Field-Theoretic Renormalization Group in Models of Growth Processes, Surface Roughening and Non-Linear Diffusion in Random Environment: Mobilis in Mobili
Abstract
:1. Introduction
To see a World in a Grain of SandAnd a Heaven in a Wild FlowerHold Infinity in the palm of your handAnd Eternity in an hourAuguries of Innocence by William Blake
2. Basic Stochastic Models
2.1. Kardar–Parisi–Zhang Equation
2.2. Generalized Pavlik’s Model
2.3. Hwa–Kardar Continuous Model of SOC
2.4. Pastor–Satorras–Rothman Model of Landscape Erosion
3. Models of Turbulent Velocity Fields
4. Surface Roughening in a Random Environment: Induced Non-Linearity
5. Non-Conventional Scaling Behavior and Dimensional Transmutation
6. Non-Linear Diffusion in a Random Medium: An Infinite-Dimensional Model
7. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hinrichsen, H. Non-equilibrium critical phenomena and phase transitions into absorbing states. Adv. Phys. 2000, 49, 815–958. [Google Scholar] [CrossRef]
- Henkel, M.; Hinrichsen, H.; Lübeck, S.; Pleimling, M. Non-Equilibrium Phase Transitions. Absorbing Phase Transitions; Springer: Dordrecht, The Netherlands, 2008; Volume 1. [Google Scholar]
- Hnatic, M.; Honkonen, J.; Lucivjansky, T. Advanced field-theoretical methods in stochastic dynamics and theory of developed turbulence. Acta Phys. Slovaca 2016, 66, 69. [Google Scholar]
- Pietruszka, M.A. Non-equilibrium phase transition at a critical point of human blood. Sci. Rep. 2021, 11, 22398. [Google Scholar] [CrossRef]
- Janssen, H.-K.; Täuber, U. The Field Theory Approach to Percolation Processes. Ann. Phys. 2005, 315, 147. [Google Scholar] [CrossRef] [Green Version]
- Halpin-Healy, T.; Zhang, Y.-C. Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Aspects of multidisciplinary statistical mechanics. Phys. Rep. 1995, 254, 215–414. [Google Scholar] [CrossRef]
- Barabási, A.-L.; Stanley, H.E. Fractal Concepts in Surface Growth; Cambridge University Press: New York, NY, USA, 1995. [Google Scholar]
- Krug, J.; Spohn, H. Solids Far from Equilibrium; Godreche, C., Ed.; Cambridge University Press: New York, NY, USA, 1990. [Google Scholar]
- Yan, H.; Kessler, D.A.; Ser, L.M. Kinetic Roughening in Surface Growth. MRS Online Proc. Libr. 1992, 278, 237–247. [Google Scholar] [CrossRef]
- Cross, M.; Greenside, H. Pattern formation and Dynamics in Non-Equilibrium Systems; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Pruessner, G. Self-Organized Criticality: Theory, Models and Characterisation; Cambridge University Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Bouchaud, J.-P.; Georges, A. Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications. Phys. Rep. 1990, 195, 127–293. [Google Scholar] [CrossRef]
- Amit, D.J. Field Theory, Renormalization Group, and Critical Phenomena, 2nd ed.; World Scientific: Singapore, 1984. [Google Scholar]
- Zinn-Justin, J. Quantum Field Theory and Critical Phenomena; Clarendon Press: Oxford, UK, 1989. [Google Scholar]
- Kleinert, H.; Schulte-Frohlinde, V. Critical Properties of ϕ4-Theories; World Scientific: Singapore, 2001. [Google Scholar]
- Vasiliev, A.N. The Field Theoretic Renormalization Group in Critical Behaviour Theory and Stochastic Dynamics; Chapman & Hall/CRC: Boca Raton, FL, USA, 2004. [Google Scholar]
- Sak, J. Recursion relations and fixed points for ferromagnets with long-range interactions. Phys. Rev. B 1973, 8, 281. [Google Scholar] [CrossRef]
- Honkonen, J.; Nalimov, M.; Yu, W. Crossover between field theories with short-range and long-range exchange of correlations. J. Phys. A Math. Gen. 1989, 22, 751. [Google Scholar] [CrossRef] [PubMed]
- Janssen, H.-K. Influence of long-range interactions on the critical behaviour of systems with a negative Fisher exponent. Phys. Rev. E 1998, 58, R2673. [Google Scholar] [CrossRef] [Green Version]
- Antonov, N.V. Anomalous scaling regimes of a passive scalar advected by the synthetic velocity field. Phys. Rev. E 1999, 60, 6691. [Google Scholar] [CrossRef] [Green Version]
- Antonov, N.V. Anomalous scaling of a passive scalar advected by the synthetic compressible flow. Phys. D 2000, 144, 370. [Google Scholar] [CrossRef] [Green Version]
- Janssen, H.-K.; Oerding, K.; van Wijland, F.; Hilhorst, H.J. Lévy-flight spreading of epidemic processes leading to percolating clusters. Eur. Phys. J. B 1999, 7, 137. [Google Scholar] [CrossRef] [Green Version]
- Janssen, H.-K.; Stenull, O. Field theory of directed percolation with long-range spreading. Phys. Rev. E 2008, 78, 061117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonov, N.V.; Hnatich, M.; Honkonen, J. Effects of mixing and stirring on the critical behaviour. J. Phys. A Math. Gen. 2006, 39, 7867. [Google Scholar] [CrossRef]
- Antonov, N.V.; Gulitskiy, N.M.; Kostenko, M.M.; Lučivjanský, T. Renormalization group analysis of a turbulent compressible fluid near d = 4: Crossover between local and non-local scaling regimes. EPJ Web Conf. 2016, 125, 05006. [Google Scholar] [CrossRef]
- Antonov, N.V.; Gulitskiy, N.M.; Kostenko, M.M.; Lučivjanský, T. Advection of a passive scalar field by turbulent compressible fluid: Renormalization group analysis near d = 4. EPJ Web Conf. 2016, 137, 10003. [Google Scholar] [CrossRef]
- Antonov, N.V.; Gulitskiy, N.M.; Kostenko, M.M.; Lučivjanský, T. Turbulent compressible fluid: Renormalization group analysis, scaling regimes, and anomalous scaling of advected scalar fields. Phys. Rev. E 2017, 95, 033120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonov, N.V.; Gulitskiy, N.M.; Kostenko, M.M.; Lučivjanský, T. Passive Advection of a Vector Field by Compressible Turbulent Flow: Renormalizations Group Analysis near d = 4. Universe 2019, 5, 37. [Google Scholar] [CrossRef] [Green Version]
- Hohenberg, P.C.; Halperin, B.I. Theory of dynamic critical phenomena. Rev. Mod. Phys. 1977, 49, 435. [Google Scholar] [CrossRef]
- Folk, R.; Moser, G. Critical dynamics: A field-theoretical approach. J. Phys. A Math. Gen. 2006, 39, R207. [Google Scholar] [CrossRef]
- Täuber, U.C.; Howard, M.; Vollmayr-Lee, B.P. Applications of field-theoretic renormalization group methods to reaction-diffusion problems. J. Phys. A Math. Gen. 2005, 38, R79. [Google Scholar] [CrossRef] [Green Version]
- Schmittmann, B.; Zia, R.K.P. Statistical Mechanics of Driven Diffusive Systems. In Phase Transitions and Critical Phenomena; Academic Press: Cambridge, MA, USA, 1995; Volume 17. [Google Scholar]
- Schmittmann, B.; Zia, R.K.P. Driven diffusive systems: An introduction and recent developments. Phys. Rep. 1998, 301, 5–64. [Google Scholar] [CrossRef] [Green Version]
- Edwards, S.F.; Wilkinson, D.R. The Surface Statistics of a Granular Aggregate. Proc. R. Soc. 1982, 381, 17. [Google Scholar]
- Barabási, A.-L. Roughening of growing surfaces: Kinetic models and continuum theories. Comput. Mater. Sci. 1996, 6, 127–134. [Google Scholar] [CrossRef]
- Yan, H.; Kessler, D.A.; Sander, L.M. Roughening phase transition in surface growth. Phys. Rev. Lett. 1990, 64, 926. [Google Scholar] [CrossRef]
- Adzhemyan, L.T.; Antonov, N.V.; Vasil’ev, A.N. The Field Theoretic Renormalization Group in Fully Developed Turbulence; Gordon & Breach: London, UK, 1999. [Google Scholar]
- Adzhemyan, L.T.; Antonov, N.V.; Vasil’ev, A.N. Quantum field renormalization group in the theory of fully developed turbulence. Sov. Phys. Uspekhi 1996, 39, 1193. [Google Scholar] [CrossRef]
- Bak, P. How Nature Works: The Science of Self-Organized Criticality; Copernicus: New York, NY, USA, 1996. [Google Scholar]
- Bak, P.; Tang, C.; Wiesenfeld, K. Self-organized criticality: An explanation of the 1/f noise. Phys. Rev. Lett. 1987, 59, 381. [Google Scholar] [CrossRef]
- Bak, P.; Tang, C.; Wiesenfeld, K. Self-organized criticality. Phys. Rev. A 1988, 38, 364. [Google Scholar] [CrossRef]
- Tang, C.; Bak, P. Critical exponents and scaling relations for self-organized critical phenomena. Phys. Rev. Lett. 1988, 60, 2347. [Google Scholar] [CrossRef] [Green Version]
- Bak, P.; Sneppen, K. Punctuated equilibrium and criticality in a simple model of evolution. Phys. Rev. Lett. 1993, 71, 4083. [Google Scholar] [CrossRef]
- Jensen, H.J. Self-Organized Criticality: Emergent Complex Behaviour in Physical and Biological Systems; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Tadić, B.; Dhar, D. Emergent Spatial Structures in Critical Sandpiles. Phys. Rev. Lett. 1997, 79, 1519. [Google Scholar] [CrossRef] [Green Version]
- Turcotte, D.L. Self-organized criticality. Rep. Prog. Phys. 1999, 62, 1377. [Google Scholar] [CrossRef] [PubMed]
- Marinari, E.; Parisi, G.; Ruelle, D.; Windey, P. Random Walk in a Random Environment and 1/f Noise. Phys. Rev. Lett. 1983, 50, 1223. [Google Scholar] [CrossRef]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–78. [Google Scholar] [CrossRef]
- Zeitouni, O. Random walks in random environment. In Computational Complexity; Meyers, R., Ed.; Springer: New York, NY, USA, 2012. [Google Scholar]
- Révész, P. Random Walk in Random and Non-Random Environments, 3rd ed.; World Scientific Book: Singapore, 2013. [Google Scholar]
- Haldar, A.; Basu, A. Marching on a rugged landscape: Universality in disordered asymmetric exclusion processes. Phys. Rev. Res. 2020, 2, 043073. [Google Scholar] [CrossRef]
- Antonov, N.V.; Gulitskiy, N.M.; Kakin, P.I.; Kerbitskiy, D.A. Random Walk on a Rough Surface: Renormalization Group Analysis of a Simple Model. Universe 2023, 9, 139. [Google Scholar] [CrossRef]
- Martin, P.C.; Siggia, E.D.; Rose, H.A. Statistical Dynamics of Classical Systems. Phys. Rev. A 1973, 8, 423. [Google Scholar] [CrossRef]
- De Dominicis, C. Techniques de renormalisation de la théorie des champs et dynamique des phénomènes critiques. J. Phys. Colloq. 1976, 37, 247. [Google Scholar] [CrossRef]
- Janssen, H.K. On a Lagrangean for classical field dynamics and renormalization group calculations of dynamical critical properties. Z. Phys. B 1976, 23, 377. [Google Scholar] [CrossRef]
- Bausch, R.; Janssen, H.K.; Wagner, H. Renormalized field theory of critical dynamics. Z. Phys. B 1976, 24, 113. [Google Scholar] [CrossRef]
- Phythian, R. The functional formalism of classical statistical dynamics. J. Phys. A Math. Gen. 1977, 10, 777. [Google Scholar] [CrossRef] [PubMed]
- De Dominicis, C.; Peliti, L. Field-theory renormalization and critical dynamics above Tc: Helium, antiferromagnets, and liquid-gas systems. Phys. Rev. B 1978, 18, 353. [Google Scholar] [CrossRef]
- Adzhemyan, L.T.; Vasil’ev, A.N.; Pis’mak, Y.M. Renormalization-group approach in the theory of turbulence: The dimensions of composite operators. Theor. Math. Phys. 1983, 57, 1131. [Google Scholar] [CrossRef]
- Ivanov, D.Y. Critical Behaviour of Non-Ideal Systems; Wiley-VCH: Weinheim, Germany, 2008. [Google Scholar]
- Prudnikov, V.V.; Prudnikov, P.V.; Vakilov, A.N. Field-Theoretic and Numerical Description Methods for Critical Phenomena in Structure-Disordered Systems; Dostoevsky Omsk State University: Omsk, Russia, 2012. [Google Scholar]
- Narayan, O.; Fisher, D.S. Threshold critical dynamics of driven interfaces in random media. Phys. Rev. B 1993, 48, 7030. [Google Scholar] [CrossRef]
- Moreira, A.G.; Dickman, R. Critical dynamics of the contact process with quenched disorder. Phys. Rev. E 1996, 54, R3090. [Google Scholar] [CrossRef] [Green Version]
- Janssen, H.-K. Renormalized field theory of the Gribov process with quenched disorder. Phys. Rev. E 1997, 55, 6253. [Google Scholar] [CrossRef]
- Webman, I.; ben Avraham, D.; Cohen, A.; Havlin, S. Dynamical phase transitions in a random environment. Phil. Mag. B 1998, 77, 1401. [Google Scholar] [CrossRef]
- Tadić, B. Disorder-induced critical behaviour in driven diffusive systems. Phys. Rev. E 1998, 58, 168. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, S. Conserved Kardar–Parisi–Zhang equation: Role of quenched disorder in determining universality. Phys. Rev. E 2021, 103, 042102. [Google Scholar] [CrossRef]
- Haldar, A.; Basu, A. Disorders can induce continuously varying universal scaling in driven systems. Phys. Rev. E 2022, 105, 034104. [Google Scholar] [CrossRef] [PubMed]
- Onuki, A.; Kawasaki, K. Critical phenomena of classical fluids under flow. I: Mean field approximation. Progr. Theor. Phys. 1980, 63, 122. [Google Scholar] [CrossRef]
- Imaeda, T.; Onuki, A.; Kawasaki, K. Anisotropic spinodal decomposition under shear flow. Progr. Theor. Phys. 1984, 71, 16. [Google Scholar] [CrossRef] [Green Version]
- Satten, G.; Ronis, D. Critical phenomena in randomly stirred fluids: Correlation functions, equation of motion, and crossover behaviour. Phys. Rev. A 1986, 33, 3415. [Google Scholar] [CrossRef] [PubMed]
- Aronowitz, A.; Nelson, D.R. Turbulence in phase-separating binary mixtures. Phys. Rev. A 1984, 29, 2012. [Google Scholar] [CrossRef]
- Antonov, N.V.; Kakin, P.I.; Lebedev, N.M. The Kardar–Parisi–Zhang model of a random kinetic growth: Effects of a randomly moving medium. J. Phys. A Math. Theor. 2019, 52, 505002. [Google Scholar] [CrossRef] [Green Version]
- Antonov, N.V.; Gulitskiy, N.M.; Kakin, P.I.; Kostenko, M.M. Effects of turbulent environment on the surface roughening: The Kardar–Parisi–Zhang model coupled to the stochastic Navier–Stokes equation. Phys. Scr. 2020, 95, 084009. [Google Scholar] [CrossRef]
- Kardar, M.; Parisi, G.; Zhang, Y.-C. Dynamic scaling of growing interfaces. Phys. Rev. Lett. 1986, 56, 889. [Google Scholar] [CrossRef] [Green Version]
- Forster, D.; Nelson, D.R.; Stephen, M.J. Long-Time Tails and the Large-Eddy behaviour of a Randomly Stirred Fluid. Phys. Rev. Lett. 1976, 36, 867. [Google Scholar] [CrossRef]
- Wiese, K.J. Critical discussion of the 2–loop calculations for the KPZ equation. Phys. Rev. E 1997, 56, 5013. [Google Scholar] [CrossRef] [Green Version]
- Lässig, M. On the renormalization of the Kardar–Parisi–Zhang equation. Nucl. Phys. B 1995, 448, 559. [Google Scholar] [CrossRef] [Green Version]
- Wiese, K.J. On the perturbation expansion of the KPZ equation. J. Stat. Phys. 1998, 93, 143. [Google Scholar] [CrossRef] [Green Version]
- Lässig, M.; Kinzelbach, H. Upper Critical Dimension of the Kardar–Parisi–Zhang Equation. Phys. Rev. Lett. 1997, 78, 903. [Google Scholar] [CrossRef]
- Canet, L.; Chaté, H.; Delamotte, B.; Wschebor, N. Nonperturbative renormalization group for the Kardar–Parisi–Zhang equation. Phys. Rev. Lett. 2010, 104, 150601. [Google Scholar] [CrossRef] [Green Version]
- Canet, L.; Chaté, H.; Delamotte, B.; Wschebor, N. Nonperturbative renormalization group for the Kardar–Parisi–Zhang equation: General framework and first applications. Phys. Rev. E 2011, 84, 061128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kloss, T.; Canet, L.; Wschebor, N. Nonperturbative renormalization group for the stationary Kardar–Parisi–Zhang equation: Scaling functions and amplitude ratios in 1 + 1, 2 + 1, and 3 + 1 dimensions. Phys. Rev. E 2012, 86, 051124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathey, S.; Agoritsas, E.; Kloss, T.; Lecomte, V.; Canet, L. Kardar–Parisi–Zhang equation with short-range correlated noise: Emergent symmetries and nonuniversal observables. Phys. Rev. E 2017, 95, 032117. [Google Scholar] [CrossRef] [Green Version]
- Katzav, E.; Schwartz, M. Existence of the upper critical dimension of the Kardar–Parisi–Zhang equation. Phys. A 2002, 309, 69. [Google Scholar] [CrossRef] [Green Version]
- Alves, S.G.; Oliveira, T.J.; Ferreira, S.C. Universality of fluctuations in the Kardar–Parisi–Zhang class in high dimensions and its upper critical dimension. Phys. Rev. E 2014, 90, 020103(R). [Google Scholar] [CrossRef] [Green Version]
- Teodorovich, É.V. Anomalous dimensions in the Burger–Kardar–Parisi–Zhang model. J. Exp. Theor. Phys. 1996, 82, 268. [Google Scholar]
- Lässig, M. Quantized scaling of growing surfaces. Phys. Rev. Lett. 1998, 80, 2366. [Google Scholar] [CrossRef] [Green Version]
- Gomes-Filho, M.S.; Penna, A.L.A.; Oliveira, F.A. An exact solution for the 2 + 1 Kardar–Parisi–Zhang exponents. Results Phys. 2021, 104, 435. [Google Scholar]
- Medina, E.; Hwa, T.; Kardar, M.; Zhang, Y.-C. Burgers equation with correlated noise: Renormalization-group analysis and applications to directed polymers and interface growth. Phys. Rev. A 1989, 39, 3053. [Google Scholar] [CrossRef] [PubMed]
- Lam, C.-H.; Sander, L.M.; Wolf, D.E. Surface growth with temporally correlated noise. Phys. Rev. A 1992, 46, R6128. [Google Scholar] [CrossRef]
- Jeong, H.; Kahng, B.; Kim, D. Anisotropic surface growth model in disordered media. Phys. Rev. Lett. 1996, 25, 5094. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Kim, J.M. Depinning transition of the quenched Kardar–Parisi–Zhang equation. J. Korean Phys. Soc. 2005, 47, 13. [Google Scholar]
- Doherty, J.P.; Moore, M.A.; Kim, J.M.; Bray, A.J. Generalizations of the Kardar–Parisi–Zhang equation. Phys. Rev. Lett. 1994, 72, 2041. [Google Scholar] [CrossRef]
- Kardar, M.; Zee, A. Matrix generalizations of some dynamic field theories. Nucl. Phys. B 1996, 464, 449. [Google Scholar] [CrossRef]
- Bork, L.V.; Ogarkov, S.L. The Kardar–Parisi–Zhang equation and its matrix generalization. Theor. Math. Phys. 2014, 178, 359. [Google Scholar] [CrossRef]
- Golubović, L.; Bruinsma, R. Surface diffusion and fluctuations of growing interfaces. Phys. Rev. Lett. 1991, 66, 321. [Google Scholar] [CrossRef]
- Song, T.; Xia, H. Kinetic roughening and nontrivial scaling in the Kardar–Parisi–Zhang growth with long-range temporal correlations. J. Stat. Mech. 2021, 2021, 073203. [Google Scholar] [CrossRef]
- Wolf, D.E. Kinetic roughening of vicinal surfaces. Phys. Rev. Lett. 1991, 67, 1783. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-J.; Kim, I.-M.; Kim, J.M. Hybridized discrete model for the anisotropic Kardar–Parisi–Zhang equation. Phys. Rev. E 1998, 58, 1144. [Google Scholar] [CrossRef]
- Vivo, E.; Nicoli, M.; Engler, M.; Michely, T.; Vázquez, L.; Cuerno, R. Strong anisotropy in surface kinetic roughening: Analysis and experiments. Phys. Rev. B 2012, 86, 245427. [Google Scholar] [CrossRef] [Green Version]
- Sun, T.; Guo, H.; Grant, M. Dynamics of driven interfaces with a conservation law. Phys. Rev. A 1989, 40, 6763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caballero, F.; Nardini, C.; Van Wijland, F.; Cates, M.E. Strong Coupling in Conserved Surface Roughening: A New Universality Class? Phys. Rev. Lett. 2018, 121, 020601. [Google Scholar] [CrossRef]
- Škultéty, V.; Honkonen, J. Fixed-dimension renormalization group analysis of conserved surface roughening. Phys. Rev. E 2021, 104, 024104. [Google Scholar] [CrossRef]
- Pavlik, S.I. Scaling for a growing phase boundary with non-linear diffusion. J. Exp. Theor. Phys. 1994, 79, 303. [Google Scholar]
- Hwa, T.; Kardar, M. Dissipative transport in open systems: An investigation of self-organized criticality. Phys. Rev. Lett. 1989, 62, 1813. [Google Scholar] [CrossRef]
- Hwa, T.; Kardar, M. Avalanches, hydrodynamics and great events in models of sandpiles. Phys. Rev. A 1992, 45, 7002. [Google Scholar] [CrossRef]
- Pastor-Satorras, R.; Rothman, D.H. Stochastic equation for the erosion of inclined topography. Phys. Rev. Lett. 1998, 80, 4349. [Google Scholar] [CrossRef] [Green Version]
- Pastor-Satorras, R.; Rothman, D.H. Scaling of a slope: The erosion of tilted landscapes. J. Stat. Phys. 1998, 93, 477. [Google Scholar] [CrossRef]
- Diaz-Guilera, A. Noise and dynamics of self-organized critical phenomena. Phys. Rev. A 1992, 45, 8551. [Google Scholar] [CrossRef] [Green Version]
- Muskat, M. The Flow of Fluids Through Porous Media. J. Appl. Phys. 1937, 8, 274. [Google Scholar] [CrossRef]
- Goldenfeld, N.; Martin, O.; Oono, Y.; Lui, F. Anomalous dimensions and the renormalization group in a nonlinear diffusion process. Phys. Rev. Lett. 1990, 64, 1361. [Google Scholar] [CrossRef]
- Antonov, N.V.; Honkonen, J. Field-theoretic renormalization group for a nonlinear diffusion equation. Phys. Rev. E 2002, 66, 046105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonov, N.V.; Vasil’ev, A.N. The quantum-field renormalization group in the problem of a growing phase boundary. J. Exp. Theor. Phys. 1995, 81, 485. [Google Scholar]
- Antonov, N.V. The renormalization group in the problem of turbulent convection of a passive scalar impurity with non-linear diffusion. J. Exp. Theor. Phys. 1997, 85, 898. [Google Scholar] [CrossRef]
- Antonov, N.V.; Babakin, A.A.; Kakin, P.I. Strongly non-linear Diffusion in Turbulent Environment: A Problem with Infinitely Many Couplings. Universe 2022, 8, 121. [Google Scholar] [CrossRef]
- Antonov, N.V.; Kakin, P.I. Scaling in erosion of landscapes: Renormalization group analysis of a model with infinitely many couplings. Theor. Math. Phys. 2017, 190, 193. [Google Scholar] [CrossRef] [Green Version]
- Antonov, N.V.; Kakin, P.I. Scaling in erosion of landscapes: Renormalization group analysis of a model with turbulent mixing. J. Phys. A Math. Theor. 2017, 50, 085002. [Google Scholar] [CrossRef] [Green Version]
- Duclut, C.; Delamotte, B. Nonuniversality in the erosion of tilted landscapes. Phys. Rev. E 2017, 96, 012149. [Google Scholar] [CrossRef] [Green Version]
- Lebedev, N.M.; Kakin, P.I. Critical behaviour of certain non-equilibrium systems with a quenched random noise. Vestn. St. Petersburg Univ. Ser. 4 Phys. Chem. 2017, 4, 398. [Google Scholar]
- Antonov, N.V.; Kakin, P.I.; Lebedev, N.M. Static Approach to Renormalization Group Analysis of Stochastic Models with Spatially Quenched Noise. J. Stat. Phys. 2020, 178, 392. [Google Scholar] [CrossRef] [Green Version]
- Stapmanns, J.; Kühn, T.; Dahmen, D.; Luu, T.; Honerkamp, C.; Helias, M. Self-consistent formulations for stochastic non-linear neuronal dynamics. Phys. Rev. E 2020, 101, 042124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiberi, L.; Stapmanns, J.; Kühn, T.; Luu, T.; Dahmen, D.; Helias, M. Gell-Mann–Low Criticality in Neural Networks. Phys. Rev. Lett. 2022, 128, 168301. [Google Scholar] [CrossRef] [PubMed]
- Bryksin, V.V.; Dorogovtsev, S.N. non-linear diffusion of magnetic flux in type-ll superconductors. J. Exp. Theor. Phys. 1993, 77, 791. [Google Scholar]
- Tartakovsky, D.M.; Dentz, M. Diffusion in Porous Media: Phenomena and Mechanisms. Transp. Porous. Med. 2019, 130, 105. [Google Scholar] [CrossRef]
- Ellis, G.F.R.; Kopel, J. The dynamical emergence of biology from physics: Branching causation via biomolecules. Front. Physiol. 2019, 9, 1966. [Google Scholar] [CrossRef] [Green Version]
- Mora, T.; Bialek, W. Are biological systems poised at criticality? J. Stat. Phys. 2011, 144, 268. [Google Scholar] [CrossRef] [Green Version]
- Hesse, J.; Gross, T. Self-organized criticality as a fundamental property of neural systems. Front. Syst. Neurosci. 2014, 8, 166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasquale, V.; Massobrio, P.; Bologna, L.L.; Chiappalone, M.; Martinoia, S. Self-organization and neuronal avalanches in networks of dissociated cortical neurons. Neuroscience 2008, 153, 1354. [Google Scholar] [CrossRef]
- Orlandi, J.G.; Soriano, J.; Alvarez-Lacalle, E.; Teller, S.; Casademunt, J. Noise focusing and the emergence of coherent activity in neuronal cultures. Nat. Phys. 2013, 9, 582. [Google Scholar] [CrossRef]
- Timme, N.M.; Marshall, N.J.; Bennett, N.; Ripp, M.; Lautzenhiser, E.; Beggs, J.M. Criticality maximizes complexity in neural tissue. Front. Physiol. 2016, 7, 425. [Google Scholar] [CrossRef] [Green Version]
- Kossio, F.Y.K.; Goedeke, S.; Van den Akker, B.; Ibarz, B.; Memmesheimer, R.-M. Growing Critical: Self-Organized Criticality in a Developing Neural System. Phys. Rev. Lett. 2018, 121, 058301. [Google Scholar] [CrossRef] [Green Version]
- Levina, A.; Herrmann, J.M.; Geisel, T. Dynamical synapses causing self-organized criticality in neural networks. Nat. Phys. 2007, 3, 857. [Google Scholar] [CrossRef] [Green Version]
- Tadić, B.; Mitrović Dankulov, M.; Melnik, R. Mechanisms of self-organized criticality in social processes of knowledge creation. Phys. Rev. E 2017, 96, 032307. [Google Scholar] [CrossRef] [Green Version]
- Tadić, B. Self-organised criticality and emergent hyperbolic networks: Blueprint for complexity in social dynamics. Eur. J. Phys. 2019, 40, 024002. [Google Scholar] [CrossRef] [Green Version]
- Tadić, B.; Gligorijevic, V.; Mitrović, M.; Šuvakov, M. Co-evolutionary mechanisms of emotional bursts in online social dynamics and networks. Entropy 2013, 15, 5084. [Google Scholar] [CrossRef]
- Šuvakov, M.; Tadić, B. Collective emotion dynamics in chats with agents, moderators and Bots. Condens. Matter Phys. 2014, 17, 33801. [Google Scholar] [CrossRef]
- Holovatch, Y.; Mrygold, O.; Szell, M.; Thurner, S. Math Meets Myths: Quantitative Approaches to Ancient Narratives; Kenna, R., Ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Kou, G.; Zhao, Y.; Peng, Y.; Shi, Y. Multi-level opinion dynamics under bounded confidence. PLoS ONE 2012, 7, e43507. [Google Scholar] [CrossRef] [Green Version]
- Watkins, N.W.; Pruessner, G.; Chapman, S.C.; Crosby, N.B.; Jensen, H.J. 25 years of self-organized criticality: Concepts and controversies. Space Sci. Rev. 2016, 198, 3. [Google Scholar] [CrossRef]
- Muñoz, M.A. Colloquium: Criticality and dynamical scaling in living systems. Rev. Mod. Phys. 2018, 90, 031001. [Google Scholar] [CrossRef] [Green Version]
- Markovic, D.; Gros, C. Power laws and self-organized criticality in theory and nature. Phys. Rep. 2014, 536, 41. [Google Scholar] [CrossRef] [Green Version]
- Aschwanden, M.J. Self-Organized Criticality Systems; Open Academic Press: Berlin, Germany; Warsaw, Poland, 2013. [Google Scholar]
- Wiese, K.J. Coherent-state path integral versus coarse-grained effective stochastic equation of motion: From reaction diffusion to stochastic sandpiles. Phys. Rev. E 2016, 93, 042117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatterjee, S.; Das, A.; Pradhan, P. Hydrodynamics, density fluctuations, and universality in conserved stochastic sandpiles. Phys. Rev. E 2018, 97, 062142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Doussal, P.; Wiese, K.J. Exact mapping of the stochastic field theory for Manna sandpiles to interfaces in random media. Phys. Rev. Lett. 2015, 114, 110601. [Google Scholar] [CrossRef] [Green Version]
- Caldarelli, G.; Giacometti, A.; Maritan, A.; Rodriguez-Iturbe, I.; Rinaldo, A. Randomly pinned landscape evolution. Phys. Rev. E 1997, 55, R4865(R). [Google Scholar] [CrossRef] [Green Version]
- Czirók, A.; Somfai, E.; Vicsek, J. Experimental evidence for self-affine roughening in a micromodel of geomorphological evolution. Phys. Rev. Lett. 1993, 71, 2154. [Google Scholar] [CrossRef]
- Forster, D.; Nelson, D.R.; Stephen, M.J. Large-distance and long-time properties of a randomly stirred fluid. Phys. Rev. A 1977, 16, 732. [Google Scholar] [CrossRef] [Green Version]
- De Dominicis, C.; Martin, P.C. Energy spectra of certain randomly-stirred fluids. Phys. Rev. A 1979, 19, 419. [Google Scholar] [CrossRef]
- Martin, P.C.; De Dominicis, C. The Long Distance behaviour of Randomly Stirred Fluids. Prog. Theor. Phys. Suppl. 1978, 64, 108–123. [Google Scholar] [CrossRef] [Green Version]
- Carati, D. Colored stochastic noises in the renormalization group approach of turbulence. Phys. Fluids A Fluid Dyn. 1990, 2, 1854. [Google Scholar] [CrossRef]
- Antonov, N.V.; Gulitskiy, N.M.; Malyshev, A.V. Stochastic Navier–Stokes Equation with Colored Noise: Renormalization Group Analysis. EPJ Web Conf. 2016, 126, 04019. [Google Scholar] [CrossRef]
- Antonov, N.V.; Gulitskiy, N.M.; Kostenko, M.M.; Malyshev, A.V. Statistical symmetry restoration in fully developed turbulence: Renormalization group analysis of two models. Phys. Rev. E 2018, 97, 033101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falkovich, G.; Gawȩdzki, K.; Vergassola, M. Particles and fields in fluid turbulence. Rev. Mod. Phys. 2001, 73, 913. [Google Scholar] [CrossRef]
- Avellaneda, M.; Majda, A. Mathematical models with exact renormalization for turbulent transport. Commun. Math. Phys. 1990, 131, 381. [Google Scholar] [CrossRef]
- Avellaneda, M.; Majda, A. Mathematical models with exact renormalization for turbulent transport II: Non-Gaussian statistics, fractal interfaces, and the sweeping effect. Commun. Math. Phys. 1992, 146, 139. [Google Scholar] [CrossRef]
- Antonov, N.V.; Gulitskiy, N.M. Logarithmic violation of scaling in strongly anisotropic turbulent transfer of a passive vector field. Phys. Rev. E 2015, 91, 013002. [Google Scholar] [CrossRef] [Green Version]
- Antonov, N.V.; Gulitskiy, N.M. Passive advection of a vector field: Anisotropy, finite correlation time, exact solution, and logarithmic corrections to ordinary scaling. Phys. Rev. E 2015, 92, 043018. [Google Scholar] [CrossRef] [Green Version]
- Antonov, N.V.; Gulitskiy, N.M. Logarithmic violation of scaling in anisotropic kinematic dynamo model. AIP Conf. Proc. 2016, 1701, 100006. [Google Scholar]
- Antonov, N.V.; Gulitskiy, N.M. Anisotropic Turbulent Advection of a Passive Vector Field: Effects of the Finite Correlation Time. EPJ Web Conf. 2016, 108, 02008. [Google Scholar] [CrossRef]
- Kakin, P.I.; Reiter, M.A.; Tumakova, M.M.; Gulitskiy, N.M.; Antonov, N.V. Stirred Kardar–Parisi–Zhang Equation with Quenched Random Noise: Emergence of Induced non-linearity. Universe 2022, 8, 72. [Google Scholar] [CrossRef]
- Antonov, N.V.; Kakin, P.I. Random interface growth in a random environment: Renormalization group analysis of a simple model. Theor. Math. Phys. 2015, 185, 1391. [Google Scholar] [CrossRef]
- Antonov, N.V.; Gulitskiy, N.M.; Kakin, P.I.; Kochnev, G.E. Effects of turbulent environment on self-organized critical behaviour: Isotropy vs. Anisotropy. Universe 2020, 6, 145. [Google Scholar] [CrossRef]
- Antonov, N.V.; Gulitskiy, N.M.; Kakin, P.I.; Semeikin, M.N. Dimensional transmutation and non-conventional scaling behaviour in a model of self-organized criticality. Int. J. Mod. Phys. A 2022, 37, 2240022. [Google Scholar] [CrossRef]
- Stell, G. Weak-Scaling Theory. Phys. Rev. Lett. 1970, 24, 1343. [Google Scholar] [CrossRef] [Green Version]
- Stell, G. Some Implications of Weak-Scaling Theory. Phys. Rev. B 1970, 2, 2811. [Google Scholar] [CrossRef]
- Stell, G. Weak Scaling. In Critical Phenomena: Proceedings of the International School of Physics “Enrico Fermi”, Course LI; Green, M.S., Ed.; Academic Press: New York, NY, USA, 1971. [Google Scholar]
- Fisher, M. The Theory of Critical Point Singularities. In Critical Phenomena: Proceedings of the International School of Physics “Enrico Fermi”, Course LI; Green, M.S., Ed.; Academic Press: New York, NY, USA, 1971. [Google Scholar]
- Monin, A.S.; Yaglom, A.M. Statistical Fluid Mechanics; MIT Press: Cambridge, MA, USA, 1971; Volume 1. [Google Scholar]
- Antonov, N.V.; Gulitskiy, N.M.; Kakin, P.I.; Serov, V.D. Effects of turbulent environment and random noise on self-organized critical behaviour: Universality versus nonuniversality. Phys. Rev. E 2021, 103, 042106. [Google Scholar] [CrossRef]
- Antonov, N.V.; Kakin, P.I.; Lebedev, N.M.; Luchin, A.Y. Renormalization group analysis of a self-organized critical system: Intrinsic anisotropy vs random environment. arXiv 2022, arXiv:2212.01913. [Google Scholar]
- Antonov, N.V.; Kakin, P.I.; Lebedev, N.M.; Luchin, A.Y. Self-organized criticality in anisotropic system within a randomly moving environment. AIP Conf. Proc. 2023, 2731, 040001. [Google Scholar]
- Giorgio Parisi—Facts—2021. Nobel Prize Outreach AB 2021. Mon. 11 October 2021. Available online: www.nobelprize.org/prizes/physics/2021/parisi/facts/ (accessed on 30 May 2023).
- Benzi, R.; Parisi, G.; Sutera, A.; Vulpiani, A. A theory of stochastic resonance in climate changes. SIAM J. Appl. Math. 1983, 43, 565. [Google Scholar] [CrossRef]
- Feigenbaum, M.J.; Procaccia, I.; Davidovich, B. Dynamics of Finger Formation in Laplacian Growth Without Surface Tension. J. Stat. Phys. 2001, 103, 973–1007. [Google Scholar] [CrossRef]
- Tadić, B.; Melnik, R. Self-Organised Critical Dynamics as a Key to Fundamental Features of Complexity in Physical, Biological, and Social Networks. Dynamics 2021, 1, 181–197. [Google Scholar] [CrossRef]
- Andjelković, M.; Gupte, N.; Tadić, B. Hidden geometry of traffic jamming. Phys. Rev. E 2015, 91, 052817. [Google Scholar] [CrossRef]
- Šuvakov, M.; Andjelković, M.; Tadić, B. Hidden geometries in networks arising from cooperative self-assembly. Sci. Rep. 2018, 8, 1987. [Google Scholar] [CrossRef] [Green Version]
- Tadić, B.; Gupte, N. Hidden geometry and dynamics of complex networks: Spin reversal in nanoassemblies with pairwise and triangle-based interactions. Europhys. Lett. 2020, 132, 60008. [Google Scholar] [CrossRef]
- Hnatič, M.; Kalagov, G.; Nalimov, M. Turbulent mixing of a critical fluid: The non-perturbative renormalization. Nucl. Phys. B 2018, 926, 1. [Google Scholar] [CrossRef]
F | h | g,w,x | |||||||
---|---|---|---|---|---|---|---|---|---|
1 | 1 | 0 | 0 | 0 | 0 | 0 | |||
1 | 0 | ||||||||
1 | 0 | 1 | 0 |
Name | Coordinates | Stability Region |
---|---|---|
FP1a | ||
FP2 | , | |
FP3 | , , | |
FP4 | , , | |
FP5 | , , | |
FP6 | , | empty |
FP1b | , arbitrary | |
FP7 | ||
FP8 | empty |
F | h | g | |||||||
---|---|---|---|---|---|---|---|---|---|
1 | 3 | 1 | 1 | 0 | 0 | 0 | 0 | ||
2 | 0 | 0 | 0 | 0 | |||||
0 | 0 | 2 | 0 | 1 | |||||
0 | 0 | 1 | |||||||
1 | 0 | 0 | 0 | 0 | 1 |
F | h | v | , u | g, x | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 3 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | ||
0 | 0 | 1 | ||||||||||
1 | 0 | 0 | 1 | 0 | 0 | 1 |
F | h | v | m, | |||
---|---|---|---|---|---|---|
1 | ||||||
1 | 0 | 1 | ||||
1 | 1 | |||||
, | ||||||
0 | 0 | |||||
1 | 0 | 0 | 0 | 0 | ||
0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antonov, N.V.; Gulitskiy, N.M.; Kakin, P.I.; Lebedev, N.M.; Tumakova, M.M. Field-Theoretic Renormalization Group in Models of Growth Processes, Surface Roughening and Non-Linear Diffusion in Random Environment: Mobilis in Mobili. Symmetry 2023, 15, 1556. https://doi.org/10.3390/sym15081556
Antonov NV, Gulitskiy NM, Kakin PI, Lebedev NM, Tumakova MM. Field-Theoretic Renormalization Group in Models of Growth Processes, Surface Roughening and Non-Linear Diffusion in Random Environment: Mobilis in Mobili. Symmetry. 2023; 15(8):1556. https://doi.org/10.3390/sym15081556
Chicago/Turabian StyleAntonov, Nikolay V., Nikolay M. Gulitskiy, Polina I. Kakin, Nikita M. Lebedev, and Maria M. Tumakova. 2023. "Field-Theoretic Renormalization Group in Models of Growth Processes, Surface Roughening and Non-Linear Diffusion in Random Environment: Mobilis in Mobili" Symmetry 15, no. 8: 1556. https://doi.org/10.3390/sym15081556
APA StyleAntonov, N. V., Gulitskiy, N. M., Kakin, P. I., Lebedev, N. M., & Tumakova, M. M. (2023). Field-Theoretic Renormalization Group in Models of Growth Processes, Surface Roughening and Non-Linear Diffusion in Random Environment: Mobilis in Mobili. Symmetry, 15(8), 1556. https://doi.org/10.3390/sym15081556