , v , f v , u = d ( 1 , 1 ) = 0 γ 0 .
If x , v , u are even and x >   v + 4 > u + 4 , we obtain
d f x , v , f v , u = d ( x v 2 , v u 2 ) = x v v u γ max { 2 x v , 2 v u } + Y min { 2 x 1 , 2 u 1 , 2 u x v 2 } = γ max { d ( x , v ) , d ( v , u ) } + Y min { d ( x , f ( x , x ) ) , d ( u , f ( u , u ) , d ( u , f ( x , x ) ) , d ( x , f ( u , u ) ) , d ( u , f ( x , v ) ) } .
If x , v , u are odd but not consecutive and x u v , we obtain
d f x , v , f v , u = d ( x v , v u ) = 2 x v v u γ max { 2 x v , 2 v u } + Y min { 2 x 1 , 2 u 1 , 2 u x v 2 } = γ max { d ( x , v ) , d ( v , u ) } + Y min { d ( x , f ( x , x ) ) , d ( u , f ( u , u ) , d ( u , f ( x , x ) ) , d ( x , f ( u , u ) ) , d ( u , f ( x , v ) ) } .
If x , v , u are odd but not consecutive and x u v , we obtain
d f x , v , f v , u = d ( x v , v u ) = 2 x v v u γ max { 2 x v , 2 v u } + Y min { 2 x 1 , 2 u 1 , 2 u x v 2 } = γ max { d ( x , v ) , d ( v , u ) } + Y min { d ( x , f ( x , x ) ) , d ( u , f ( u , u ) , d ( u , f ( x , x ) ) , d ( x , f ( u , u ) ) , d ( u , f ( x , v ) ) } .
Hence, Ćirić–Prešić type almost contraction principle is satisfied for Y > 0 and any γ 0 , 1 . x = 1 is fixed point of f.
Definition 5.
Let X , d be a F-metric space and let f : X t X be a mapping where t is a positive integer. Then f is said to be a Ćirić–Prešić type F -contraction if there exists a function F Λ such that
τ + F d f x 1 , x 2 , x t , f x 2 , x t + 1 F max { d x i , x i + 1 : 1 i t }
for each τ > 0 and for all x i X .
Theorem 3.
Let X , d be a F-complete F-metric space and let f : X t X be a continuous Ćirić–Prešić type F-contraction. Then f has a unique fixed point.
Proof. 
Suppose x 1 , x 2 , x t X arbitrary elements. Define a sequence x s by
x s + t = f x s , x s + 1 , , x s + t 1
Using (10) we can write
τ + F d f x 1 , x 2 , x t , f x 2 , x t + 1 F max { d x i , x i + 1 : 1 i t }
So,
F d f x 1 , x 2 , x t , f x 2 , x t + 1 F max { d x i , x i + 1 : 1 i t } τ < F max { d x i , x i + 1 : 1 i t } .
Using (F 1 ), we obtain
d f x 1 , x 2 , x t , f x 2 , x t + 1 < max { d x i , x i + 1 : 1 i t }
For simplicity, say d s = d x s , x s + 1 . For all s 1 ,
By (10),
F ( d s + 1 ) = F ( d x s , x s + 1 ) = F ( d f x s , x s + 1 , , x s + t 1 , f x s + 1 , , x s + t ) F max { d x i , x i + 1 : 1 i t } τ ,
and similarly
F ( d s + 2 ) F max { d x i , x i + 1 : 2 i t + 1 } 2 τ .
By induction,
F ( d s + t ) = F ( d x s + t , x s + t + 1 ) = F ( d f x s , x s + 1 , , x s + t 1 , f x s + 1 , , x s + t ) F max { d x i , x i + 1 : s i s + t 1 } n τ ( n 1 ) .
Letting n in the above inequality, we obtain
lim n F ( d s + t ) =
which implies that lim n d s + t = 0 .
So, for any δ 0 , 1 we obtain
lim n d s + t δ F ( d s + t ) = 0 .
By (11), we have
d s + t δ F ( d s + t ) d s + t δ F max { d x i , x i + 1 : s i s + t 1 } n τ d s + t δ 0 .
Letting n in the above inequality, we obtain lim n n d s + t δ = 0 .
Let ε > 0 be fixed. Since F , α Ω × [ 0 , ) , we obtain
0 < k < l F k < F ε α .
By (d 3 ) and ( F 2 ), for any s , t N ,
F d x s , x s + t F Σ i = s s + r 1 d x i , x i + 1 + α = F d s + d s + 1 + + d s + r 1 + α < F ε
which implies that by ( F 1 ),
d x s , x s + r < ε .
Hence x s is a F-Cauchy sequence. Since X , d is F-complete, there exists a y X with lim s d ( x s + r , y ) = 0 .
Now, we show that y is a fixed point of f. Assume d y , f y , y , , y > 0 . By continuity of f,
y = lim n x s + r = lim n f x s , x s + 1 , , x s + r 1 = f y , y , , y .
Hence, y = f y , y , , y .
Now, we show that uniqueness of fixed point. Suppose f has different fixed points y , z with y z . By (10),
τ + F ( d f y , y , , y , f z , z , , z ) = τ + F d y , z F ( d y , z )
which is a contradiction with τ > 0 . Thus f has unique fixed point. □
Corollary 1.
Let X , d be a F-complete F-metric space and f : X 2 X be a mapping satisfying
d f x 1 , x 2 , f x 2 , x 3 γ max { d x 1 , x 2 , x 2 , x 3 }
for all x 1 , x 2 , x 3 X , where γ ( 0 , 1 ) . Then, there exists a x X such that f x , x = x .
Corollary 2.
Let X , d be a F-complete F-metric space and f : X t X be a mapping where t is a positive integer. If f satisfies
d f x 1 , x 2 , x t , f x 2 , x t + 1 Σ i = 1 t γ i d x i , x i + 1
for all x i X , where γ ( 0 , 1 ) and γ 1 + γ t < 1 . Then f has a unique fixed point.

3. Application

Let consider the second order differential equation for x ( C 0 , f , R ) , s 0 R ,
d 2 x d t 2 + s 2 x = q t , x ( t ) x ( 0 ) = a , x ( 0 ) = b .
Let q , σ : 0 , f × R + R are continuous. Differential Equation (13) is equivalent to the integral equation
x t = a cos s t + b sin s t 0 t T t , ξ [ q ξ , x ξ ] d ξ , t 0 , f .
Here T t , ξ = 1 s sin ( s ( t ξ ) ) Z ( t ξ ) is Green function where Z is the Heaviside unit function.
Theorem 4.
Consider the differential Equation (13) and suppose
(i) q, σ : 0 , f × R + R is continuous,
(ii) for all t 0 , f and x , y R , γ 0 , 1 , s R ( s 0 ) such that
q t , x q t , v γ s 2 x v
Then, Equation (14) has a unique solution.
Proof. 
Consider the F-metric
d ( x , v ) = x v = max t 0 , f x t v t .
for all t 0 , f . Then, we define any mapping
f : X × X X , f x ( t ) , v t = a cos s t + b sin s t + 0 t T t , ξ [ q ξ , x ξ + σ ξ , v ξ ] d ξ
Then, we obtain for all x , v , z X
f x ( t ) , y t f y ( t ) , z t = 0 t T t , ξ [ q ξ , x ξ + σ ξ , v ξ d ξ 0 t T t , ξ [ q ξ , v ξ + σ ξ , z ξ ] d ξ 0 t T t , ξ [ q ξ , x ξ + σ ξ , v ξ q ξ , v ξ σ ξ , z ξ ] d ξ 0 t T t , ξ max x ξ v ξ , v ξ z ξ d ξ 0 t T t , ξ s 2 max x ξ v ξ , v ξ z ξ d ξ = γ s 2 max t 0 , f x v , v z sup t 0 , f 0 t T t , ξ d ξ γ s 2 max t 0 , f x v , v z sup t 0 , f 0 t 1 s sin s ( t ξ ) d ξ γ max t 0 , f x v , v z .
Thus, we obtain
f x , v f v , z γ max t 0 , f x v , v z .
By Theorem 1, f has a unique fixed point. (14) has a unique solution. □

4. Ćirić–Prešić Type Proximal Contraction

Definition 6
([19]). Let X , d be a F-metric space and P and V be two nonempty subsets of X . Then
d P , R = inf { d p , r : p P , v V } , d v , P = inf { d p , v : p P } , P 0 = { p P : d p , v = d P , V for some v V } , V 0 = { v V : d p , v = d P , V for some p P } .
An element p P is called best proximity point of the non-self mapping f : P V if d ( p , f p ) = d ( P , V ) . If f is a self mapping, then best proximity point is fixed point.
Now we will generalize this definition in a F-metric space ( X , d ) as for nonempty subsets P and V if d ( p , f ( p , p , , p ) ) = d ( P , V ) , then u is a best proximity point of the mapping f : P t V .
Definition 7.
Let P , V be a pair of nonempty subsets of a F-metric space X , d with P . Then, the pair P , V is named to satisfy the weak P-property ⇔  p 1 , p 2 P 0 , v 1 , v 2 V 0 ,
d p 1 , v 1 = d P , V = d p 2 , v 2 d p 1 , p 2 d v 1 , v 2 .
Theorem 5.
Let P , V be a pair of nonempty subsets of a F-complete F-metric space X , d , U 0 is a nonempty set and closed and P , V has weak P-property. Let f : P t P be a one to one mapping satisfying
d f x 1 , x 2 , x t , f x 2 , x t + 1 γ max { d x i , x i + 1 : 1 i t }
for all x i X , where γ ( 0 , 1 ) . If f P 0 t V 0 , then f has a unique best proximity point.
Proof. 
Let ( x 1 , x 2 , x t ) P 0 t . Since f P 0 t V 0 , for x t + 1 P 0 we have
d x t + 1 , f ( x 1 , , x t ) = d P , V .
Again, for ( x 2 , x 3 , x t + 1 ) P 0 t , there exists x t + 2 P 0 such that
d x t + 2 , f ( x 2 , , x t + 1 ) = d P , V .
Continuing this process, we obtain a sequence x s in P 0 such that for all n
d x s + t , f ( x s , x s + 1 , , x s + t 1 ) = d P , V .
P , V has weak P-property, we have
d x s + t , x s + t + 1 d f ( x s , x s + 1 , , x s + t 1 ) , f ( x s + 1 , x s + 2 , , x s + t ) .
Say d s = d x s , x s + 1 . By induction for all s 1 ,
d s K μ s
where μ = γ 1 / t and K = max d i γ i : 1 i t .
From (15)
d x s + t , x s + t + 1 = d f x s , x s + 1 , , x s + t 1 , f x s + 1 , , x s + t γ max { d x i , x i + 1 : s i s + t 1 } = γ max { d s , d s + 1 , , d s + t 1 } = γ K μ s = K μ s + t .
Similarly, the proof of Theorem 1, we obtain x s is a F-Cauchy sequence. Since X , d is F-complete and P 0 is closed subset, then there exists a y P 0 with lim s d ( x s , y ) = 0 .
Now, we show that y is a best proximity point of f. For y , y , , y P 0 k , we know that f y , y , , y f P 0 k V 0 . Then for any x P 0
d x , f y , y , , y = d P , V .
By (15),
d f x , x , , x , f y , y , , y ) γ max { d x , x , d y , y } = 0 .
Since f is one two one, then we have x = y . Hence
d y , f y , y , , y = d P , V .
Now, we show the uniqueness of the best proximity point. Suppose f has different best proximity points y , z with y z . By (15),
d y , z d f y , y , , y , f z , z , , z γ d y , z
which is a contradiction with γ 0 , 1 . Thus f has a unique best proximity point. □
Example 3.
Let X = N and d : X × X [ 0 , ) , d ( x , v ) = x v 2 , if x , v [ 0 , 3 ] x v 2 other . Then ( X , d ) is F-complete F-metric space with F ( t ) = ln t . Suppose P = { 2 , 3 } and V = { 4 , 5 , 6 } . We have P 0 = { 2 } and V 0 = { 4 } . Obviously, P 0 is closed and P and V satisfy weak P-property. Define
f : P 2 V as f ( x , v ) = x + v .
Obviously, for any γ 1 2 , 1 , all conditions of Theorem 5 and x = 2 is best proximity point of f with d ( 2 , f ( 2 , 2 ) ) = 1 = d ( P , V ) .
Corollary 3.
Let P , V be a pair of nonempty subsets of a F-complete F-metric space X , d , U 0 is a nonempty and closed set and P , V has weak P-property. Let f : X k X be a one to one mapping satisfying
d f x 1 , x 2 , x t , f x 2 , x t + 1 Σ i = 1 t γ i d x i , x i + 1
for all x i X , where γ ( 0 , 1 ) . If f P 0 k V 0 , then f has a unique best proximity point.

5. Conclusions and Future Work

The classical Banach contraction principle and most of the generalizations give unique fixed-point results for self mappings. In this work, we have proven fixed point and best proximity point theorems in F-metric spaces which have nonnegativity, symmetry, and generalized triangular inequality. Every metric is a F-metric, but the converse is not true. Therefore, it is more general than many distance functions in the literature. Consequently, applications of fixed point results are useful in many sciences, and they can make solving problems easier.
In future studies, weak Prešić type contractive condition can be defined, and fixed point theorems, best proximity theorems, and common fixed point theorems can be proved in F-metric. In addition, applications can be given to Fredholm and Volterra integral equations and differential equations. There will be several useful applications, especially in mathematics and engineering.

Funding

This research received no external funding.

Data Availability Statement

Not applicable.

Acknowledgments

The author thanks to references.

Conflicts of Interest

The author declares no conflict of interest.

References

  1. Presic, S.B. Sur la convergence des suites. Comptes Rendus l’Acad. Sci. Paris 1965, 260, 3828–3830. [Google Scholar]
  2. Ciric, L.B.; Presic, S.B. On Presic type generalization of the Banach contraction mapping principle. Acta Math. Univ. Comanian 2007, 76, 143–147. [Google Scholar]
  3. Alansari, M.; Ali, M.U. Interpolative Prešić type contractions and related results. J. Funct. Spaces 2022, 6911475. [Google Scholar] [CrossRef]
  4. Altun, I.; Qasım, M.; Olgun, M. A new result of prešić type theorems with applications to second order boundary value problems. Filomat 2021, 35, 2257–2266. [Google Scholar] [CrossRef]
  5. Boriwan, P.; Petrot, N.; Suantai, S. Fixed point theorems for Prešić almost contraction mappings in orbitally complete metric spaces endowed with directed graphs. Carpathian J. Math. 2016, 32, 303–313. [Google Scholar] [CrossRef]
  6. Chen, C.H. A Prešic type contractive condition and its applications. Nonlinear Anal. Theory Methods Appl. 2009, 71, 2012–2017. [Google Scholar] [CrossRef]
  7. Faruk, S.; Tom, M.A.S.; Khan, Q.H.; Khan, F.H. On Prešić–Ćirić-Type α-ψ contractions with an application. Symmetry 2022, 14, 1166. [Google Scholar]
  8. Gholidahneh, A.; Sedghi, S.; Parvaneh, V. Some fixed point results for Perov-Ćirić-Prešić type F-contractions with application. Seq. Spaces Funct. Spaces Approx. Theory 2020, 2020, 1464125. [Google Scholar] [CrossRef]
  9. Mohammadi, B.; Rezapour, S.; Shahzad, N. Some results on fixed points of alpha-psi Ciric generalized multifunctions. Fixed Point Theory Appl. 2013, 2013, 24. [Google Scholar] [CrossRef] [Green Version]
  10. Pacurar, M. A multi-step iterative method for approximating fixed point of Prešić-Kannan operators. Acta Math. Univ. Comenian 2010, 79, 77–88. [Google Scholar]
  11. Shukla, S.; Shahzad, N. alpha-admissible Prešic type operators and fixed points. Nonlinear Anal. Model. Control 2010, 21, 424–436. [Google Scholar] [CrossRef]
  12. Jleli, M.; Samet, B. On a new generalization of metric spaces. J. Fixed Point Theory Appl. 2018, 20, 128. [Google Scholar] [CrossRef] [Green Version]
  13. Wardowski, D. Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 2012, 94. [Google Scholar] [CrossRef] [Green Version]
  14. Mitrovic, Z.D.; Aydi, H.; Hussain, N.; Mukheimer, A. Reich, Jungck, and Berinde Common fixed point results on F-metric spaces and an application. Mathematics 2019, 7, 387. [Google Scholar] [CrossRef] [Green Version]
  15. Zhou, M.; Saleem, N.; Ali, B.; Misha Mohsin, M.; Hierro, A.F.R.L. Common best proximity points and completeness of F-Metric Spaces. Mathematics 2023, 11, 281. [Google Scholar] [CrossRef]
  16. Lateefa, D.; Ahmad, J. Dass and Gupta’s fixed point theorem in F-metric spaces. J. Nonlinear Sci. Appl. 2019, 12, 405–411. [Google Scholar] [CrossRef]
  17. Jahangir, F.; Haghmaram, P.; Nourouzi, K. A note on F-metric spaces. J. Fixed Point Theory Appl. 2021, 23, 2. [Google Scholar] [CrossRef]
  18. Faraji, H.; Mirkov, N.; Mitrović, Z.D.; Ramaswamy, R.; Abdelnaby, O.A.A.; Radenović, S. Some new results for (alpha, beta)-admissible mappings in F-metric spaces with applications to integral equations. Symmetry 2022, 14, 2429. [Google Scholar] [CrossRef]
  19. Basha, S.S. Best proximity point theorems. J. Approx. Theory 2011, 163, 1772–1781. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Ozturk, V. Some Results for Ćirić–Prešić Type Contractions in F-Metric Spaces. Symmetry 2023, 15, 1521. https://doi.org/10.3390/sym15081521

AMA Style

Ozturk V. Some Results for Ćirić–Prešić Type Contractions in F-Metric Spaces. Symmetry. 2023; 15(8):1521. https://doi.org/10.3390/sym15081521

Chicago/Turabian Style

Ozturk, Vildan. 2023. "Some Results for Ćirić–Prešić Type Contractions in F-Metric Spaces" Symmetry 15, no. 8: 1521. https://doi.org/10.3390/sym15081521

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop