A New Hybrid Generalization of Balancing Polynomials
Abstract
:1. Introduction
if and only if |
for |
2. Balancing Hybrinomials and Lucas-Balancing Hybrinomials
3. Binet Type Formulas and Some Properties of Balancing Hybrinomials and Lucas-Balancing Hybrinomials
- for , , and Catalan identity,
- for , , and Cassini identity,
- for , , , and d’Ocagne identity,
- for , , , and Vajda identity.
4. Generating Functions and Matrix Interpretations of Balancing Hybrinomials
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Behera, A.; Panda, G.K. On the square roots of triangular numbers. Fibonacci Quart. 1999, 37, 98–105. [Google Scholar] [CrossRef]
- Panda, G.K. Some fascinating properties of balancing numbers. In Proceedings of the Eleventh International Conference on Fibonacci Numbers and Their Applications, Braunschweig, Germany, 5–9 July 2004; Utilitas Mathematica Pub.: Winnipeg, MB, Canada, 2009; Volume 194, pp. 185–189. [Google Scholar]
- Catarino, P.; Campos, H.; Vasco, P. On some identities for balancing and cobalancing numbers. Ann. Math. Inform. 2015, 45, 11–24. [Google Scholar]
- Panda, G.K.; Ray, P.K. Cobalancing numbers and cobalancers. Int. J. Math. Math. Sci. 2005, 8, 1189–1200. [Google Scholar] [CrossRef]
- Panda, G.K. Sequence balancing and cobalancing numbers. Fibonacci Quart. 2007, 45, 265–271. [Google Scholar] [CrossRef]
- Bród, D. On Some Combinatorial Properties of Balancing Split Quaternions. Symmetry 2024, 16, 373. [Google Scholar] [CrossRef]
- Gautam, R. Balancing Numbers and Application. J. Adv. Coll. Eng. Manag. 2018, 4, 137–143. [Google Scholar] [CrossRef]
- Dash, K.K.; Ota, R.S.; Dash, S. Application of Balancing Numbers in Effectively Solving Generalized Pell’s Equation. Int. J. Sci. Innov. Math. Res. 2014, 2, 156–164. [Google Scholar]
- Swain, S.; Pratihary, C.; Ray, P.K. Balancing and Lucas-Balancing Numbers and Their Application to Cryptography. Comput. Eng. Appl. J. 2016, 5, 29–36. [Google Scholar] [CrossRef]
- Liptai, K.; Luca, F.; Pintér, Á.; Szalay, L. Generalized balancing numbers. Indag. Math. 2009, 20, 87–100. [Google Scholar] [CrossRef]
- Kovács, T.; Liptai, K.; Olajos, P. On (a, b)-balancing numbers. Publ. Math. Debr. 2010, 77, 485–498. [Google Scholar] [CrossRef]
- Dash, K.K.; Ota, R.S.; Dash, S. t-balancing numbers. Int. J. Contemp. Math. Sci. 2012, 7, 1999–2012. [Google Scholar]
- Tekcan, A.; Tayat, M.; Özbek, M.E. The Diophantine Equation 8x2 − y2 + 8x(1 + t) + (2t + 1)2 = 0 and t-Balancing Numbers. ISRN Comb. 2014, 5, 897834. [Google Scholar] [CrossRef]
- Ray, P.K. On the properties of k-balancing numbers. Ain Shams Eng. J. 2018, 9, 395–402. [Google Scholar] [CrossRef]
- Özkoç, A. Tridiagonal matrices via k-balancing number. Br. J. Math. Comput. Sci. 2015, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Özkoç, A.; Tekcan, A. On k-balancing numbers. Notes Number Theory Discret. Math. 2017, 23, 38–52. [Google Scholar]
- Bród, D. On balancing quaternions and Lucas-balancing quaternions. Discuss. Math. Gen. Algebra Appl. 2021, 41, 55–68. [Google Scholar] [CrossRef]
- Patel, B.K.; Ray, P.K. On balancing and Lucas-balancing quaternions. Commun. Math. 2021, 29, 325–341. Available online: https://eudml.org/doc/297538 (accessed on 15 October 2024). [CrossRef]
- Sevgi, E.; Taşçı, D. Bi-periodic balancing quaternions. Turk. J. Math. Comput. Sci. 2020, 12, 68–75. [Google Scholar] [CrossRef]
- Yılmaz, F.; Ertaş, A.; Jia, J. On Harmonic Complex Balancing Numbers. Mathematics 2023, 11, 210. [Google Scholar] [CrossRef]
- Bród, D.; Szynal-Liana, A.; Włoch, I. Two generalizations of dual-complex Lucas-balancing numbers. Acta Univ. Sapientiae Math. 2022, 14, 220–230. [Google Scholar] [CrossRef]
- Bród, D.; Szynal-Liana, A.; Włoch, I. Two generalizations of dual-hyperbolic balancing numbers. Symmetry 2020, 12, 1866. [Google Scholar] [CrossRef]
- Bród, D.; Szynal-Liana, A.; Włoch, I. On the combinatorial properties of bihyperbolic balancing numbers. Tatra Mt. Math. Publ. 2020, 77, 27–38. [Google Scholar] [CrossRef]
- Uysal, M.; Özkan, E.; Shannon, A.G. On dual bicomplex balancing and Lucas-balancing numbers. J. Sci. Arts 2023, 23, 925–938. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S. Some identities of Catalan-Daehee polynomials arising from umbral calculus. Appl. Comput. Math. 2017, 16, 177–189. [Google Scholar]
- Kim, H.K.; Dolgy, D.V. Degenerate Catalan-Daehee numbers and polynomials of order r arising from degenerate umbral calculus. AIMS Math. 2022, 7, 3845–3865. [Google Scholar] [CrossRef]
- Patel, B.K.; Irmak, N.; Ray, P.K. Incomplete balancing and Lucas-balancing numbers. Math. Rep. 2018, 20, 59–72. [Google Scholar]
- Frontczak, R. On balancing polynomials. Appl. Math. Sci. 2019, 13, 57–66. [Google Scholar] [CrossRef]
- Özdemir, M. Introduction to Hybrid Numbers. Adv. Appl. Clifford Algebr. 2018, 28, 1–32. [Google Scholar] [CrossRef]
- Bród, D.; Szynal-Liana, A.; Włoch, I. Balancing hybrid numbers, their properties and some identities. Indian J. Math. 2021, 63, 143–157. [Google Scholar]
- Uysal, M.; Özkan, E. Balancing and Lucas-Balancing hybrid numbers and some identities. J. Inf. Optim. Sci. 2024, 45, 1293–1304. [Google Scholar] [CrossRef]
- Rubajczyk, M.; Szynal-Liana, A. Cobalancing hybrid numbers. Ann. Univ. Mariae Curie-Skłodowska Sect. A 2024, 78, 87–95. [Google Scholar]
- Szynal-Liana, A.; Włoch, I. Introduction to Fibonacci and Lucas hybrinomials. Complex Var. Elliptic Equ. 2020, 65, 1736–1747. [Google Scholar] [CrossRef]
- Mersin, E.Ö. Hybrinomials Related to Hyper-Fibonacci and Hyper-Lucas Numbers. J. Eng. Technol. Appl. Sci. 2023, 8, 1–13. [Google Scholar] [CrossRef]
- Kızılateş, C. A Note on Horadam Hybrinomials. Fundam. J. Math. Appl. 2022, 5, 1–9. [Google Scholar] [CrossRef]
- Kızılateş, C.; Du, W.S.; Terzioğlu, N. On Higher-Order Generalized Fibonacci Hybrinomials: New Properties, Recurrence Relations and Matrix Representations. Mathematics 2024, 12, 1156. [Google Scholar] [CrossRef]
- Meng, Y. A New Identity Involving Balancing Polynomials and Balancing Numbers. Symmetry 2019, 11, 1141. [Google Scholar] [CrossRef]
- Frontczak, R.; Goy, T. Additional close links between balancing and Lucas-balancing polynomials. Adv. Stud. Contemp. Math. 2021, 31, 287–300. [Google Scholar]
· | i | h | |
---|---|---|---|
0 | |||
1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bród, D.; Rubajczyk, M.; Szynal-Liana, A. A New Hybrid Generalization of Balancing Polynomials. Symmetry 2024, 16, 1397. https://doi.org/10.3390/sym16101397
Bród D, Rubajczyk M, Szynal-Liana A. A New Hybrid Generalization of Balancing Polynomials. Symmetry. 2024; 16(10):1397. https://doi.org/10.3390/sym16101397
Chicago/Turabian StyleBród, Dorota, Mariola Rubajczyk, and Anetta Szynal-Liana. 2024. "A New Hybrid Generalization of Balancing Polynomials" Symmetry 16, no. 10: 1397. https://doi.org/10.3390/sym16101397
APA StyleBród, D., Rubajczyk, M., & Szynal-Liana, A. (2024). A New Hybrid Generalization of Balancing Polynomials. Symmetry, 16(10), 1397. https://doi.org/10.3390/sym16101397