Comparing Confidence Intervals for the Mean of Symmetric and Skewed Distributions
Abstract
:1. Introduction
2. Existing Methods
2.1. Normal Confidence Interval
2.2. Student’s t Confidence Intervals
2.2.1. Ordinary t Confidence Interval
2.2.2. Modified t Confidence Interval
2.2.3. Johnson’s t Confidence Interval
2.2.4. Shi-Kibria’s t Confidence Interval
2.3. Bootstrap t Confidence Interval
3. Existing and New Edgeworth-Based Confidence Intervals
3.1. Hall’s Confidence Interval
3.2. Modified Hall’s Confidence Interval
3.3. Bootstrap Hall’s Confidence Interval
3.4. New Confidence Interval
3.5. Modified New Confidence Interval
3.6. Bootstrap New Confidence Interval
4. Simulation Study
- We generated samples of sizes from
- positively asymmetric distributions
- ❖
- beta (),
- ❖
- beta (),
- ❖
- beta (),
- ❖
- gamma , (),
- ❖
- gamma (),
- ❖
- gamma or standard exponential distribution (),
- ❖
- log-normal (.
- negatively asymmetric distributions
- ❖
- beta (),
- ❖
- beta (),
- ❖
- beta (),
- symmetric distributions
- ❖
- beta or standard uniform distribution (),
- ❖
- beta (),
- ❖
- beta (),
- ❖
- normal distribution (,
- ❖
- logistic (,
- Simulation was repeated times with the number of bootstrap replications equal to .
5. Results
5.1. Comparisons of Different Versions of Edgeworth-Based Confidence Intervals
5.2. Overall Comparison of the Confidence Intervals
6. Discussion
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
n | Estimated Coverage Probability | Mean Length (Standard Deviation) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
t | modt | johnsn | shik | tboot | mhall | bhall | mnew | bnew | t | modt | johnsn | shik | tboot | mhall | bhall | mnew | bnew | |
beta () | ||||||||||||||||||
10 | 0.94 | 0.9336 | 0.9408 | 0.944 | 0.962 | 0.9324 | 0.945 | 0.9512 | 0.9822 | 0.3307 | 0.3156 | 0.3307 | 0.3415 | 0.3725 | 0.3071 | 0.4201 | 0.3376 | 0.6509 |
(0.0691) | (0.0655) | (0.0691) | (0.0743) | (0.1065) | (0.1058) | (0.2984) | (0.0744) | (0.8186) | ||||||||||
20 | 0.9494 | 0.9462 | 0.9506 | 0.9522 | 0.9644 | 0.9498 | 0.9546 | 0.9606 | 0.9842 | 0.2183 | 0.214 | 0.2183 | 0.2242 | 0.2252 | 0.204 | 0.212 | 0.2213 | 0.2624 |
(0.0308) | (0.0292) | (0.0308) | (0.0335) | (0.0331) | (0.0304) | (0.0458) | (0.0312) | (0.0468) | ||||||||||
30 | 0.95 | 0.948 | 0.952 | 0.9552 | 0.9622 | 0.949 | 0.9528 | 0.961 | 0.9768 | 0.1752 | 0.173 | 0.1752 | 0.1793 | 0.1781 | 0.167 | 0.169 | 0.177 | 0.1952 |
(0.0195) | (0.0187) | (0.0195) | (0.0212) | (0.0204) | (0.0185) | (0.0178) | (0.0196) | (0.0235) | ||||||||||
50 | 0.9474 | 0.9458 | 0.9486 | 0.9508 | 0.9552 | 0.9462 | 0.9456 | 0.9548 | 0.9678 | 0.1334 | 0.1324 | 0.1334 | 0.136 | 0.1345 | 0.1295 | 0.1302 | 0.1342 | 0.1415 |
(0.0114) | (0.0111) | (0.0114) | (0.0123) | (0.0118) | (0.011) | (0.0109) | (0.0114) | (0.0126) | ||||||||||
70 | 0.942 | 0.9416 | 0.9424 | 0.9456 | 0.9504 | 0.9448 | 0.9448 | 0.9502 | 0.9618 | 0.112 | 0.1114 | 0.112 | 0.114 | 0.1126 | 0.1097 | 0.11 | 0.1125 | 0.1166 |
(0.0081) | (0.0079) | (0.0081) | (0.0088) | (0.0085) | (0.0079) | (0.008) | (0.0081) | (0.0089) | ||||||||||
100 | 0.9516 | 0.9514 | 0.9522 | 0.9556 | 0.9562 | 0.953 | 0.9532 | 0.9566 | 0.9644 | 0.0933 | 0.093 | 0.0933 | 0.0949 | 0.0937 | 0.092 | 0.0922 | 0.0936 | 0.096 |
(0.0056) | (0.0055) | (0.0056) | (0.0061) | (0.006) | (0.0055) | (0.0058) | (0.0056) | (0.0062) | ||||||||||
beta () | ||||||||||||||||||
10 | 0.9106 | 0.9048 | 0.9144 | 0.9206 | 0.9486 | 0.904 | 0.9238 | 0.9376 | 0.9766 | 0.1121 | 0.1138 | 0.1121 | 0.1178 | 0.1478 | 0.1321 | 0.2044 | 0.1264 | 0.5854 |
(0.0392) | (0.0455) | (0.0392) | (0.0427) | (0.0867) | (0.0805) | (0.1596) | (0.0562) | (2.3048) | ||||||||||
20 | 0.923 | 0.9278 | 0.9256 | 0.9302 | 0.9464 | 0.9268 | 0.9364 | 0.9458 | 0.9656 | 0.0754 | 0.0783 | 0.0754 | 0.0789 | 0.0848 | 0.0861 | 0.1077 | 0.0825 | 0.1276 |
(0.0185) | (0.0217) | (0.0185) | (0.0202) | (0.0265) | (0.0416) | (0.0741) | (0.0244) | (0.0944) | ||||||||||
30 | 0.9356 | 0.9392 | 0.9372 | 0.9426 | 0.9502 | 0.9386 | 0.9416 | 0.9506 | 0.9632 | 0.0608 | 0.0629 | 0.0608 | 0.0635 | 0.0654 | 0.0656 | 0.0729 | 0.065 | 0.0828 |
(0.0123) | (0.0141) | (0.0123) | (0.0135) | (0.0153) | (0.0251) | (0.0391) | (0.0152) | (0.031) | ||||||||||
50 | 0.9438 | 0.9472 | 0.9442 | 0.9498 | 0.947 | 0.9388 | 0.943 | 0.9474 | 0.9562 | 0.0467 | 0.0478 | 0.0467 | 0.0487 | 0.0487 | 0.0478 | 0.0494 | 0.0487 | 0.0554 |
(0.0073) | (0.008) | (0.0073) | (0.008) | (0.0084) | (0.0106) | (0.014) | (0.0083) | (0.0122) | ||||||||||
70 | 0.9404 | 0.9444 | 0.9428 | 0.9494 | 0.951 | 0.9454 | 0.9492 | 0.9526 | 0.9604 | 0.0393 | 0.0401 | 0.0393 | 0.041 | 0.0405 | 0.0396 | 0.0402 | 0.0405 | 0.0442 |
(0.0052) | (0.0055) | (0.0052) | (0.0057) | (0.0057) | (0.0058) | (0.0064) | (0.0057) | (0.0073) | ||||||||||
100 | 0.9466 | 0.9486 | 0.9464 | 0.953 | 0.9476 | 0.9464 | 0.946 | 0.9504 | 0.9528 | 0.0327 | 0.0332 | 0.0327 | 0.0341 | 0.0334 | 0.0328 | 0.0331 | 0.0334 | 0.0355 |
(0.0035) | (0.0037) | (0.0035) | (0.0039) | (0.0038) | (0.0037) | (0.0039) | (0.0038) | (0.0045) | ||||||||||
beta () | ||||||||||||||||||
10 | 0.9018 | 0.9022 | 0.9054 | 0.9084 | 0.9424 | 0.905 | 0.922 | 0.9306 | 0.975 | 0.013 | 0.0135 | 0.013 | 0.0137 | 0.0181 | 0.016 | 0.0249 | 0.0152 | 0.0936 |
(0.0053) | (0.0065) | (0.0053) | (0.0058) | (0.0128) | (0.0106) | (0.0199) | (0.0082) | (0.402) | ||||||||||
20 | 0.9192 | 0.9246 | 0.9212 | 0.927 | 0.9484 | 0.9272 | 0.9364 | 0.9458 | 0.967 | 0.0088 | 0.0094 | 0.0088 | 0.0092 | 0.0103 | 0.011 | 0.0141 | 0.01 | 0.018 |
(0.0026) | (0.0033) | (0.0026) | (0.0028) | (0.0041) | (0.0064) | (0.0102) | (0.0039) | (0.0184) | ||||||||||
30 | 0.9286 | 0.9364 | 0.9306 | 0.9354 | 0.9504 | 0.9368 | 0.9416 | 0.9482 | 0.9606 | 0.0071 | 0.0075 | 0.0071 | 0.0074 | 0.0079 | 0.0083 | 0.0097 | 0.0078 | 0.0109 |
(0.0017) | (0.0021) | (0.0017) | (0.0019) | (0.0024) | (0.0042) | (0.0065) | (0.0024) | (0.0072) | ||||||||||
50 | 0.9354 | 0.9412 | 0.9374 | 0.944 | 0.9494 | 0.9398 | 0.9448 | 0.9488 | 0.9548 | 0.0055 | 0.0057 | 0.0055 | 0.0057 | 0.0058 | 0.006 | 0.0064 | 0.0059 | 0.007 |
(0.001) | (0.0012) | (0.001) | (0.0011) | (0.0013) | (0.0023) | (0.0032) | (0.0013) | (0.0024) | ||||||||||
70 | 0.9418 | 0.946 | 0.9418 | 0.9492 | 0.9476 | 0.9436 | 0.9448 | 0.9502 | 0.9554 | 0.0046 | 0.0048 | 0.0046 | 0.0048 | 0.0048 | 0.0049 | 0.0051 | 0.0049 | 0.0055 |
(0.0007) | (0.0009) | (0.0007) | (0.0008) | (0.0009) | (0.0014) | (0.0019) | (0.0009) | (0.0015) | ||||||||||
100 | 0.9416 | 0.9456 | 0.9416 | 0.9514 | 0.949 | 0.9456 | 0.9476 | 0.9498 | 0.9528 | 0.0039 | 0.004 | 0.0039 | 0.004 | 0.004 | 0.004 | 0.004 | 0.004 | 0.0044 |
(0.0005) | (0.0006) | (0.0005) | (0.0006) | (0.0006) | (0.0008) | (0.001) | (0.0006) | (0.0008) |
References
- Thompson, S.G.; Barber, J.A. How should cost data in pragmatic randomised trials be analysed? BMJ 2000, 320, 1197–1200. [Google Scholar] [CrossRef] [PubMed]
- Klugman, S.A.; Panjer, H.H.; Willmot, G.E. Loss Models: From Data to Decisions, 5th ed.; Wiley: New York, NY, USA, 2019. [Google Scholar]
- Holmes, M.; Maser, K. Using Median Expenditures: Impact on Household Spending Data; Household Expenditures Research Paper Series; Statistics Canada: Ottawa, ON, Canada, 2003. [Google Scholar]
- Blanca, M.J.; Arnau, J.; López-Montiel, D.; Bono, R.; Bendayan, R. Skewness and kurtosis in real data samples. Methodol. Eur. J. Res. Methods Behav. Soc. Sci. 2013, 9, 78–84. [Google Scholar] [CrossRef]
- Indrayan, A.; Mishra, A. The importance of small samples in medical research. J. Postgrad. Med. 2021, 67, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Johnson, N.J. Modified t-tests and confidence intervals for asymmetrical population. J. Am. Stat. Assoc. 1978, 73, 536–544. [Google Scholar] [CrossRef]
- Willink, R. A confidence interval and test for the mean of an asymmetric distribution. Commun. Stat. Methods 2005, 34, 753–766. [Google Scholar] [CrossRef]
- Shi, W.; Kibria, B.M.G. On some confidence intervals for estimating the mean of a skewed population. Int. J. Math. Educ. Sci. Technol. 2007, 38, 412–421. [Google Scholar] [CrossRef]
- Abu-Shawiesh, M.O.A.; Banik, B.; Kibria, B.M.G. Confidence Intervals based on absolute deviation for population mean of a positively skewed distribution. Int. J. Comput. Theor. Stat. 2018, 5, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Abu-Shawiesh, M.O.A.; Saghir, A. Robust confidence intervals for the population mean alternatives to the Student-t confidence interval. J. Mod. Appl. Stat. Methods 2019, 18, eP2721. [Google Scholar] [CrossRef]
- O’Neill, B. Some Useful Moment Results in Sampling Problems. Am. Stat. 2014, 68, 282–296. [Google Scholar] [CrossRef]
- Efron, B. Nonparametric Standard Errors and Confidence Intervals. Can. J. Stat. 1981, 2, 139–158. [Google Scholar] [CrossRef]
- Di Ciccio, T.J.; Efron, B. Bootstrap Confidence Intervals. Stat. Sci. 1996, 11, 189–228. [Google Scholar]
- Hall, P. On the removal of skewness by transformation. J. R. Stat. Soc. Ser. 1992, 54, 221–228. [Google Scholar] [CrossRef]
- Zhou, X.H.; Dinh, P. Nonparametric confidence intervals for the one- and two-sample problems. Biostatistics 2005, 6, 187–200. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.-H.; Gao, S. One–sided confidence intervals for means of positively skewed distribution. Am. Stat. 2000, 54, 100–104. [Google Scholar] [CrossRef]
- Banik, S.; Kibria, B.M.G. Comparison of Some Parametric and Nonparametric Type One Sample Confidence Intervals for Estimating the Mean of a Positively Skewed Distribution. Commun. Stat. Simul. Comput. 2010, 39, 361–389. [Google Scholar] [CrossRef]
- DeCarlo, L.T. On the Meaning and Use of Kurtosis. Psychol. Methods 1997, 2, 292–307. [Google Scholar] [CrossRef]
- Neyman, J. Outline of a Theory of Statistical Estimation Based on the Classical Theory of Probability. Philos. Trans. R. Soc. 1937, 236, 333–380. [Google Scholar]
- Wasserman, L. All of Statistics: A Concise Course in Statistical Inference; Springer Texts in Statistics: New York, NY, USA, 2004; p. 75. [Google Scholar]
- Wilcox, R. Introduction to Robust Estimation and Hypothesis Testing, 3rd ed.; Academic Press: New York, NY, USA, 2012. [Google Scholar]
- Hall, P. The Bootstrap and Edgeworth Expansion; Springer: New York, NY, USA, 1992. [Google Scholar]
- Joanes, D.N.; Gill, C.A. Comparing Measures of Sample Skewness and Kurtosis. J. R. Stat. Soc. Ser. 1998, 47, 183–189. [Google Scholar] [CrossRef]
- Efron, B.; Tibshirani, R.; Tibshirani, R.J. An Introduction to the Bootstrap; Chapman & Hall/CRC Monographs on Statistics and Applied Probability: Philadelphia, PA, USA, 1994; pp. 124–125. [Google Scholar]
- Johnson, N.L.; Kotz, S.; Balakrishnan, N. Continuous Univariate Distributions, 2nd ed.; Wiley-Interscience: New York, NY, USA, 1994; Volume 1. [Google Scholar]
- Johnson, N.L.; Kotz, S.; Balakrishnan, N. Continuous Univariate Distributions; Wiley-Interscience: New York, NY, USA, 1995; Volume 2. [Google Scholar]
- Piovesana, A.; Senior, G. How Small Is Big: Sample Size and Skewness. Assessment 2018, 25, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Davison, A.C.; Hinkley, D.V. Bootstrap Methods and Their Application; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
n | Estimated Coverage Probability | Mean Length (Standard Deviation) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
t | modt | johnsn | shik | tboot | mhall | bhall | mnew | bnew | t | modt | johnsn | shik | tboot | mhall | bhall | mnew | bnew | |
beta () | ||||||||||||||||||
10 | 0.9386 | 0.9314 | 0.9406 | 0.9436 | 0.9624 | 0.9262 | 0.9416 | 0.9498 | 0.988 | 0.3309 | 0.3151 | 0.3309 | 0.3418 | 0.3742 | 0.3036 | 0.4292 | 0.3369 | 0.6677 |
(0.0703) | (0.0659) | (0.0703) | (0.0757) | (0.1129) | (0.0988) | (0.3202) | (0.0744) | (0.9364) | ||||||||||
20 | 0.9436 | 0.9412 | 0.9464 | 0.9494 | 0.9616 | 0.9444 | 0.9496 | 0.959 | 0.9796 | 0.2187 | 0.2142 | 0.2187 | 0.2245 | 0.2256 | 0.2041 | 0.2122 | 0.2216 | 0.2629 |
(0.0307) | (0.0291) | (0.0307) | (0.0334) | (0.033) | (0.0296) | (0.0439) | (0.0309) | (0.0522) | ||||||||||
30 | 0.9456 | 0.9446 | 0.9476 | 0.9508 | 0.9586 | 0.9458 | 0.947 | 0.9568 | 0.9722 | 0.1753 | 0.1731 | 0.1753 | 0.1794 | 0.1784 | 0.1671 | 0.1691 | 0.177 | 0.1956 |
(0.02) | (0.0192) | (0.02) | (0.0216) | (0.0209) | (0.0189) | (0.0183) | (0.0201) | (0.0241) | ||||||||||
50 | 0.9442 | 0.9434 | 0.947 | 0.9502 | 0.9562 | 0.9468 | 0.949 | 0.9554 | 0.9658 | 0.1333 | 0.1324 | 0.1333 | 0.136 | 0.1345 | 0.1296 | 0.1303 | 0.1342 | 0.1417 |
(0.0115) | (0.0112) | (0.0115) | (0.0125) | (0.012) | (0.0111) | (0.0111) | (0.0115) | (0.0128) | ||||||||||
70 | 0.9464 | 0.946 | 0.9474 | 0.9514 | 0.9538 | 0.9492 | 0.9468 | 0.9558 | 0.9618 | 0.1121 | 0.1115 | 0.1121 | 0.1142 | 0.1127 | 0.1098 | 0.1102 | 0.1126 | 0.1169 |
(0.0081) | (0.008) | (0.0081) | (0.0088) | (0.0085) | (0.0079) | (0.0081) | (0.0082) | (0.0089) | ||||||||||
100 | 0.9508 | 0.9504 | 0.9518 | 0.9544 | 0.9552 | 0.951 | 0.951 | 0.9556 | 0.963 | 0.0934 | 0.0931 | 0.0934 | 0.0951 | 0.0938 | 0.0921 | 0.0923 | 0.0938 | 0.0962 |
(0.0056) | (0.0055) | (0.0056) | (0.0061) | (0.0061) | (0.0055) | (0.0058) | (0.0056) | (0.0063) | ||||||||||
beta () | ||||||||||||||||||
10 | 0.9114 | 0.908 | 0.9134 | 0.9162 | 0.9428 | 0.903 | 0.9226 | 0.9328 | 0.973 | 0.1109 | 0.1123 | 0.1109 | 0.1162 | 0.1447 | 0.1298 | 0.2027 | 0.1246 | 0.5473 |
(0.0388) | (0.0446) | (0.0388) | (0.0422) | (0.081) | (0.0779) | (0.1583) | (0.0549) | (2.8423) | ||||||||||
20 | 0.9262 | 0.9304 | 0.9276 | 0.9338 | 0.9528 | 0.9326 | 0.943 | 0.9496 | 0.969 | 0.0753 | 0.0781 | 0.0753 | 0.0788 | 0.0847 | 0.086 | 0.107 | 0.0824 | 0.1279 |
(0.0186) | (0.0219) | (0.0186) | (0.0203) | (0.0264) | (0.0421) | (0.0733) | (0.0249) | (0.09) | ||||||||||
30 | 0.9332 | 0.9388 | 0.9358 | 0.9438 | 0.9548 | 0.944 | 0.949 | 0.956 | 0.9682 | 0.0607 | 0.0627 | 0.0607 | 0.0634 | 0.0654 | 0.065 | 0.0728 | 0.0648 | 0.0831 |
(0.012) | (0.0137) | (0.012) | (0.0131) | (0.0152) | (0.0235) | (0.0389) | (0.0149) | (0.0325) | ||||||||||
50 | 0.9418 | 0.945 | 0.9424 | 0.9488 | 0.9538 | 0.9486 | 0.9522 | 0.9544 | 0.9632 | 0.0466 | 0.0478 | 0.0466 | 0.0486 | 0.0487 | 0.0476 | 0.0493 | 0.0487 | 0.0555 |
(0.0071) | (0.0078) | (0.0071) | (0.0077) | (0.0081) | (0.0099) | (0.0133) | (0.0081) | (0.0119) | ||||||||||
70 | 0.9394 | 0.9446 | 0.9412 | 0.9482 | 0.9504 | 0.9444 | 0.9488 | 0.9504 | 0.9542 | 0.0392 | 0.04 | 0.0392 | 0.0409 | 0.0404 | 0.0395 | 0.0403 | 0.0404 | 0.0443 |
(0.0051) | (0.0055) | (0.0051) | (0.0056) | (0.0057) | (0.0059) | (0.0069) | (0.0056) | (0.0073) | ||||||||||
100 | 0.9416 | 0.945 | 0.9426 | 0.9492 | 0.9476 | 0.9428 | 0.9438 | 0.9474 | 0.95 | 0.0327 | 0.0332 | 0.0327 | 0.0341 | 0.0334 | 0.0328 | 0.0332 | 0.0334 | 0.0356 |
(0.0036) | (0.0038) | (0.0036) | (0.0039) | (0.0039) | (0.0038) | (0.004) | (0.0038) | (0.0046) | ||||||||||
beta () | ||||||||||||||||||
10 | 0.9058 | 0.9026 | 0.9078 | 0.9118 | 0.9468 | 0.9022 | 0.9218 | 0.9292 | 0.9754 | 0.0131 | 0.0136 | 0.0131 | 0.0138 | 0.0186 | 0.0163 | 0.0259 | 0.0154 | 0.1106 |
(0.0053) | (0.0065) | (0.0053) | (0.0057) | (0.0136) | (0.0106) | (0.0206) | (0.0084) | (0.5761) | ||||||||||
20 | 0.9176 | 0.9226 | 0.92 | 0.925 | 0.947 | 0.9298 | 0.9396 | 0.9452 | 0.968 | 0.0088 | 0.0094 | 0.0088 | 0.0092 | 0.0103 | 0.0111 | 0.0142 | 0.01 | 0.0184 |
(0.0026) | (0.0034) | (0.0026) | (0.0028) | (0.0042) | (0.0066) | (0.0105) | (0.0039) | (0.0217) | ||||||||||
30 | 0.9242 | 0.9324 | 0.9272 | 0.934 | 0.947 | 0.9276 | 0.9368 | 0.9458 | 0.9602 | 0.0071 | 0.0075 | 0.0071 | 0.0075 | 0.0079 | 0.0084 | 0.0098 | 0.0079 | 0.0112 |
(0.0017) | (0.0022) | (0.0017) | (0.0019) | (0.0025) | (0.0043) | (0.0067) | (0.0025) | (0.0077) | ||||||||||
50 | 0.9384 | 0.944 | 0.939 | 0.9466 | 0.9522 | 0.947 | 0.949 | 0.954 | 0.9594 | 0.0055 | 0.0057 | 0.0055 | 0.0057 | 0.0058 | 0.0059 | 0.0064 | 0.0059 | 0.0071 |
(0.001) | (0.0012) | (0.001) | (0.0011) | (0.0013) | (0.0022) | (0.0032) | (0.0013) | (0.0027) | ||||||||||
70 | 0.937 | 0.943 | 0.9382 | 0.9476 | 0.9488 | 0.9454 | 0.948 | 0.9506 | 0.9574 | 0.0046 | 0.0048 | 0.0046 | 0.0048 | 0.0048 | 0.0048 | 0.005 | 0.0048 | 0.0055 |
(0.0007) | (0.0008) | (0.0007) | (0.0008) | (0.0009) | (0.0013) | (0.0017) | (0.0009) | (0.0014) | ||||||||||
100 | 0.9438 | 0.9478 | 0.9446 | 0.9506 | 0.948 | 0.944 | 0.946 | 0.9484 | 0.9502 | 0.0039 | 0.004 | 0.0039 | 0.004 | 0.004 | 0.004 | 0.0041 | 0.004 | 0.0044 |
(0.0005) | (0.0006) | (0.0005) | (0.0006) | (0.0006) | (0.0008) | (0.001) | (0.0006) | (0.0009) | ||||||||||
gamma () | ||||||||||||||||||
10 | 0.9506 | 0.9424 | 0.9516 | 0.9544 | 0.9474 | 0.9006 | 0.9242 | 0.946 | 0.9682 | 139.2332 | 134.4575 | 139.2332 | 142.1655 | 150.1299 | 127.317 | 178.6623 | 140.8266 | 224.3392 |
(33.8268) | (33.7284) | (33.8268) | (34.751) | (40.0917) | (48.1457) | (121.685) | (36.1823) | (131.2656) | ||||||||||
20 | 0.953 | 0.9508 | 0.9532 | 0.9556 | 0.9524 | 0.932 | 0.944 | 0.9502 | 0.9642 | 92.4165 | 91.6894 | 92.4165 | 93.5786 | 94.0277 | 86.0954 | 94.3772 | 93.1071 | 106.8596 |
(15.4694) | (15.6693) | (15.4694) | (15.7801) | (16.2467) | (16.4159) | (26.0686) | (15.981) | (20.9608) | ||||||||||
30 | 0.9502 | 0.9498 | 0.9502 | 0.9518 | 0.948 | 0.9368 | 0.9458 | 0.9482 | 0.9596 | 74.0697 | 73.8287 | 74.0697 | 74.7326 | 74.5952 | 70.3095 | 74.0317 | 74.3645 | 80.4221 |
(9.7421) | (9.8488) | (9.7421) | (9.8942) | (10.033) | (9.3735) | (10.7363) | (9.8881) | (11.297) | ||||||||||
50 | 0.9512 | 0.9504 | 0.9506 | 0.9524 | 0.9512 | 0.9436 | 0.951 | 0.9514 | 0.9588 | 56.5142 | 56.4604 | 56.5142 | 56.8473 | 56.6638 | 54.7233 | 56.4059 | 56.6186 | 59.0601 |
(5.8096) | (5.8405) | (5.8096) | (5.8882) | (6.0061) | (5.6589) | (6.0662) | (5.8546) | (6.3869) | ||||||||||
70 | 0.9518 | 0.952 | 0.9522 | 0.953 | 0.9548 | 0.9474 | 0.9544 | 0.9526 | 0.9594 | 47.6283 | 47.6148 | 47.6283 | 47.8378 | 47.6958 | 46.5326 | 47.5691 | 47.6811 | 49.0711 |
(4.0816) | (4.1026) | (4.0816) | (4.1242) | (4.2327) | (4.0027) | (4.2594) | (4.1015) | (4.4059) | ||||||||||
100 | 0.9526 | 0.9524 | 0.9524 | 0.953 | 0.9546 | 0.9502 | 0.9538 | 0.9532 | 0.9576 | 39.6213 | 39.619 | 39.6213 | 39.7515 | 39.6539 | 38.976 | 39.5923 | 39.6481 | 40.4296 |
(2.8589) | (2.8672) | (2.8589) | (2.8834) | (2.9946) | (2.819) | (3.0057) | (2.8679) | (3.0771) | ||||||||||
gamma () | ||||||||||||||||||
10 | 0.9296 | 0.9242 | 0.9302 | 0.9348 | 0.943 | 0.895 | 0.9248 | 0.9384 | 0.9678 | 2.7319 | 2.6932 | 2.7319 | 2.8141 | 3.141 | 2.8128 | 4.2627 | 2.8926 | 6.279 |
(0.8119) | (0.8993) | (0.8119) | (0.8636) | (1.2933) | (1.5718) | (3.4337) | (1.0798) | (9.493) | ||||||||||
20 | 0.9438 | 0.945 | 0.945 | 0.9472 | 0.9492 | 0.9288 | 0.9436 | 0.9486 | 0.9642 | 1.835 | 1.8552 | 1.835 | 1.8777 | 1.9344 | 1.8677 | 2.2207 | 1.9165 | 2.425 |
(0.3815) | (0.4357) | (0.3815) | (0.4055) | (0.4745) | (0.7602) | (1.4046) | (0.4819) | (1.0333) | ||||||||||
30 | 0.9442 | 0.9444 | 0.9448 | 0.9474 | 0.9488 | 0.936 | 0.9452 | 0.951 | 0.961 | 1.4683 | 1.4876 | 1.4683 | 1.4973 | 1.5161 | 1.4646 | 1.594 | 1.5156 | 1.7383 |
(0.2487) | (0.2771) | (0.2487) | (0.2628) | (0.2894) | (0.4024) | (0.6433) | (0.2941) | (0.4763) | ||||||||||
50 | 0.9484 | 0.9496 | 0.9482 | 0.9514 | 0.9518 | 0.9436 | 0.9492 | 0.9532 | 0.9586 | 1.1263 | 1.139 | 1.1263 | 1.1463 | 1.1478 | 1.1158 | 1.1575 | 1.1492 | 1.2411 |
(0.1488) | (0.1629) | (0.1488) | (0.1578) | (0.1656) | (0.1946) | (0.2451) | (0.1673) | (0.2205) | ||||||||||
70 | 0.9476 | 0.9478 | 0.9482 | 0.9512 | 0.9492 | 0.9442 | 0.949 | 0.9488 | 0.9532 | 0.9496 | 0.9583 | 0.9496 | 0.9651 | 0.9624 | 0.9401 | 0.9628 | 0.9631 | 1.0158 |
(0.1062) | (0.1129) | (0.1062) | (0.1123) | (0.1147) | (0.1131) | (0.1245) | (0.1142) | (0.137) | ||||||||||
100 | 0.9454 | 0.947 | 0.946 | 0.9476 | 0.9486 | 0.9436 | 0.9474 | 0.9486 | 0.9518 | 0.7913 | 0.797 | 0.7913 | 0.8035 | 0.7987 | 0.7854 | 0.7986 | 0.7992 | 0.8294 |
(0.073) | (0.0769) | (0.073) | (0.0772) | (0.0787) | (0.0761) | (0.083) | (0.0772) | (0.0894) | ||||||||||
gamma () | ||||||||||||||||||
10 | 0.9002 | 0.898 | 0.9032 | 0.9078 | 0.943 | 0.9016 | 0.9226 | 0.93 | 0.9724 | 1.327 | 1.3843 | 1.327 | 1.4 | 1.9027 | 1.6597 | 2.6585 | 1.5627 | 12.6293 |
(0.5507) | (0.6818) | (0.5507) | (0.6003) | (1.4413) | (1.0949) | (2.1225) | (0.8684) | (108.5592) | ||||||||||
20 | 0.9204 | 0.927 | 0.9244 | 0.9296 | 0.9444 | 0.923 | 0.9314 | 0.945 | 0.961 | 0.8984 | 0.9565 | 0.8984 | 0.944 | 1.0552 | 1.1212 | 1.4518 | 1.0199 | 1.8825 |
(0.265) | (0.3407) | (0.265) | (0.2872) | (0.4302) | (0.647) | (1.0614) | (0.4004) | (2.1679) | ||||||||||
30 | 0.928 | 0.9336 | 0.929 | 0.9356 | 0.9478 | 0.932 | 0.9372 | 0.9468 | 0.961 | 0.7226 | 0.7647 | 0.7226 | 0.7583 | 0.8057 | 0.8556 | 1.019 | 0.7979 | 1.1368 |
(0.1752) | (0.2183) | (0.1752) | (0.1898) | (0.2461) | (0.4334) | (0.6937) | (0.2452) | (0.6946) | ||||||||||
50 | 0.9382 | 0.943 | 0.9386 | 0.9448 | 0.948 | 0.9386 | 0.9428 | 0.9494 | 0.954 | 0.5589 | 0.5862 | 0.5589 | 0.5861 | 0.5986 | 0.618 | 0.6718 | 0.6009 | 0.7354 |
(0.1093) | (0.1352) | (0.1093) | (0.1182) | (0.1399) | (0.2468) | (0.3611) | (0.1484) | (0.3268) | ||||||||||
70 | 0.935 | 0.9406 | 0.937 | 0.944 | 0.9506 | 0.9472 | 0.9484 | 0.9518 | 0.9584 | 0.4694 | 0.4868 | 0.4694 | 0.4917 | 0.4929 | 0.4964 | 0.5201 | 0.4945 | 0.5658 |
(0.0789) | (0.0932) | (0.0789) | (0.085) | (0.0949) | (0.1514) | (0.2149) | (0.0986) | (0.1625) | ||||||||||
100 | 0.942 | 0.9486 | 0.943 | 0.9534 | 0.9488 | 0.9448 | 0.9474 | 0.9492 | 0.9524 | 0.3924 | 0.4033 | 0.3924 | 0.4111 | 0.406 | 0.4033 | 0.4125 | 0.407 | 0.4458 |
(0.0544) | (0.0615) | (0.0544) | (0.0585) | (0.0621) | (0.079) | (0.0994) | (0.0635) | (0.0886) | ||||||||||
log-normal () | ||||||||||||||||||
10 | 0.923 | 0.9154 | 0.9236 | 0.9272 | 0.9392 | 0.8892 | 0.9166 | 0.9322 | 0.966 | 2.1968 | 2.2417 | 2.1968 | 2.2822 | 2.7673 | 2.5595 | 4.0927 | 2.4807 | 9.1887 |
(0.8359) | (1.0291) | (0.8359) | (0.8987) | (1.7204) | (1.7349) | (3.4579) | (1.3234) | (32.2238) | ||||||||||
20 | 0.9264 | 0.9278 | 0.927 | 0.9312 | 0.937 | 0.9166 | 0.9292 | 0.9372 | 0.957 | 1.4768 | 1.5499 | 1.4768 | 1.5239 | 1.6443 | 1.7123 | 2.2302 | 1.6356 | 2.5914 |
(0.4176) | (0.5616) | (0.4176) | (0.4457) | (0.653) | (0.9989) | (1.7264) | (0.6846) | (4.6306) | ||||||||||
30 | 0.9394 | 0.9438 | 0.9412 | 0.945 | 0.9464 | 0.9334 | 0.9426 | 0.9514 | 0.9566 | 1.1969 | 1.2561 | 1.1969 | 1.2326 | 1.2906 | 1.3562 | 1.6144 | 1.3009 | 1.7075 |
(0.2875) | (0.3811) | (0.2875) | (0.3061) | (0.4012) | (0.7112) | (1.1472) | (0.4439) | (1.2712) | ||||||||||
50 | 0.9438 | 0.9472 | 0.9444 | 0.9482 | 0.9482 | 0.9394 | 0.9448 | 0.949 | 0.9542 | 0.9168 | 0.9516 | 0.9168 | 0.942 | 0.9597 | 0.9821 | 1.0695 | 0.9682 | 1.1193 |
(0.1673) | (0.21) | (0.1673) | (0.1776) | (0.2109) | (0.3845) | (0.5678) | (0.231) | (0.4332) | ||||||||||
70 | 0.9504 | 0.9528 | 0.9508 | 0.9536 | 0.9492 | 0.9452 | 0.9488 | 0.953 | 0.9532 | 0.7737 | 0.7979 | 0.7737 | 0.7942 | 0.7997 | 0.8072 | 0.852 | 0.8064 | 0.8911 |
(0.121) | (0.1477) | (0.121) | (0.1285) | (0.1452) | (0.2458) | (0.3503) | (0.1582) | (0.2459) | ||||||||||
100 | 0.9468 | 0.95 | 0.9466 | 0.9522 | 0.9532 | 0.9484 | 0.9522 | 0.953 | 0.95 | 0.6454 | 0.6615 | 0.6454 | 0.6621 | 0.6614 | 0.6614 | 0.6835 | 0.6651 | 0.7135 |
(0.0861) | (0.1021) | (0.0861) | (0.0911) | (0.1) | (0.1491) | (0.1937) | (0.1064) | (0.149) |
n | Estimated Coverage Probability | Mean Length (Standard Deviation) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
t | modt | johnsn | shik | tboot | mhall | bhall | mnew | bnew | t | modt | johnsn | shik | tboot | mhall | bhall | mnew | bnew | |
normal () | ||||||||||||||||||
10 | 0.945 | 0.9406 | 0.9452 | 0.9482 | 0.9474 | 0.9034 | 0.9294 | 0.943 | 0.9694 | 1.39 | 1.3419 | 1.39 | 1.4191 | 1.4929 | 1.2654 | 1.7451 | 1.4049 | 2.2066 |
(0.3325) | (0.3297) | (0.3325) | (0.3419) | (0.3935) | (0.4606) | (1.16) | (0.353) | (1.2298) | ||||||||||
20 | 0.9494 | 0.9474 | 0.9496 | 0.9516 | 0.949 | 0.932 | 0.944 | 0.947 | 0.9666 | 0.9204 | 0.9133 | 0.9204 | 0.9314 | 0.9348 | 0.8565 | 0.9375 | 0.9263 | 1.059 |
(0.1526) | (0.1542) | (0.1526) | (0.155) | (0.1579) | (0.1618) | (0.2415) | (0.1562) | (0.1979) | ||||||||||
30 | 0.949 | 0.9478 | 0.9488 | 0.9504 | 0.9498 | 0.9366 | 0.9464 | 0.9476 | 0.9588 | 0.7406 | 0.7381 | 0.7406 | 0.7468 | 0.745 | 0.7029 | 0.7401 | 0.7429 | 0.8016 |
(0.0976) | (0.0978) | (0.0976) | (0.0988) | (0.0993) | (0.0957) | (0.1098) | (0.098) | (0.1092) | ||||||||||
50 | 0.9506 | 0.9496 | 0.9498 | 0.9518 | 0.9474 | 0.9412 | 0.9456 | 0.949 | 0.9536 | 0.5653 | 0.5645 | 0.5653 | 0.5682 | 0.5664 | 0.547 | 0.5637 | 0.5659 | 0.5894 |
(0.0576) | (0.0576) | (0.0576) | (0.0581) | (0.059) | (0.0558) | (0.0594) | (0.0577) | (0.0619) | ||||||||||
70 | 0.9526 | 0.9524 | 0.9522 | 0.9532 | 0.9532 | 0.946 | 0.9522 | 0.9524 | 0.958 | 0.4763 | 0.476 | 0.4763 | 0.4781 | 0.4769 | 0.4651 | 0.4757 | 0.4766 | 0.4902 |
(0.0407) | (0.0408) | (0.0407) | (0.0409) | (0.0421) | (0.0398) | (0.0424) | (0.0407) | (0.0434) | ||||||||||
100 | 0.961 | 0.9612 | 0.9612 | 0.9614 | 0.9602 | 0.9562 | 0.9596 | 0.9598 | 0.9628 | 0.3961 | 0.396 | 0.3961 | 0.3972 | 0.3965 | 0.3895 | 0.3958 | 0.3962 | 0.4039 |
(0.0279) | (0.0279) | (0.0279) | (0.028) | (0.0292) | (0.0275) | (0.0293) | (0.0279) | (0.0299) | ||||||||||
beta () | ||||||||||||||||||
10 | 0.949 | 0.9424 | 0.95 | 0.9534 | 0.9496 | 0.9064 | 0.9288 | 0.9462 | 0.9708 | 0.0284 | 0.0274 | 0.0284 | 0.029 | 0.0305 | 0.0258 | 0.0361 | 0.0287 | 0.0462 |
(0.0068) | (0.0067) | (0.0068) | (0.007) | (0.0082) | (0.0093) | (0.024) | (0.0071) | (0.0494) | ||||||||||
20 | 0.9464 | 0.9442 | 0.9468 | 0.9486 | 0.9444 | 0.9288 | 0.9388 | 0.9444 | 0.9576 | 0.0188 | 0.0186 | 0.0188 | 0.019 | 0.0191 | 0.0175 | 0.0191 | 0.0189 | 0.0216 |
(0.0031) | (0.0031) | (0.0031) | (0.0031) | (0.0032) | (0.0031) | (0.0045) | (0.0031) | (0.0039) | ||||||||||
30 | 0.951 | 0.9492 | 0.9516 | 0.9532 | 0.9472 | 0.9318 | 0.9456 | 0.9486 | 0.9616 | 0.0151 | 0.015 | 0.0151 | 0.0152 | 0.0152 | 0.0143 | 0.015 | 0.0151 | 0.0163 |
(0.002) | (0.002) | (0.002) | (0.002) | (0.002) | (0.0019) | (0.0021) | (0.002) | (0.0022) | ||||||||||
50 | 0.9472 | 0.9468 | 0.9472 | 0.9478 | 0.9466 | 0.9412 | 0.9464 | 0.9476 | 0.9542 | 0.0115 | 0.0115 | 0.0115 | 0.0116 | 0.0115 | 0.0111 | 0.0115 | 0.0115 | 0.012 |
(0.0012) | (0.0012) | (0.0012) | (0.0012) | (0.0012) | (0.0011) | (0.0012) | (0.0012) | (0.0013) | ||||||||||
70 | 0.9494 | 0.9488 | 0.9498 | 0.9498 | 0.9508 | 0.9438 | 0.9496 | 0.9508 | 0.9566 | 0.0097 | 0.0097 | 0.0097 | 0.0098 | 0.0097 | 0.0095 | 0.0097 | 0.0097 | 0.01 |
(0.0008) | (0.0008) | (0.0008) | (0.0008) | (0.0009) | (0.0008) | (0.0009) | (0.0008) | (0.0009) | ||||||||||
100 | 0.948 | 0.948 | 0.9476 | 0.949 | 0.9484 | 0.9458 | 0.9488 | 0.949 | 0.952 | 0.0081 | 0.0081 | 0.0081 | 0.0081 | 0.0081 | 0.0079 | 0.0081 | 0.0081 | 0.0082 |
(0.0006) | (0.0006) | (0.0006) | (0.0006) | (0.0006) | (0.0006) | (0.0006) | (0.0006) | (0.0006) | ||||||||||
beta () | ||||||||||||||||||
10 | 0.9504 | 0.9408 | 0.9502 | 0.953 | 0.958 | 0.9124 | 0.9362 | 0.951 | 0.976 | 0.2109 | 0.2016 | 0.2109 | 0.2154 | 0.2256 | 0.1864 | 0.2515 | 0.2112 | 0.326 |
(0.0456) | (0.043) | (0.0456) | (0.0472) | (0.0539) | (0.0538) | (0.1594) | (0.046) | (0.1928) | ||||||||||
20 | 0.95 | 0.9462 | 0.9502 | 0.952 | 0.9564 | 0.933 | 0.9486 | 0.9536 | 0.9734 | 0.1392 | 0.1368 | 0.1392 | 0.1409 | 0.1411 | 0.1282 | 0.1361 | 0.1394 | 0.1584 |
(0.0202) | (0.0195) | (0.0202) | (0.0206) | (0.0208) | (0.0185) | (0.0203) | (0.0201) | (0.0241) | ||||||||||
30 | 0.9536 | 0.9524 | 0.9534 | 0.9556 | 0.956 | 0.9448 | 0.9528 | 0.9566 | 0.9698 | 0.1119 | 0.1107 | 0.1119 | 0.1129 | 0.1126 | 0.1058 | 0.1097 | 0.112 | 0.1207 |
(0.0129) | (0.0126) | (0.0129) | (0.0132) | (0.0133) | (0.0122) | (0.0125) | (0.0129) | (0.0143) | ||||||||||
50 | 0.949 | 0.9484 | 0.9494 | 0.9504 | 0.9508 | 0.9442 | 0.9488 | 0.9526 | 0.961 | 0.0853 | 0.0848 | 0.0853 | 0.0858 | 0.0855 | 0.0824 | 0.0842 | 0.0853 | 0.0888 |
(0.0076) | (0.0074) | (0.0076) | (0.0076) | (0.0078) | (0.0073) | (0.0075) | (0.0076) | (0.0082) | ||||||||||
70 | 0.946 | 0.9456 | 0.9466 | 0.9474 | 0.9484 | 0.943 | 0.9462 | 0.9502 | 0.9562 | 0.0716 | 0.0713 | 0.0716 | 0.0719 | 0.0717 | 0.0699 | 0.0709 | 0.0716 | 0.0736 |
(0.0053) | (0.0053) | (0.0053) | (0.0054) | (0.0056) | (0.0052) | (0.0054) | (0.0053) | (0.0057) | ||||||||||
100 | 0.9494 | 0.9484 | 0.9498 | 0.95 | 0.9504 | 0.9482 | 0.9482 | 0.9512 | 0.9564 | 0.0597 | 0.0595 | 0.0597 | 0.0598 | 0.0597 | 0.0586 | 0.0593 | 0.0597 | 0.0608 |
(0.0037) | (0.0037) | (0.0037) | (0.0037) | (0.0039) | (0.0036) | (0.0038) | (0.0037) | (0.004) | ||||||||||
beta () | ||||||||||||||||||
10 | 0.9468 | 0.9444 | 0.9504 | 0.953 | 0.977 | 0.9436 | 0.9546 | 0.9656 | 0.9906 | 0.4064 | 0.3796 | 0.4064 | 0.4179 | 0.4412 | 0.3477 | 0.4366 | 0.4037 | 0.6541 |
(0.0683) | (0.059) | (0.0683) | (0.074) | (0.0927) | (0.0687) | (0.2777) | (0.0672) | (0.4822) | ||||||||||
20 | 0.9452 | 0.939 | 0.9478 | 0.9508 | 0.9682 | 0.9462 | 0.9514 | 0.9634 | 0.9874 | 0.2684 | 0.2592 | 0.2684 | 0.2736 | 0.2722 | 0.2462 | 0.2474 | 0.2684 | 0.3051 |
(0.0292) | (0.0266) | (0.0292) | (0.0314) | (0.0305) | (0.0265) | (0.023) | (0.0291) | (0.0354) | ||||||||||
30 | 0.9576 | 0.9546 | 0.9584 | 0.9616 | 0.97 | 0.9582 | 0.9586 | 0.9686 | 0.9844 | 0.2148 | 0.2098 | 0.2148 | 0.2177 | 0.2162 | 0.2028 | 0.2033 | 0.2149 | 0.2317 |
(0.0184) | (0.0173) | (0.0184) | (0.0195) | (0.0193) | (0.0173) | (0.0161) | (0.0184) | (0.0209) | ||||||||||
50 | 0.9482 | 0.945 | 0.9486 | 0.9508 | 0.9548 | 0.9474 | 0.9482 | 0.9548 | 0.9708 | 0.1638 | 0.1615 | 0.1638 | 0.1652 | 0.1642 | 0.1582 | 0.1584 | 0.1639 | 0.1708 |
(0.0107) | (0.0103) | (0.0107) | (0.0112) | (0.0113) | (0.0103) | (0.0102) | (0.0107) | (0.0118) | ||||||||||
70 | 0.9564 | 0.9542 | 0.9566 | 0.958 | 0.9612 | 0.957 | 0.9552 | 0.9606 | 0.9692 | 0.1376 | 0.1362 | 0.1376 | 0.1385 | 0.1379 | 0.1343 | 0.1344 | 0.1377 | 0.1417 |
(0.0076) | (0.0074) | (0.0076) | (0.0079) | (0.0083) | (0.0074) | (0.0077) | (0.0076) | (0.0086) | ||||||||||
100 | 0.9496 | 0.9492 | 0.95 | 0.9516 | 0.9528 | 0.9498 | 0.9498 | 0.9532 | 0.9598 | 0.1145 | 0.1137 | 0.1145 | 0.115 | 0.1146 | 0.1126 | 0.1126 | 0.1146 | 0.1168 |
(0.0052) | (0.0051) | (0.0052) | (0.0053) | (0.0058) | (0.0051) | (0.0055) | (0.0052) | (0.006) | ||||||||||
logistic () | ||||||||||||||||||
10 | 0.9586 | 0.9518 | 0.9578 | 0.9608 | 0.9424 | 0.8896 | 0.9174 | 0.9462 | 0.9584 | 1.2477 | 1.2309 | 1.2477 | 1.2738 | 1.3607 | 1.2242 | 1.8094 | 1.2953 | 2.2564 |
(0.3509) | (0.3792) | (0.3509) | (0.3602) | (0.4516) | (0.611) | (1.3455) | (0.4282) | (2.7684) | ||||||||||
20 | 0.9552 | 0.9562 | 0.9558 | 0.9582 | 0.948 | 0.9228 | 0.9432 | 0.9476 | 0.9562 | 0.8338 | 0.8419 | 0.8338 | 0.8437 | 0.8521 | 0.8024 | 0.9304 | 0.8505 | 0.9899 |
(0.1657) | (0.1818) | (0.1657) | (0.1682) | (0.1785) | (0.245) | (0.4232) | (0.1865) | (0.2728) | ||||||||||
30 | 0.9542 | 0.9544 | 0.9534 | 0.9562 | 0.9462 | 0.9296 | 0.9424 | 0.9454 | 0.9488 | 0.6688 | 0.6762 | 0.6688 | 0.6745 | 0.6758 | 0.6452 | 0.7035 | 0.6767 | 0.7374 |
(0.1094) | (0.1184) | (0.1094) | (0.1105) | (0.114) | (0.1355) | (0.1977) | (0.1173) | (0.142) | ||||||||||
50 | 0.9574 | 0.958 | 0.9576 | 0.9582 | 0.9488 | 0.9422 | 0.9478 | 0.9498 | 0.9502 | 0.5124 | 0.5171 | 0.5124 | 0.5149 | 0.5142 | 0.4983 | 0.5241 | 0.5147 | 0.5381 |
(0.0639) | (0.0677) | (0.0639) | (0.0643) | (0.0656) | (0.0657) | (0.0788) | (0.0659) | (0.0723) | ||||||||||
70 | 0.9554 | 0.9576 | 0.9552 | 0.9562 | 0.9504 | 0.9454 | 0.9514 | 0.9516 | 0.9516 | 0.4303 | 0.4336 | 0.4303 | 0.4319 | 0.431 | 0.4213 | 0.4373 | 0.4313 | 0.4443 |
(0.046) | (0.0481) | (0.046) | (0.0462) | (0.0472) | (0.0458) | (0.0522) | (0.0467) | (0.05) | ||||||||||
100 | 0.9528 | 0.9544 | 0.9528 | 0.9538 | 0.9484 | 0.945 | 0.9502 | 0.9486 | 0.9478 | 0.3589 | 0.361 | 0.3589 | 0.3599 | 0.3593 | 0.3534 | 0.3633 | 0.3593 | 0.3666 |
(0.0323) | (0.0334) | (0.0323) | (0.0324) | (0.0334) | (0.0321) | (0.0359) | (0.0326) | (0.0347) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veljkovic, K. Comparing Confidence Intervals for the Mean of Symmetric and Skewed Distributions. Symmetry 2024, 16, 1424. https://doi.org/10.3390/sym16111424
Veljkovic K. Comparing Confidence Intervals for the Mean of Symmetric and Skewed Distributions. Symmetry. 2024; 16(11):1424. https://doi.org/10.3390/sym16111424
Chicago/Turabian StyleVeljkovic, Kristina. 2024. "Comparing Confidence Intervals for the Mean of Symmetric and Skewed Distributions" Symmetry 16, no. 11: 1424. https://doi.org/10.3390/sym16111424
APA StyleVeljkovic, K. (2024). Comparing Confidence Intervals for the Mean of Symmetric and Skewed Distributions. Symmetry, 16(11), 1424. https://doi.org/10.3390/sym16111424