Next Article in Journal
An Extended Vector Polar Histogram Method Using Omni-Directional LiDAR Information
Next Article in Special Issue
On Classes of Meromorphic Functions Defined by Subordination and Convolution
Previous Article in Journal
Homotopy Double Copy of Noncommutative Gauge Theories
Previous Article in Special Issue
New Applications of Gaussian Hypergeometric Function for Developments on Third-Order Differential Subordinations
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

New Results on a Fractional Integral of Extended Dziok–Srivastava Operator Regarding Strong Subordinations and Superordinations

Department of Mathematics and Computer Science, University of Oradea, 1 Universitatii Street, 410087 Oradea, Romania
Symmetry 2023, 15(8), 1544; https://doi.org/10.3390/sym15081544
Submission received: 6 July 2023 / Revised: 2 August 2023 / Accepted: 3 August 2023 / Published: 5 August 2023

Abstract

:
In 2012, new classes of analytic functions on U × U ¯ with coefficient holomorphic functions in U ¯ were defined to give a new approach to the concepts of strong differential subordination and strong differential superordination. Using those new classes, the extended Dziok–Srivastava operator is introduced in this paper and, applying fractional integral to the extended Dziok–Srivastava operator, we obtain a new operator D z γ H m l α 1 , β 1 that was not previously studied using the new approach on strong differential subordinations and superordinations. In the present article, the fractional integral applied to the extended Dziok–Srivastava operator is investigated by applying means of strong differential subordination and superordination theory using the same new classes of analytic functions on U × U ¯ . Several strong differential subordinations and superordinations concerning the operator D z γ H m l α 1 , β 1 are established, and the best dominant and best subordinant are given for each strong differential subordination and strong differential superordination, respectively. This operator may have symmetric or asymmetric properties.

1. Introduction

Antonino and Romaguera [1] were the first who used the notion of strong differential subordination to study the Briot–Bouquet strong differential subordination. They introduced this concept as an extension of the classical differential subordination defined by Miller and Mocanu [2,3]. The well-known notions from the theory of differential subordination [4] were extended in 2009 [5], building the theory of strong differential subordination. The dual notion of differential subordination, differential superordination [6] was extended in 2009 [7], introducing the concept of strong differential superordination. The theories of strong differential subordination and superordination experienced a beautiful development. The best dominant for a strong differential subordination, and the dual notion, the best subordinant of a strong differential superordination, were established in [8], and first examples of strong differential subordinations and superordinations of analytic functions were given in [9]. Since then, there have been results regarding strong differential subordination and superordination with well-known operators: Liu–Srivastava operator [10], Sălăgean differential operator [11], Ruscheweyh derivative [12] and combinations between Sălăgean and Ruscheweyh operators [13], Komatu integral operator [14,15], multiplier transformation [16,17], general differential operators [18,19], and many others well-known operators [20,21,22,23].
Fractional calculus was associated with strong differential subordination theory in early studies [24], but this line of research was not followed. The development facilitated using quantum calculus and fractional calculus in geometric function theory is described in Srivastava’s paper [25]. A new integro-differential operator defined considering the meromorphic functions and the Mittag-Leffler function is studied in [26]. In Ref. [27], formulas for several fractional differintegral operators were developed and introduced by applying Riemann–Liouville fractional integrals. Ref. [28] described a qualitative analysis regarding a nonlinear Langevin integro-fractional differential equation. Fractional calculus is applied to Mittag-Leffler functions of one, two, three, and four parameters in [29]. Applying fractional calculus to the Mittag-Leffler function and confluent hypergeometric functions, new results were obtained in [30] regarding the Mittag-Leffler-confluent hypergeometric function. In [31], the authors applied fractional calculus to special functions to define and investigate new variants of the Gamma and Kummer functions for Mittag-Leffler functions. The Caputo–Katugampola fractional derivative was introduced and used to study a new class of fractional Volterra–Fredholm integro-differential equations in [32].
Starting with the results obtained in [33], which investigated the fractional integral of the Dziok–Srivastava operator using differential subordination theory, we intended to study this operator regarding the other types of differential subordinations and superordinations: strong and fuzzy. Therefore, in this paper we used the strong differential subordination and the strong differential superordination theories and we extended the Dziok–Srivastava operator to the class of analytic functions A τ * and, applying fractional integral to this extended operator, we introduced a new operator D z γ H m l α 1 , β 1 in A τ * , which has not been previously studied.
The novelty of this research is in the definition of the fractional integral of the extended Dziok–Srivastava operator introduced in Definition 6 and in the manner in which it is used to get new strong differential subordination results, together with the dual new strong differential superordinations. In each theorem, the best dominant or the best subordinant, respectively, is established. Replacing the functions considered as best subordinant or best dominant from the theorems with remarkable functions and using their geometric properties produce interesting corollaries.
Next, the main notions used in the research are recalled and basic lemmas applied to prove the main results.
The expression H ( U × U ¯ ) represents the family of analytic functions from U × U ¯ , considering U = { t C : | t | < 1 } and its closure U ¯ = { t C : | t | 1 } . To avoid the similarity problem, the classical notations must be changed.
Both dual theories of strong differential subordination and superordination use specific subclasses of H ( U × U ¯ ) extending the classical ones [34]:
A n τ * = { f ( t , τ ) = t + a n + 1 τ t n + 1 + } H ( U × U ¯ ) ,
denoted by A τ * for n = 1 , and
H * [ a , n , τ ] = { f ( t , τ ) = a + a n τ t n + a n + 1 τ t n + 1 + } H ( U × U ¯ ) ,
with a k τ being holomorphic functions in U ¯ , taking n N , k n + 1 and a C .
The notion of strong differential subordination is defined as follows:
Definition 1 
([5]). Between the analytic functions f t , τ and H t , τ exists a strong differential subordination when there exists an analytic function u in U, with the properties u t < 1 ,   t U and u 0 = 0 , such that f t , τ = H u t , τ for all t , τ U × U ¯ , and this relation is denoted by f t , τ H t , τ .
Remark 1 
([5]). (i) For the univalent function f t , τ in U , with τ U ¯ , the relations from Definition 1 mean f U × U ¯ H U × U ¯ and f 0 , τ = H 0 , τ , with τ U ¯ .
(ii) The special case when H t , τ = H t and f t , τ = f t reduces the strong differential subordination to the classical differential subordination.
To investigate strong differential subordination, the following lemmas are needed.
Lemma 1 
([35]). Considering the function p H * [ a , n , τ ] satisfying the strong differential subordination
p t , τ + 1 η t p t t , τ h t , τ , t U , τ U ¯ ,
where h t , τ is a convex function such that h 0 , τ = a , τ U ¯ and η C * with R e η 0 , we obtain the strong differential subordinations
p t , τ q t , τ h t , τ ,
and the convex function q t , τ = η n t η n 0 t h x , τ x η n 1 d x is the best dominant.
Lemma 2 
([35]). Considering the holomorphic function
p ( t , τ ) = q ( 0 , τ ) + p n τ t n + p n + 1 τ t n + 1 + ,
in U × U ¯ satisfying the strong differential subordination
p ( t , τ ) + η t p t ( t , τ ) h ( t , τ ) , t U , τ U ¯ ,
where q t , τ is a convex function and
h ( t , τ ) = q ( t , τ ) + n η t q t ( t , τ ) ,
for n a positive integer and η > 0 , we obtain the sharp strong differential subordination
p ( t , τ ) q ( t , τ ) .
The notion of strong differential superordination is defined as follows:
Definition 2 
([7]). Between the analytic functions f t , τ and H t , τ exists a strong differential superordination when there exists an analytic function u in U, with the properties u t < 1 ,   t U and u 0 = 0 , such that H t , τ = f u t , τ , for all t , τ U × U ¯ , and this relation is denoted by H t , τ f t , τ .
Remark 2 
([7]). (i) For the univalent function f t , τ in U , with τ U ¯ , the relations from Definition 2 mean H U × U ¯ f U × U ¯ and H 0 , τ = f 0 , τ , with τ U ¯ .
(ii) The special case when H t , τ = H t and f t , τ = f t reduces the strong differential superordination to the classical differential superordination.
Definition 3 
([36]). The expression Q * consists all the injective analytic functions on U ¯ × U ¯ \ E f , τ , satisfying f t x , τ 0 with x U × U ¯ \ E f , τ , and E f , τ = { x U : lim t x f t , τ = } . When f 0 , τ = a , Q * is denoted by Q * a .
To explore strong differential superordination, the following lemmas are needed.
Lemma 3 
([37]). Considering the function p H * [ a , n , τ ] Q * , satisfying the strong differential superordination
h ( t , τ ) p ( t , τ ) + 1 η t p t ( t , τ ) , t U , τ U ¯ ,
and p ( t , τ ) + 1 η t p t ( t , τ ) is univalent in U × U ¯ , where h t , τ is a convex function such that h ( 0 , τ ) = a , τ U ¯ and η C * with R e η 0 , we obtain the strong differential superordination
q ( t , τ ) p ( t , τ ) ,
and the convex function q ( t , τ ) = η n t η n 0 t h x , τ x η n 1 d x ,   t U ,   τ U ¯ , is the best subordinant.
Lemma 4 
([37]). Considering the function p H * a , n , τ Q * satisfying the strong differential superordination
q ( t , τ ) + 1 η t q t ( t , τ ) p ( t , τ ) + 1 η t p t t , τ , t U , τ U ¯ ,
and p ( t , τ ) + 1 η t p t ( t , τ ) is univalent in U × U ¯ , where q t , τ is a convex function and
h ( t , τ ) = q ( t , τ ) + 1 η t q t ( t , τ ) ,
for η C * with R e η 0 , we obtain the strong differential superordination
q ( t , τ ) p ( t , τ ) , t U , τ U ¯ ,
and the convex function q ( t , τ ) = η n t η n 0 t h x , τ x η n 1 d x ,   t U , τ U ¯ , is the best subordinant.
We recall the definition of fractional integral used to obtain a new operator studied in this paper.
Definition 4 
([38,39]). For an analytic function f in a simply connected region of the z-plane that contains the origin, the fractional integral of order γ ( γ > 0 ) is given by
D t γ f t , τ = 1 Γ γ 0 t f x , τ t x 1 γ d x ,
when t x > 0 , removing the multiplicity of t x γ 1 by requiring log t x to be real.

2. Main Results

The Dziok–Srivastava operator was introduced in [40], and a lot of papers investigated the properties of this operator ([41,42,43,44,45,46]).
We extend the Dziok–Srivastava operator to the class of analytic functions A τ * .
Definition 5 
([47]). For f A τ * , the extended Dziok–Srivastava operator is given by
H m l α 1 , α 2 , . . . , α m ; β 1 , β 2 , . . . , β l : A τ * A τ * ,
H m l α 1 , α 2 , . . . , α m ; β 1 , β 2 , . . . , β l f t , τ = z + j = 2 α 1 j 1 α 2 j 1 . . . α m j 1 β 1 j 1 β 2 j 1 . . . β l j 1 Γ j a j τ t j ,
α k C , k = 1 , 2 , . . . , m , β i C { 0 , 1 , 2 , . . . } ,   i = 1 , 2 , . . . , l , and the Pochhammer symbol x j is defined by
x j = Γ x + j Γ x = 1 , for j = 0 and x C { 0 } , x x + 1 . . . x + j 1 , for j N and x C .
For simplicity, we write
H m l α 1 , β 1 f t , τ = H m l α 1 , α 2 , . . . , α m ; β 1 , β 2 , . . . , β l f t , τ .
Applying fractional integral to the extended Dziok–Srivastava operator, we obtain a new operator studied in this paper.
Definition 6. 
The fractional integral applied to the extended Dziok–Srivastava operator is defined by
D t γ H m l α 1 , β 1 f t , τ = 1 Γ γ 0 t H m l α 1 , β 1 f x , τ t x 1 γ d x ,
and, after a simple computation, can be written as follows:
D t γ H m l α 1 , β 1 f t , τ = 1 Γ 2 + γ t 1 + γ + j = 2 j j + γ ! α 1 j 1 α 2 j 1 . . . α m j 1 β 1 j 1 β 2 j 1 . . . β l j 1 j 1 ! a j τ t j + γ ,
considering the function f ( t , τ ) = t + j = 2 a j τ t j A τ * .
With a short computation, we get the relation
t D t γ H m l α 1 , β 1 f t , τ t = α 1 D t γ H m l α 1 + 1 , β 1 f t , τ α 1 1 + γ D t γ H m l α 1 , β 1 f t , τ .
A similar result is found for the parameter β 1 .

2.1. Strong Differential Subordination

In this subsection, we get strong differential subordinations involving the fractional integral of the extended Dziok–Srivastava operator.
Theorem 1. 
Considering the convex function q t , τ with the property q ( 0 , τ ) = 0 , we take the function h ( t , τ ) = q ( t , τ ) + γ t q t ( t , τ ) ,   t U , τ U ¯ , with γ a positive integer.
If the strong differential subordination
D t γ H m l α 1 , β 1 f t , τ t h ( t , τ ) ,
is satisfied when f A τ * , then we get the following sharp strong differential subordination:
D t γ H m l α 1 , β 1 f t , τ t q ( t , τ ) .
Proof. 
Take p ( t , τ ) = D t γ H m l α 1 , β 1 f t , τ t H * 0 , γ , τ , t U , τ U ¯ , then D t γ H m l α 1 , β 1 f t , τ = t p ( t , τ ) and, differentiating the relation with respect to t, we get D t γ H m l α 1 , β 1 f t , τ t = p ( t , τ ) + t p t ( t , τ ) . Then, strong subordination (6) has the following form:
p ( t , τ ) + t p t ( t , τ ) h ( t , τ ) = q ( t , τ ) + γ t q t ( t , τ ) ,
and, applying Lemma 2, we get
p ( t , τ ) q ( t , τ ) , i . e . , D t γ H m l α 1 , β 1 f t , τ t q ( t , τ ) .
 □
Theorem 2. 
If h t , τ is a convex function with h ( 0 , τ ) = 0 , satisfying the strong differential subordination:
D t γ H m l α 1 , β 1 f t , τ t h ( t , τ ) ,
for f A τ * , then we get the following strong differential subordination
D t γ H m l α 1 , β 1 f t , τ t q ( t , τ ) ,
and the convex function q ( t , τ ) = 1 t 0 t h ( x , τ ) d x is the best dominant.
Proof. 
Let p ( t , τ ) = D t γ H m l α 1 , β 1 f t , τ t H * 0 , λ , τ , t U ,   τ U ¯ .
Differentiating relation D t γ H m l α 1 , β 1 f t , τ = t p ( t , τ ) , with respect to t, it yields D t γ H m l α 1 , β 1 f t , τ t = p ( t , τ ) + t p t ( t , τ ) , and the strong subordination (7) will be
t p t ( t , τ ) + p ( t , τ ) h ( t , τ ) ,
and applying Lemma 1, we obtain
p ( t , τ ) q ( t , τ ) , i . e . , D t γ H m l α 1 , β 1 f t , τ t q ( t , τ ) = 1 t 0 t h ( x , τ ) d x ,
with q as the best dominant.  □
Corollary 1. 
Taking the convex function h ( t , τ ) = τ + 2 ( λ τ ) t 1 + t , with 0 λ < 1 satisfying the strong subordination
D t γ H m l α 1 , β 1 f t , τ t h ( t , τ ) ,
for f A τ * , then we get the strong subordination
D t γ H m l α 1 , β 1 f t , τ t q ( t , τ ) ,
and the convex function q ( t , τ ) = 2 λ τ + 2 ( τ λ ) ln ( 1 + t ) t ,   t U ,   τ U ¯ is the best dominant.
Proof. 
Repeating the steps made in the proof of Theorem 2, taking p ( t , τ ) = D t λ H m l α 1 , β 1 f t , τ t , the strong subordination (8) takes the form
p ( t , τ ) + t p t ( t , τ ) h ( t , τ ) = τ + 2 ( λ τ ) t 1 + t ,
for which, applying Lemma 1, we get p ( t , τ ) q ( t , τ ) , i.e.,
D t γ H m l α 1 , β 1 f t , τ t q ( t , τ ) = 1 t 0 t h ( x , τ ) d x = 1 t 0 t τ + 2 ( λ τ ) x 1 + x d x = 2 λ τ + 2 ( τ λ ) 1 t ln ( t + 1 ) , t U , τ U ¯ .
 □
Theorem 3. 
Taking the convex function q t , τ with q ( 0 , τ ) = 0 , we consider the function h ( t , τ ) = q ( t , τ ) + 1 μ t q t ( t , τ ) , with μ a positive integer, t U ,   τ U ¯ .
If the strong subordination is accomplished
D t γ H m l α 1 , β 1 f t , τ t μ 1 D t γ H m l α 1 , β 1 f t , τ t h ( t , τ ) ,
for f A τ * , then we get the following sharp strong subordination:
D t λ H m l α 1 , β 1 f t , τ t μ q ( t , τ ) .
Proof. 
Taking p ( t , τ ) = D t γ H m l α 1 , β 1 f t , τ t μ H * 0 , γ μ , τ , t U ,   τ U ¯ , and applying differentiation with respect to t, we have t p t t , τ = μ D t γ H m l α 1 , β 1 f t , τ t μ 1 D t γ H m l α 1 , β 1 f t , τ t μ D t γ H m l α 1 , β 1 f t , τ t μ = μ D t γ H m l α 1 , β 1 f t , τ t μ 1 D t γ H m l α 1 , β 1 f t , τ t μ p t , τ , written as p ( t , τ ) + 1 μ t p t ( t , τ ) = D t γ H m l α 1 , β 1 f t , τ t μ 1 D t γ H m l α 1 , β 1 f t , τ t .
In these conditions, strong subordination (9) takes the form
p ( t , τ ) + 1 μ t p t ( t , τ ) h ( t , τ ) = q ( t , τ ) + 1 μ t q t ( t , τ ) ,
and applying Lemma 2, we get
p ( t , τ ) q ( t , τ ) , i . e . , D t γ H m l α 1 , β 1 f t , τ t μ q ( t , τ ) .
 □
Theorem 4. 
Let the convex function h t , τ with h ( 0 , τ ) = 0 , verifying the strong subordination
D t γ H m l α 1 , β 1 f t , τ t μ 1 D t γ H m l α 1 , β 1 f t , τ t h ( t , τ ) ,
for f A τ * and μ a positive integer, then we get the following strong subordination:
D t γ H m l α 1 , β 1 f t , τ t μ q ( t , τ ) ,
and the convex function q ( t , τ ) = μ t μ 0 t h ( x , τ ) x μ 1 d x is the best dominant.
Proof. 
Let p ( t , τ ) = D t γ H m l α 1 , β 1 f t , τ t μ H * 0 , γ μ , τ , t U ,   τ U ¯ .
Applying the computation made in the proof of Theorem 3, we get
p ( t , τ ) + 1 μ t p t ( t , τ ) = D t γ H m l α 1 , β 1 f t , τ t μ 1 D t γ H m l α 1 , β 1 f t , τ t ,
and the strong subordination (10) becomes
p ( t , τ ) + 1 μ t p t ( t , τ ) h ( t , τ )
and verifies the conditions from Lemma 1, so we get the strong subordination
p ( t , τ ) q ( t , τ ) , i . e . , D t γ H m l α 1 , β 1 f t , τ t μ q ( t , τ ) = μ t μ 0 t h ( x , τ ) x μ 1 d x ,
with q as the best dominant.  □
Theorem 5. 
Let the convex function q t , τ with g ( 0 , τ ) = 1 1 + γ , we take the function h ( t , τ ) = q ( t , τ ) + t q t ( t , τ ) ,   t U ,   τ U ¯ .
If the strong subordination
α 1 2 D t γ H m l α 1 + 1 , β 1 f t , τ 2 α 1 α 1 + 1 D t γ H m l α 1 , β 1 f t , τ · D t γ H m l α 1 + 2 , β 1 f t , τ α 1 D t γ H m l α 1 + 1 , β 1 f t , τ α 1 1 + γ D t γ H m l α 1 , β 1 f t , τ 2 + 2 α 1 D t γ H m l α 1 , β 1 f t , τ · D t γ H m l α 1 + 1 , β 1 f t , τ α 1 1 + γ D t γ H m l α 1 , β 1 f t , τ 2 α 1 D t γ H m l α 1 + 1 , β 1 f t , τ α 1 1 + γ D t γ H m l α 1 , β 1 f t , τ 2 h ( t , τ ) ,
holds for f A τ * , then we get the sharp strong subordination
D t γ H m l α 1 , β 1 f t , τ t D t γ H m l α 1 , β 1 f t , τ t q ( t , τ ) .
Proof. 
Considering p ( t , τ ) = D t γ H m l α 1 , β 1 f t , τ t D t γ H m l α 1 , β 1 f t , τ t and differentiating with respect to t yields 1 D t γ H m l α 1 , β 1 f t , τ · D t γ H m l α 1 , β 1 f t , τ t 2 D t γ H m l α 1 , β 1 f t , τ t 2 = p t , τ + t p t t , τ .
After a short computation and applying relation (5), we get
1 D t γ H m l α 1 , β 1 f t , τ · D t γ H m l α 1 , β 1 f t , τ t 2 D t γ H m l α 1 , β 1 f t , τ t 2 =
α 1 2 D t γ H m l α 1 + 1 , β 1 f t , τ 2 α 1 α 1 + 1 D t γ H m l α 1 , β 1 f t , τ · D t γ H m l α 1 + 2 , β 1 f t , τ α 1 D t γ H m l α 1 + 1 , β 1 f t , τ α 1 1 + γ D t γ H m l α 1 , β 1 f t , τ 2 +
2 α 1 D t γ H m l α 1 , β 1 f t , τ · D t γ H m l α 1 + 1 , β 1 f t , τ α 1 1 + γ D t γ H m l α 1 , β 1 f t , τ 2 α 1 D t γ H m l α 1 + 1 , β 1 f t , τ α 1 1 + γ D t γ H m l α 1 , β 1 f t , τ 2
In these conditions, the strong subordination (11) becomes
p ( t , τ ) + t p t ( t , τ ) h ( t , τ ) = q ( t , τ ) + t q t ( t , τ ) ,
and applying Lemma 2, we get the sharp strong subordination
p ( t , τ ) q ( t , τ ) , i . e . , D t γ H m l α 1 , β 1 f t , τ t D t γ H m l α 1 , β 1 f t , τ t q ( t , τ ) .
 □
Theorem 6. 
Let the convex function h t , τ with h ( 0 , τ ) = 1 1 + γ , verifying the strong differential subordination
α 1 2 D t γ H m l α 1 + 1 , β 1 f t , τ 2 α 1 α 1 + 1 D t γ H m l α 1 , β 1 f t , τ · D t γ H m l α 1 + 2 , β 1 f t , τ α 1 D t γ H m l α 1 + 1 , β 1 f t , τ α 1 1 + γ D t γ H m l α 1 , β 1 f t , τ 2 + 2 α 1 D t γ H m l α 1 , β 1 f t , τ · D t γ H m l α 1 + 1 , β 1 f t , τ α 1 1 + γ D t γ H m l α 1 , β 1 f t , τ 2 α 1 D t γ H m l α 1 + 1 , β 1 f t , τ α 1 1 + γ D t γ H m l α 1 , β 1 f t , τ 2 h ( t , τ ) ,
for f A τ * , then we get the strong subordination
D t γ H m l α 1 , β 1 f t , τ t D t γ H m l α 1 , β 1 f t , τ t q ( t , τ ) ,
and the convex function q ( t , τ ) = 1 t 0 t h ( x , τ ) d x is the best dominant.
Proof. 
Denote p ( t , τ ) = D t γ H m l α 1 , β 1 f t , τ t D t γ H m l α 1 , β 1 f t , τ t .
Using the same steps and the computation used in the proof of Theorem 5, we get
p ( t , τ ) + t p t ( t , τ ) = 1 D t γ H m l α 1 , β 1 f t , τ · D t γ H m l α 1 , β 1 f t , τ t 2 D t γ H m l α 1 , β 1 f t , τ t 2 ,
and the strong subordination (12) takes the form
p ( t , τ ) + t p t ( t , τ ) h ( t , τ ) ,
and applying Lemma 1, we have the strong subordination
p ( t , τ ) q ( t , τ ) , i . e . , D t γ H m l α 1 , β 1 f t , τ t D t γ H m l α 1 , β 1 f t , τ t q ( t , τ ) = 1 t 0 t h ( x , τ ) d x ,
and the best dominant is the function q.  □
Theorem 7. 
Let the convex function q t , τ with q ( 0 , τ ) = 0 ; we take the function h ( t , τ ) = q ( t , τ ) + γ t q t ( t , τ ζ ) , with γ a positive integer, t U , τ U ¯ .
If the strong subordination
α 1 α 1 + 1 D t γ H m l α 1 + 2 , β 1 f t , τ t + α 1 1 2 α 1 + 2 γ D t γ H m l α 1 + 1 , β 1 f t , τ t + α 1 1 γ 2 D t λ H m l α 1 , β 1 f t , τ t h ( t , τ ) ,
is accomplished for f A τ * , then we get the sharp strong subordination
D t γ H m l α 1 , β 1 f t , τ t q ( t , τ ) .
Proof. 
Let
p ( t , τ ) = D t γ H m l α 1 , β 1 f t , τ t H * 0 , γ , τ .
Using relation (5), we get
t p t , τ = α 1 D t γ H m l α 1 + 1 , β 1 f t , τ α 1 1 + γ D t γ H m l α 1 , β 1 f t , τ ,
and differentiating it with respect to t, it yields
p t , τ + t p t t , τ = α 1 α 1 + 1 D t γ H m l α 1 + 2 , β 1 f t , τ t +
α 1 1 2 α 1 + 2 γ D t γ H m l α 1 + 1 , β 1 f t , τ t + α 1 1 γ 2 D t γ H m l α 1 , β 1 f t , τ t .
In these conditions, the strong subordination (14) takes the form
p ( t , τ ) + t p t ( t , τ ) h ( t , τ ) = q ( t , τ ) + γ t q t ( t , τ ) ,
and using Lemma 2, we get the sharp strong subordination
p ( t , τ ) q ( t , τ ) , i . e . , D t γ H m l α 1 , β 1 f t , τ t q ( t , τ ) .
 □
Theorem 8. 
Let the convex function h t , τ with h ( 0 , τ ) = 0 , verifying the strong subordination
α 1 α 1 + 1 D t γ H m l α 1 + 2 , β 1 f t , τ t + α 1 1 2 α 1 + 2 γ D t γ H m l α 1 + 1 , β 1 f t , τ t + α 1 1 γ 2 D t γ H m l α 1 , β 1 f t , τ t h ( t , τ ) ,
for f A τ * , then we get the strong subordination
D t γ H m l α 1 , β 1 f t , τ t q ( t , τ ) ,
and the convex function q ( t , τ ) = 1 t 0 t h ( x , τ ) d x is the best dominant.
Proof. 
Let p ( t , τ ) = D t γ H m l α 1 , β 1 f t , τ t H * 0 , γ , τ , t U ,   τ U ¯ .
Using the computation used in the proof of Theorem 7, we get
t p t ( t , τ ) + p ( t , τ ) = α 1 α 1 + 1 D t γ H m l α 1 + 2 , β 1 f t , τ t +
α 1 1 2 α 1 + 2 γ D t γ H m l α 1 + 1 , β 1 f t , τ t + α 1 1 γ 2 D t γ H m l α 1 , β 1 f t , τ t ,
and the strong subordination (15) can be written as
p ( t , τ ) + t p t ( t , τ ) h ( t , τ ) ,
which satisfies Lemma 1, getting
p ( t , τ ) q ( t , τ ) , i . e . , D t γ H m l α 1 , β 1 f t , τ t q ( t , τ ) = 1 t 0 t h ( x , τ ) d x ,
and the best dominant is the function q.  □

2.2. Strong Differential Superordination

In this subsection, we get strong differential superordinations involving the fractional integral of the extended Dziok–Srivastava operator.
Theorem 9. 
Let the convex function q t , τ with q ( 0 , τ ) = 0 , we take the function h ( t , τ ) = q ( t , τ ) + γ t q t ( t , τ ) , for γ a positive integer, t U , τ U ¯ . Assume that D t γ H m l α 1 , β 1 f t , τ t Q * H * 0 , γ , τ and D t γ H m l α 1 , β 1 f t , τ t is univalent and the strong differential superordination is accomplished
h ( t , τ ) D t γ H m l α 1 , β 1 f t , τ t ,
for f A τ * , then we get the strong superordination
q ( t , τ ) D t γ H m l α 1 , β 1 f t , τ t ,
and the convex function q ( t , τ ) = 1 t 0 t h ( x , τ ) d x is the best subordinant.
Proof. 
Consider p ( t , τ ) = D t γ H m l α 1 , β 1 f t , τ t H * 0 , γ , τ , t U , τ U ¯ .
Differentiating the relation D t γ H m l α 1 , β 1 f t , τ = t p ( t , τ ) with respect to t, we get D t γ H m l α 1 , β 1 f t , τ t = p ( t , τ ) + t p t ( t , τ ) .
The strong superordination (16) takes the following form:
h ( t , τ ) = q ( t , τ ) + γ t q t ( t , τ ) p ( t , τ ) + t p t ( t , τ ) ,
and using Lemma 4, we get the strong superordination
q ( t , τ ) p ( t , τ ) , i . e . , q ( t , τ ) = 1 t 0 t h ( x , τ ) d x D t γ H m l α 1 , β 1 f t , τ t ,
and the best subordinant is the function q.  □
Theorem 10. 
If h t , τ is a convex function with h ( 0 , τ ) = 0 , assume that D t γ H m l α 1 , β 1 f t , τ t Q * H * 0 , γ , τ and D t γ H m l α 1 , β 1 f t , τ t is univalent and satisfies the strong differ- ential superordination
h ( t , τ ) D t γ H m l α 1 , β 1 f t , τ t ,
for f A τ * , then we get the following strong superordination:
q ( t , τ ) D t γ H m l α 1 , β 1 f t , τ t ,
and the convex function q ( t , τ ) = 1 t 0 t h ( x , τ ) d x is the best subordinant.
Proof. 
Let p ( t , τ ) = D t γ H m l α 1 , β 1 f t , τ t H * 0 , λ , τ , t U ,   τ U ¯ .
Applying differentiation with respect to t to the relation D t γ H m l α 1 , β 1 f t , τ = t p ( t , τ ) , we get D t γ H m l α 1 , β 1 f t , τ t = p ( t , τ ) + t p t ( t , τ ) , and the strong superordination (17) takes the form
h ( t , τ ) t p t ( t , τ ) + p ( t , τ ) ,
for which, applying Lemma 3, we get
q ( t , τ ) p ( t , τ ) , i . e . , q ( t , τ ) = 1 t 0 t h ( x , τ ) d x D t γ H m l α 1 , β 1 f t , τ t ,
and the best subordinant is the function q.  □
Corollary 2. 
Considering the convex function h ( t , τ ) = τ + 2 ( λ τ ) t 1 + t for 0 λ < 1 , f A τ * , we assume that D t γ H m l α 1 , β 1 f t , τ t Q * H * 0 , γ , τ , D t γ H m l α 1 , β 1 f t , τ t is univalent and the strong superordination
h ( t , τ ) D t γ H m l α 1 , β 1 f t , τ t ,
is verified, then we get the strong superordination
q ( t , τ ) D t γ H m l α 1 , β 1 f t , τ t ,
and the convex function q ( t , τ ) = 2 λ τ + 2 ( τ λ ) ln ( 1 + t ) t ,   t U ,   τ U ¯ is the best subordinant.
Proof. 
Repeating the steps made in the proof of Theorem 10 considering p ( t , τ ) =   D t λ H m l α 1 , β 1 f t , τ t , the strong superordination (18) takes the form
h ( t , τ ) = τ + 2 ( λ τ ) t 1 + t p ( t , τ ) + t p t ( t , τ ) .
Using Lemma 3, it yields q ( t , τ ) p ( t , τ ) , i.e.,
q ( t , τ ) = 1 t 0 t h ( x , τ ) d x D t γ H m l α 1 , β 1 f t , τ t
and the best subordinant is the function
q ( t , τ ) = 1 t 0 t τ + 2 ( λ τ ) x 1 + x d x = 2 λ τ + 2 ( τ λ ) 1 t ln ( t + 1 ) , t U , τ U ¯ .
 □
Theorem 11. 
Let the convex function q t , τ with q ( 0 , τ ) = 0 , we take the function h ( t , τ ) = q ( t , τ ) + 1 μ t q t ( t , τ ) , with μ a positive integer, t U ,   τ U ¯ . Assume that for f A τ * , D t λ H m l α 1 , β 1 f t , τ t μ Q * H * 0 , γ μ , τ , D t γ H m l α 1 , β 1 f t , τ t μ 1 D t γ H m l α 1 , β 1 f t , τ t is univalent and the strong superordination
h ( t , τ ) D t γ H m l α 1 , β 1 f t , τ t μ 1 D t γ H m l α 1 , β 1 f t , τ t ,
is verified, then we get the strong superordination
q ( t , τ ) D t λ H m l α 1 , β 1 f t , τ t μ ,
and the convex function q ( t , τ ) = μ t μ 0 t h ( x , τ ) x μ 1 d x is the best subordinant.
Proof. 
Consider p ( t , τ ) = D t γ H m l α 1 , β 1 f t , τ t μ H * 0 , γ μ , τ , t U ,   τ U ¯ .
Differentiating with respect to t yields
t p t t , τ =
μ D t γ H m l α 1 , β 1 f t , τ t μ 1 D t γ H m l α 1 , β 1 f t , τ t μ D t γ H m l α 1 , β 1 f t , τ t μ =
μ D t γ H m l α 1 , β 1 f t , τ t μ 1 D t γ H m l α 1 , β 1 f t , τ t μ p t , τ ,
therefore p ( t , τ ) + 1 μ t p t ( t , τ ) = D t γ H m l α 1 , β 1 f t , τ t μ 1 D t γ H m l α 1 , β 1 f t , τ t .
In these conditions, the strong superordination (19) can be written as
h ( t , τ ) = q ( t , τ ) + 1 μ t q t ( t , τ ) p ( t , τ ) + 1 μ t p t ( t , τ ) ,
and by Lemma 4, we get the strong superordination
q ( t , τ ) p ( t , τ ) , i . e . , q ( t , τ ) D t γ H m l α 1 , β 1 f t , τ t μ ,
and the best subordinant is the function q ( t , τ ) = μ t μ 0 t h ( x , τ ) x μ 1 d x .  □
Theorem 12. 
Let the convex function h t , τ with h ( 0 , τ ) = 0 , and μ a positive integer, we assume for f A τ * that D t λ H m l α 1 , β 1 f t , τ t μ Q * H * 0 , γ μ , τ , D t γ H m l α 1 , β 1 f t , τ t μ 1 D t γ H m l α 1 , β 1 f t , τ t is univalent and the strong superordination is satisfied
h ( t , τ ) D t γ H m l α 1 , β 1 f t , τ t μ 1 D t γ H m l α 1 , β 1 f t , τ t ,
then the strong superordination
q ( t , τ ) D t γ H m l α 1 , β 1 f t , τ t μ ,
holds and the convex function q ( t , τ ) = μ t μ 0 t h ( x , τ ) x μ 1 d x is the best subordinant.
Proof. 
Let p ( t , τ ) = D t γ H m l α 1 , β 1 f t , τ t μ H * 0 , γ μ , τ , t U ,   τ U ¯ .
Using the computation used in the proof of Theorem 11 yields
p ( t , τ ) + 1 μ t p t ( t , τ ) = D t γ H m l α 1 , β 1 f t , τ t μ 1 D t γ H m l α 1 , β 1 f t , τ t ,
and the strong superordination (20) is written as
h ( t , τ ) p ( t , τ ) + 1 μ t p t ( t , τ ) .
By Lemma 3, we get the strong superordination
q ( t , τ ) p ( t , τ ) , i . e . , q ( t , τ ) = μ t μ 0 t h ( x , τ ) x μ 1 d x D t γ H m l α 1 , β 1 f t , τ t μ ,
and the best subordinant is the function q.  □
Theorem 13. 
Let the convex function q t , τ with g ( 0 , τ ) = 1 1 + γ , we take the function h ( t , τ ) = q ( t , τ ) + t q t ( t , τ ) , and assume that f A τ * , D t γ H m l α 1 , β 1 f t , τ t D t γ H m l α 1 , β 1 f t , τ t Q * H * 1 1 + γ , 1 , τ , α 1 2 D t γ H m l α 1 + 1 , β 1 f t , τ 2 α 1 α 1 + 1 D t γ H m l α 1 , β 1 f t , τ · D t γ H m l α 1 + 2 , β 1 f t , τ α 1 D t γ H m l α 1 + 1 , β 1 f t , τ α 1 1 + γ D t γ H m l α 1 , β 1 f t , τ 2 + 2 α 1 D t γ H m l α 1 , β 1 f t , τ · D t γ H m l α 1 + 1 , β 1 f t , τ α 1 1 + γ D t γ H m l α 1 , β 1 f t , τ 2 α 1 D t γ H m l α 1 + 1 , β 1 f t , τ α 1 1 + γ D t γ H m l α 1 , β 1 f t , τ 2 is univalent and verifies the strong differential superordination
h ( t , τ ) α 1 2 D t γ H m l α 1 + 1 , β 1 f t , τ 2 α 1 α 1 + 1 D t γ H m l α 1 , β 1 f t , τ · D t γ H m l α 1 + 2 , β 1 f t , τ α 1 D t γ H m l α 1 + 1 , β 1 f t , τ α 1 1 + γ D t γ H m l α 1 , β 1 f t , τ 2 + 2 α 1 D t γ H m l α 1 , β 1 f t , τ · D t γ H m l α 1 + 1 , β 1 f t , τ α 1 1 + γ D t γ H m l α 1 , β 1 f t , τ 2 α 1 D t γ H m l α 1 + 1 , β 1 f t , τ α 1 1 + γ D t γ H m l α 1 , β 1 f t , τ 2 ,
then we get the strong differential superordination
q ( t , τ ) D t γ H m l α 1 , β 1 f t , τ t D t γ H m l α 1 , β 1 f t , τ t ,
and the best subordinant is the convex function q ( t , τ ) = 1 t 0 t h ( x , τ ) d x .
Proof. 
Differentiating the relation p ( t , τ ) = D t γ H m l α 1 , β 1 f t , τ t D t γ H m l α 1 , β 1 f t , τ t with respect to t yields 1 D t γ H m l α 1 , β 1 f t , τ · D t γ H m l α 1 , β 1 f t , τ t 2 D z t γ H m l α 1 , β 1 f t , τ t 2 = p t , τ + t p t t , τ .
Making a short computation and applying relation (5), we get
1 D t γ H m l α 1 , β 1 f t , τ · D z t γ H m l α 1 , β 1 f t , τ t 2 D t γ H m l α 1 , β 1 f t , τ t 2 =
α 1 2 D t γ H m l α 1 + 1 , β 1 f t , τ 2 α 1 α 1 + 1 D t γ H m l α 1 , β 1 f t , τ · D t γ H m l α 1 + 2 , β 1 f t , τ α 1 D t γ H m l α 1 + 1 , β 1 f t , τ α 1 1 + γ D t γ H m l α 1 , β 1 f t , τ 2 +
2 α 1 D t γ H m l α 1 , β 1 f t , τ · D t γ H m l α 1 + 1 , β 1 f t , τ α 1 1 + γ D t γ H m l α 1 , β 1 f t , τ 2 α 1 D t γ H m l α 1 + 1 , β 1 f t , τ α 1 1 + γ D t γ H m l α 1 , β 1 f t , τ 2
In these conditions, the strong superordination takes the form
h ( t , τ ) = q ( t , τ ) + t q t ( t , τ ) p ( t , τ ) + t p t ( t , τ ) ,
and, applying Lemma 4, we get the strong superordination
q ( t , τ ) p ( t , τ ) , i . e . , q ( t , τ ) D t γ H m l α 1 , β 1 f t , τ t D t γ H m l α 1 , β 1 f t , τ t ,
and the best subordinant represents the function q ( t , τ ) = 1 t 0 t h ( x , τ ) d x .  □
Theorem 14. 
Taking the convex function h t , τ such that h ( 0 , τ ) = 1 1 + γ , we assume that f A τ * , D t γ H m l α 1 , β 1 f t , τ t D t γ H m l α 1 , β 1 f t , τ t Q * H * 1 1 + γ , 1 , τ , the function  α 1 2 D t γ H m l α 1 + 1 , β 1 f t , τ 2 α 1 α 1 + 1 D t γ H m l α 1 , β 1 f t , τ · D t γ H m l α 1 + 2 , β 1 f t , τ α 1 D t γ H m l α 1 + 1 , β 1 f t , τ α 1 1 + γ D t γ H m l α 1 , β 1 f t , τ 2 + 2 α 1 D t γ H m l α 1 , β 1 f t , τ · D t γ H m l α 1 + 1 , β 1 f t , τ α 1 1 + γ D t γ H m l α 1 , β 1 f t , τ 2 α 1 D t γ H m l α 1 + 1 , β 1 f t , τ α 1 1 + γ D t γ H m l α 1 , β 1 f t , τ 2 is univalent and verifies the strong superordination
h ( t , τ ) α 1 2 D t γ H m l α 1 + 1 , β 1 f t , τ 2 α 1 α 1 + 1 D t γ H m l α 1 , β 1 f t , τ · D t γ H m l α 1 + 2 , β 1 f t , τ α 1 D t H m l α 1 + 1 , β 1 f t , τ α 1 1 + γ D t γ H m l α 1 , β 1 f t , τ 2 + 2 α 1 D t γ H m l α 1 , β 1 f t , τ · D t γ H m l α 1 + 1 , β 1 f t , τ α 1 1 + γ D t γ H m l α 1 , β 1 f t , τ 2 α 1 D t γ H m l α 1 + 1 , β 1 f t , τ α 1 1 + γ D t γ H m l α 1 , β 1 f t , τ 2 ,
then we get the strong superordination
q ( t , τ ) D t γ H m l α 1 , β 1 f t , τ t D t γ H m l α 1 , β 1 f t , τ t ,
and the best subordinant is the convex function q ( t , τ ) = 1 t 0 t h ( x , τ ) d x .
Proof. 
Let p ( t , τ ) = D t γ H m l α 1 , β 1 f t , τ t D t γ H m l α 1 , β 1 f t , τ t .
Applying the computation made in the proof of Theorem 13, we get
p ( t , τ ) + t p t ( t , τ ) = 1 D t γ H m l α 1 , β 1 f t , τ · D t γ H m l α 1 , β 1 f t , τ t 2 D t γ H m l α 1 , β 1 f t , τ t 2 ,
and the strong superordination (22) can be written as
h ( t , τ ) p ( t , τ ) + t p t ( t , τ ) ,
and by Lemma 3, we get the strong superordination
q ( t , τ ) p ( t , τ ) , i . e . , q ( t , τ ) = 1 t 0 t h ( x , τ ) d x D t γ H m l α 1 , β 1 f t , τ t D t γ H m l α 1 , β 1 f t , τ t
and the best subordinant is the function q.  □
Theorem 15. 
Let the convex function q t , τ with q ( 0 , τ ) = 0 , we take the function h ( t , τ ) = q ( t , τ ) + γ t q t ( t , τ ) , when γ is a positive integer, t U , τ U ¯ .
Assume that D t γ H m l α 1 , β 1 f t , τ t Q * H * 0 , γ , τ and α 1 α 1 + 1   D t γ H m l α 1 + 2 , β 1 f t , τ t + α 1 1 2 α 1 + 2 γ D t γ H m l α 1 + 1 , β 1 f t , τ t   + α 1 1 γ 2 D t γ H m l α 1 , β 1 f t , τ t is univalent for f A τ * and verifies the strong superordination
h ( t , τ ) α 1 α 1 + 1 D t γ H m l α 1 + 2 , β 1 f t , τ t + α 1 1 2 α 1 + 2 γ D t γ H m l α 1 + 1 , β 1 f t , τ t + α 1 1 γ 2 D t γ H m l α 1 , β 1 f t , τ t ,
then we get the strong superordination
q ( t , τ ) D t H m l α 1 , β 1 f t , τ t ,
and the best subordinant is the convex function q ( t , τ ) = 1 t 0 t h ( x , τ ) d x .
Proof. 
Let
p ( t , τ ) = D t γ H m l α 1 , β 1 f t , τ t H * 0 , γ , τ , t U , τ U ¯ .
Using relation (5) yields
t p t , τ = α 1 D t γ H m l α 1 + 1 , β 1 f t , τ α 1 1 + γ D t γ H m l α 1 , β 1 f t , τ ,
and differentiating it with respect to t, we get
p t , τ + t p t t , τ = α 1 α 1 + 1 D t γ H m l α 1 + 2 , β 1 f t , τ t +
α 1 1 2 α 1 + 2 γ D t γ H m l α 1 + 1 , β 1 f t , τ t + α 1 1 γ 2 D t γ H m l α 1 , β 1 f t , τ t .
In these conditions, the strong superordination (24) can be written as
h ( t , τ ) = q ( t , τ ) + γ t q t ( t , τ ) p ( t , τ ) + t p t ( t , τ ) ,
and verifies Lemma 4. Therefore, we get the strong superordination
q ( t , τ ) p ( t , τ ) , i . e . , q ( t , τ ) D t γ H m l α 1 , β 1 f t , τ t ,
and the best subordinant is represented by q ( t , τ ) = 1 t 0 t h ( x , τ ) d x .  □
Theorem 16. 
Let the convex function h t , τ with h ( 0 , τ ) = 0 ; we assume that f A τ * , D t γ H m l α 1 , β 1 f t , τ t Q * H * 0 , γ , τ , the function α 1 α 1 + 1 D t γ H m l α 1 + 2 , β 1 f t , τ t + α 1 1 2 α 1 + 2 γ D t γ H m l α 1 + 1 , β 1 f t , τ t   + α 1 1 γ 2 D t γ H m l α 1 , β 1 f t , τ t is univalent and verifies the strong differential superordination
h ( t , τ ) α 1 α 1 + 1 D t γ H m l α 1 + 2 , β 1 f t , τ t + α 1 1 2 α 1 + 2 γ D t γ H m l α 1 + 1 , β 1 f t , τ t + α 1 1 γ 2 D t γ H m l α 1 , β 1 f t , τ t ,
then the strong superordination
q ( t , τ ) D t γ H m l α 1 , β 1 f t , τ t ,
holds and the best subordinant is the convex function q ( t , τ ) = 1 t 0 t h ( x , τ ) d x .
Proof. 
Let p ( t , τ ) = D t γ H m l α 1 , β 1 f t , τ t H * 0 , γ , τ , t U ,   τ U ¯ .
Using the computation from the proof of Theorem 15 yields
p ( t , τ ) + t p t ( t , τ ) = α 1 α 1 + 1 D t γ H m l α 1 + 2 , β 1 f t , τ t +
α 1 1 2 α 1 + 2 γ D t γ H m l α 1 + 1 , β 1 f t , τ t + α 1 1 γ 2 D t γ H m l α 1 , β 1 f t , τ t ,
and the strong superordination (25) can be written as
h ( t , τ ) p ( t , τ ) + t p t ( t , τ ) ,
and using Lemma 3, we get the strong superordination
q ( t , τ ) p ( t , τ ) , i . e . , q ( t , τ ) = 1 t 0 t h ( x , τ ) d x D t γ H m l α 1 , β 1 f t , τ t ,
and the best subordinant is the function q.  □

3. Conclusions

This paper is intended to propose a new line of investigation for strong differential subordination and its dual, strong differential superordination theories using fractional calculus.
As future research, the fractional integral of Dziok–Srivastava operator could be applied to quantum calculus to get differential subordinations and superordinations for it using q-fractional calculus. In addition, some classes of analytical functions can be introduced and investigated regarding the new defined operator. Conditions for univalence can be established for the defined classes, and coefficient studies could be done regarding those classes, like the Fekete–Szegő problem, Toeplitz determinants, or estimations for Hankel determinants of different orders.
In addition, fuzzy differential subordinations and fuzzy differential superordinations results were obtained involving the fractional integral of the Dziok–Srivastava operator in [48]. The fractional integral of the Dziok–Srivastava operator could be used for obtaining higher-order fuzzy differential subordinations, following study [49], regarding the classical theory of differential subordination. Hopefully, the fuzzy results obtained will have applications in future researches regarding real-life contexts.
The symmetry properties of the functions could be investigated to obtain solutions with particular properties for an equation or inequality. For the differential subordinations considered as inequalities, the investigation of special functions could get interesting results from applying their symmetry properties. Investigation regarding the symmetry properties of several functions involving quantum calculus could also be studied in a future paper.

Funding

The publication of this research was supported by the University of Oradea.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The author declares no conflict of interest.

References

  1. Antonino, J.A.; Romaguera, S. Strong differential subordination to Briot-Bouquet differential equations. J. Differ. Equ. 1994, 114, 101–105. [Google Scholar] [CrossRef] [Green Version]
  2. Miller, S.S.; Mocanu, P.T. Second order-differential inequalities in the complex plane. J. Math. Anal. Appl. 1978, 65, 298–305. [Google Scholar] [CrossRef] [Green Version]
  3. Miller, S.S.; Mocanu, P.T. Differential subordinations and univalent functions. Mich. Math. J. 1981, 28, 157–171. [Google Scholar] [CrossRef]
  4. Miller, S.S.; Mocanu, P.T. Differential subordinations. In Theory and Applications; Marcel Dekker, Inc.: New York, NY, USA; Basel, Switzerland, 2000. [Google Scholar]
  5. Oros, G.I.; Oros, G. Strong differential subordination. Turk. J. Math. 2009, 33, 249–257. [Google Scholar] [CrossRef]
  6. Miller, S.S.; Mocanu, P.T. Subordinations of differential superordinations. Complex Var. 2003, 48, 815–826. [Google Scholar] [CrossRef]
  7. Oros, G.I. Strong differential superordination. Acta Univ. Apulensis 2009, 19, 101–106. [Google Scholar]
  8. Oros, G.; Tăut, A.O. Best subordinants of the strong differential superordination. Hacet. J. Math. Stat. 2009, 38, 293–298. [Google Scholar]
  9. Jeyaraman, M.P.; Suresh, T.K. Strong differential subordination and superordination of analytic functions. J. Math. Anal. Appl. 2012, 385, 854–864. [Google Scholar] [CrossRef] [Green Version]
  10. Cho, N.E.; Kwon, O.S.; Srivastava, H.M. Strong differential subordination and superordination for multivalently meromorphic functions involving the Liu–Srivastava operator. Integral Transform. Spec. Funct. 2010, 21, 589–601. [Google Scholar] [CrossRef]
  11. Tăut, A.O. Some strong differential subordinations obtained by Sălăgean differential operator. Stud. Univ. Babeş-Bolyai Math. 2010, 55, 221–228. [Google Scholar]
  12. Şendruţiu, R. Strong differential subordinations obtained by Ruscheweyh operator. J. Comput. Anal. Appl. 2012, 14, 328–340. [Google Scholar]
  13. Alb Lupaş, A. Certain strong differential subordinations using Sălăgean and Ruscheweyh operators. Adv. Appl. Math. Anal. 2011, 6, 27–34. [Google Scholar]
  14. Cho, N.E. Strong differential subordination properties for analytic functions involving the Komatu integral operator. Bound. Value Probl. 2013, 2013, 44. [Google Scholar] [CrossRef] [Green Version]
  15. Jeyaramana, M.P.; Suresh, T.K.; Keshava Reddy, E. Strong differential subordination and superordination of analytic functions associated with Komatu operator. Int. J. Nonlinear Anal. Appl. 2013, 4, 26–44. [Google Scholar]
  16. Alb Lupaş, A. On special strong differential subordinations using multiplier transformation. Appl. Math. Lett. 2012, 25, 624–630. [Google Scholar] [CrossRef] [Green Version]
  17. Swamy, S.R. Some strong differential subordinations using a new generalized multiplier transformation. Acta Univ. Apulensis 2013, 34, 285–291. [Google Scholar]
  18. Andrei, L.; Choban, M. Some strong differential subordinations using a differential operator. Carpathian J. Math. 2015, 31, 143–156. [Google Scholar] [CrossRef]
  19. Oshah, A.; Darus, M. Strong differential subordination and superordination of new generalized derivative operator. Korean J. Math. 2015, 23, 503–519. [Google Scholar] [CrossRef] [Green Version]
  20. Srivastava, H.M.; Wanas, A.K. Strong differential sandwich results of λ-pseudo-starlike functions with respect to symmetrical points. Math. Morav. 2019, 23, 45–58. [Google Scholar] [CrossRef] [Green Version]
  21. Wanas, A.K.; Majeed, A.H. New strong differential subordination and superordination of meromorphic multivalent quasi-convex functions. Kragujev. J. Math. 2020, 44, 27–39. [Google Scholar] [CrossRef]
  22. Abd, E.H.; Atshan, W.G. Strong subordination for p-valent functions involving a linear operator. J. Phys. Conf. Ser. 2021, 1818, 012113. [Google Scholar] [CrossRef]
  23. Aghalary, R.; Arjomandinia, P. On a first order strong differential subordination and application to univalent functions. Commun. Korean Math. Soc. 2022, 37, 445–454. [Google Scholar] [CrossRef]
  24. Amsheri, S.M.; Zharkova, V. Some strong differential subordinations obtained by fractional derivative operator. Int. J. Math. Anal. 2012, 6, 2159–2172. [Google Scholar]
  25. Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
  26. Ghanim, F.; Al-Janaby, H.F.; Al-Momani, M.; Batiha, B. Geometric studies on Mittag-Leffler type function involving a new integrodifferential operator. Mathematics 2022, 10, 3243. [Google Scholar] [CrossRef]
  27. Ghanim, F.; Bendak, S.; Al Hawarneh, A. Supplementary material from “Certain implementations in fractional calculus operators involving Mittag-Leffler-confluent hypergeometric functions”. R. Soc. 2022, 478, 20210839. [Google Scholar] [CrossRef]
  28. Ghanim, M.A.; Ghanim, F.; Botmart, T.; Bazighifan, O.; Askar, S. Qualitative analysis of Langevin integro-fractional differential equation under Mittag–Leffler functions power law. Fractal Fract. 2021, 5, 266. [Google Scholar] [CrossRef]
  29. Ghanim, F.; Al-Janaby, H.F.; Bazighifan, O. Some new extensions on fractional differential and integral properties for Mittag-Leffler confluent hypergeometric function. Fractal Fract. 2021, 5, 143. [Google Scholar] [CrossRef]
  30. Ghanim, F.; Al-Janaby, H.F. An analytical study on Mittag-Leffler-confluent hypergeometric functions with fractional integral operator. Math. Methods Appl. Sci. 2021, 44, 3605–3614. [Google Scholar] [CrossRef]
  31. Ghanim, F.; Al-Janaby, H.F. Some analytical merits of Kummer-type function associated with Mittag-Leffler parameters. Arab. J. Basic Appl. Sci. 2021, 28, 255–263. [Google Scholar] [CrossRef]
  32. Al-Ghafri, K.S.; Alabdala, A.T.; Redhwan, S.S.; Bazighifan, O.; Ali, A.H.; Iambor, L.F. Symmetrical solutions for non-local fractional integro-differential equations via Caputo–Katugampola derivatives. Symmetry 2023, 15, 662. [Google Scholar] [CrossRef]
  33. Alb Lupaş, A. Other subordination results for fractional integral associated with Dziok-Srivastava operator. J. Adv. Appl. Comput. Math. 2019, 6, 19–21. [Google Scholar] [CrossRef]
  34. Oros, G.I. On a new strong differential subordination. Acta Univ. Apulensis 2012, 32, 243–250. [Google Scholar]
  35. Alb Lupaş, A.; Oros, G.I.; Oros, G. On special strong differential subordinations using Sălăgean and Ruscheweyh operators. J. Comput. Anal. Appl. 2012, 14, 266–270. [Google Scholar]
  36. Alb Lupaş, A. On special strong differential superordinations using Sălăgean and Ruscheweyh operators. J. Adv. Appl. Comput. Math. 2014, 1, 28–34. [Google Scholar] [CrossRef]
  37. Alb Lupaş, A.; Oros, G.I. Strong differential superordination results involving extended Salagean and Ruscheweyh operators. Mathematics 2021, 9, 2487. [Google Scholar] [CrossRef]
  38. Owa, S. On the distortion theorems I. Kyungpook Math. J. 1978, 18, 53–59. [Google Scholar]
  39. Owa, S.; Srivastava, H.M. Univalent and starlike generalized hypergeometric functions. Can. J. Math. 1987, 39, 1057–1077. [Google Scholar] [CrossRef]
  40. Dziok, J.; Srivastava, H.M. Classes of analytic functions associated with the generalized hypergeometric function. Appl. Math. Comput. 1999, 103, 1–13. [Google Scholar] [CrossRef]
  41. Dziok, J.; Srivastava, H.M. Certain subclasses of analytic functions associated with the generalized hypergeometric function. Integral Transform. Spec. Funct. 2003, 14, 7–18. [Google Scholar] [CrossRef]
  42. Dziok, J.; Srivastava, H.M. Some subclasses of analytic functions with fixed argument of coefficients associated with the generalized hypergeometric function. Adv. Stud. Contemp. Math. 2002, 5, 115–125. [Google Scholar]
  43. Dziok, J. On some applications of the Briot–Bouquet differential subordination. J. Math. Anal. Appl. 2007, 328, 295–301. [Google Scholar] [CrossRef] [Green Version]
  44. Dziok, J. Some relations including various linear operators. Demonstratio Math. 2007, 40, 77–84. [Google Scholar] [CrossRef]
  45. Liu, J.-L.; Srivastava, H.M. Certain properties of the Dziok–Srivastava operator. Appl. Math. Comput. 2004, 159, 485–493. [Google Scholar] [CrossRef]
  46. Sokol, J. On some applications of the Dziok–Srivastava operator. Appl. Math. Comput. 2008, 201, 774–780. [Google Scholar] [CrossRef]
  47. Oros, G.I.; Oros, G.; Kim, I.H.; Cho, N.E. Differential subordinations associated with the Dziok-Srivastava operator. Math. Rep. 2011, 1, 57–64. [Google Scholar]
  48. Alb Lupaş, A. Fuzzy differential subordination and superordination results for fractional integral associated with Dziok-Srivastava operator. Mathematics 2023, 11, 3129. [Google Scholar] [CrossRef]
  49. Oros, G.I.; Oros, G.; Preluca, L.F. Third-order differential subordinations using fractional integral of Gaussian hypergeometric function. Axioms 2023, 12, 133. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Alb Lupaş, A. New Results on a Fractional Integral of Extended Dziok–Srivastava Operator Regarding Strong Subordinations and Superordinations. Symmetry 2023, 15, 1544. https://doi.org/10.3390/sym15081544

AMA Style

Alb Lupaş A. New Results on a Fractional Integral of Extended Dziok–Srivastava Operator Regarding Strong Subordinations and Superordinations. Symmetry. 2023; 15(8):1544. https://doi.org/10.3390/sym15081544

Chicago/Turabian Style

Alb Lupaş, Alina. 2023. "New Results on a Fractional Integral of Extended Dziok–Srivastava Operator Regarding Strong Subordinations and Superordinations" Symmetry 15, no. 8: 1544. https://doi.org/10.3390/sym15081544

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop